USA Banner

Official US Government Icon

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure Site Icon

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

U.S. Department of Transportation U.S. Department of Transportation Icon United States Department of Transportation United States Department of Transportation
Turner-Fairbank logo
OFFICE OF RESEARCH, DEVELOPMENT, AND TECHNOLOGY AT THE TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

A Framework for Developing Road Risk Indices Using Quantile Regression Based Crash Prediction Model

Publication Information

Publication External Link:
Publication Type:
Other
Publication Number:
N/A
Abstract:

Safety reviews of existing roads are becoming a popular practice of many agencies nationally and internationally. Knowing road safety information is of great importance to both policymakers in addressing safety concerns and travelers in managing their trips. There have been various efforts in developing methodologies to measure and assess road safety in an effective manner. However, the existing research and practices are still constrained by their subjective and reactive nature.

 

The goal of this research is to develop a framework of Road Risk Indices (RRIs) to assess road risks of existing highway infrastructure for both road users and agencies based on road geometrics, traffic conditions, and historical crash data. The proposed RRIs are intended to give a comprehensive and objective view of road safety, so that safety problems can be identified at an early stage before they rise in the form of accidents. A methodological framework of formulating RRIs that integrates results from crash prediction models and historical crash data is proposed, and Linear Referencing tools in the ArcGIS software are used to develop digital maps to publish estimated RRIs.


These maps provide basic Geographic Information System (GIS) functions, including viewing and querying RRIs, and performing spatial analysis tasks. A semi-parameter count model and quantile regression based estimation are proposed to capture the specific characteristics of crash data and provide more robust and accurate predictions on crash counts. Crash data collected on Interstate Highways in Washington State for the year 2002 was extracted from the Highway Safety Information System (HSIS) and used for the case study. The results from the case study show that the proposed framework is capable of capturing statistical correlations between traffic crashes and influencing factors, leading to the effective integration of safety information in composite indices.

Publishing Date:
January 2011
FHWA Program(s):
Research
Safety
AMRP Program(s):
Safety Data and Analysis
FHWA Activities:
Highway Safety Information System
Subject Area:
Safety and Human Factors