USA Banner

Official US Government Icon

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure Site Icon

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

U.S. Department of Transportation U.S. Department of Transportation Icon United States Department of Transportation United States Department of Transportation
Turner-Fairbank logo
OFFICE OF RESEARCH, DEVELOPMENT, AND TECHNOLOGY AT THE TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Development of a Global Road Safety Performance Function Using Deep Neural Networks

Publication Information

Publication External Link:
Publication Type:
Article
Abstract:

This paper explores the idea of applying a machine learning approach to develop a global road safety performance function (SFP) that can be used to predict the expected crash frequencies of different highways from different regions. A deep belief network (DBN) – one of the most popular deep learning models is introduced as an alternative to the traditional regression models for crash modelling. An extensive empirical study is conducted using three real world crash data sets covering six classes of highways as defined by location (urban vs. rural), number of lanes, access control, and region.


The study involves a number of experiments aiming at addressing several critical questions pertaining to the relative performance of the DBN in terms of network structure, training method, data size, and generalization ability, as compared to the traditional regression models. The experimental results have shown that a DBN model could be trained with different crash datasets with prediction performance being at least comparable to that of the locally calibrated negative binomial (NB) model.

 


 

Pan, G., Fu, L., & Thakali, L. (2017). Development of a global road safety performance function using deep neural networks. International Journal of Transportation Science and Technology, 6(3), 159–173. https://doi.org/10.1016/j.ijtst.2017.07.004

Publishing Date:
September 2017
FHWA Program(s):
Research
Safety
AMRP Program(s):
Safety Data and Analysis
FHWA Activities:
Highway Safety Information System
Subject Area:
Safety and Human Factors