USA Banner

Official US Government Icon

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure Site Icon

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

U.S. Department of Transportation U.S. Department of Transportation Icon United States Department of Transportation United States Department of Transportation

Analysis of injury severity of large truck crashes in work zones

Publication Information

Publication External Link:
Publication Type:

Work zones are critical parts of the transportation infrastructure renewal process consisting of rehabilitation of roadways, maintenance, and utility work. Given the specific nature of a work zone (complex arrangements of traffic control devices and signs, narrow lanes, duration) a number of crashes occur with varying severities involving different vehicle sizes. In this paper we attempt to investigate the causal factors contributing to injury severity of large truck crashes in work zones. Considering the discrete nature of injury severity categories, a number of comparable econometric models were developed including multinomial logit (MNL), nested logit (NL), ordered logit (ORL), and generalized ordered logit (GORL) models. The MNL and NL models belong to the class of unordered discrete choice models and do not recognize the intrinsic ordinal nature of the injury severity data. The ORL and GORL models, on the other hand, belong to the ordered response framework that was specifically developed for handling ordinal dependent variables. Past literature did not find conclusive evidence in support of either framework.

This study compared these alternate modeling frameworks for analyzing injury severity of crashes involving large trucks in work zones. The model estimation was undertaken by compiling a database of crashes that (1) involved large trucks and (2) occurred in work zones in the past 10 years in Minnesota. Empirical findings indicate that the GORL model provided superior data fit as compared to all the other models. Also, elasticity analysis was undertaken to quantify the magnitude of impact of different factors on work zone safety and the results of this analysis suggest the factors that increase the risk propensity of sustaining severe crashes in a work zone include crashes in the daytime, no control of access, higher speed limits, and crashes occurring on rural principal arterials.



Osman, M., Paleti, R., Mishra, S., & Golias, M.M. (2016). Analysis of injury severity of large truck crashes in work zones. Accident Analysis & Prevention, 97, 261-273.

Publishing Date:
December 2016
FHWA Program(s):
AMRP Program(s):
Safety Data and Analysis
FHWA Activities:
Highway Safety Information System
Subject Area:
Safety and Human Factors