USA Banner

Official US Government Icon

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure Site Icon

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Site Notification

Site Notification

U.S. Department of Transportation U.S. Department of Transportation Icon United States Department of Transportation United States Department of Transportation

Ongoing Projects

The Federal Highway Administration’s (FHWA’s) Advanced Sensing Technology (FAST) Nondestructive Evaluation (NDE) Laboratory is carrying out several new research concepts within its research program. Projects are largely determined based on the FHWA NDE Program Strategic Plan.

  • Evaluation of the latest phased array ultrasonic bridge weld inspection technologies and generating the qualification data to enable ultrasonic test techniques to replace the radiography requirements in the American Welding Society (AWS) bridge welding code, D1.5. Tasks include: evaluating full matrix capture (FMC) and total focusing method (TFM) technology to improve AWS D1.5 ultrasonic flaw characterization; ultrasonic modeling to evaluate AWS D1.5 flaw detection performance, including the generation of virtual qualification data using simulation software; and the evaluation of new advanced technologies for potential incorporation in AWS D1.5, including two- dimensional phased array ultrasonic testing (PAUT) arrays and time-of-flight diffraction (TOFD) techniques.
  • Timber bridge modules for the InfoTechnology Web Portal: The objective of this project is to extend the coverage of the InfoTechnology to include timber bridges. The InfoTechnology is a problem-focused tool to provide concise and unbiased guidance to help practitioners identify the technologies that can serve their specific needs.
  • Validating Density Profiling Systems (DPS) for Asphalt Compaction Assessment: As the DPS technology needs to be proven as a tool for quality assurance of asphalt compaction, the measured values of dielectric should be accurately converted to the pavement properties related value (percent air voids - Va%). Therefore, the scope of this research is to evaluate the development of DPS data collection protocols by assessing:
  • Aggregate type, size (NMAS) and distribution (gradation) effects.
  • Binder type effects
  • Number of data collection passes needed to assess compaction quality of the full lane width
  • Data collection pattern, speed and location based on different construction traffic control methods
  • Evaluate equipment requirements 
  • Collaborative Highway Asset Research: Integrated Sensor-Model Application (CHARISMA): This project develops a non-proprietary, open-source software platform (CHARISMA) to analyze and visualize NDE and other infrastructure data with a long-term goal to fuse sensor data with digital twin / physics-based BIM models. The CHARISMA infrastructure acts as a repository of traditional and machine -learning analysis algorithms that can be shared between stakeholders and improved following open-source principles. CHARISMA can be leveraged by industry to foster the integration of asset inspection, management, and project delivery data for better asset management decision making and facilitating stakeholder collaboration and participation to advance NDT/E and BIM research.
  • NDE Data Fusion and Visualization: The purpose of a data fusion and visualization study is to investigate visualization schemes and fusion of NDE data, and to develop a holistic NDE visualization scheme that (1) conveys meaningful and actionable information about the infrastructure that would trigger an intervention, and (2) is understandable by individuals without an extensive background in NDE. With this focus on visualization, it is of interest to develop NDE data fusion strategies and algorithms that enhance the ability of the data visualization scheme to convey information related to the condition, performance, and safety of bridges.
Last updated: Friday, October 15, 2021