Development of *MASH* TL-2 Crashworthy W-Beam Terminals For Low-Speed/Volume Roads

February 2023
Publication No. FHWA-FLH-23-004

Test Report No. 615181-01

DEVELOPMENT OF *MASH*TL-2 CRASHWORTHY W-BEAM TERMINALS FOR LOW-SPEED/VOLUME ROADS

Sponsored by Federal Highway Administration Office of Federal Lands Highway

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Roadside Safety & Physical Security
Texas A&M University System RELLIS Campus
Building 7091
1254 Avenue A
Bryan, TX 77807

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA-FLH-23-004		
4. Title and Subtitle		5. Report Date
DEVELOPMENT OF <i>MASH</i> TL-2	CRASHWORTHY W-BEAM	June 2023
TERMINALS FOR LOW-SPEED/	VOLUME ROADS	6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Akram A. Abu-Odeh, D. Lance Bul	lard, Nathan D. Schulz, William J. L.	Report 615181-01
Schroeder, and Darrell L. Kuhn		
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas A&M Transportation Institut		
3135 TAMU		11. Contract or Grant No.
College Station, Texas 77843-3135		Project DTFH6116D0039L
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Office of Federal Lands Highway		Technical Report:
1200 New Jersey Avenue, SE.		September 2020–June 2023
Washington, DC 20590		14. Sponsoring Agency Code
		HFL16

15. Supplementary Notes

Project Title: Development of *MASH* TL-2 Crashworthy W-beam Terminals for Low-Speed/Volume Roads Name of Contacting Representative: Jeremiah B. Rogers

16. Abstract

The objective of this research was to design a simple low-cost guardrail terminal at *Manual for Assessing Safety Hardware (MASH)* Test Level 2 (TL-2) (44 mi/h) that assumed use of a current generic MGS W-beam guardrail, which is the most widely used guardrail in the country. The terminal design was tested and evaluated according to the safety-performance evaluation guidelines included in the second edition of *MASH* (1). The crash tests were performed in accordance with *MASH* TL-2.

This report provides details on the development and simulations of different designs for the TL-2 W-beam end terminal, the crash tests and results, and the performance assessment of the TL-2 W-beam end terminal for *MASH* TL-2 gating terminal evaluation criteria.

The final TL-2 W-beam end terminal design met the performance criteria for *MASH* Tests 2-35, 2-30, 2-31, and 2-37b for gating terminals.

17. Key Words		18. Distribution State	ment	
Gating Terminal, MASH, Crash	Test, TL-2,	The illustration	ns and drawings wer	re produced by
Guardrail, W-beam		Texas A&M a	Texas A&M as part of the research project. FHWA reserves the right to publish all contents of this	
		reserves the ri		
		report.		
		No restrictions	s. This document is a	available to the
		public through	NTIS:	
		National Tech	nical Information Se	ervice
		Alexandria, V	irginia 22312	
		http://www.nt	http://www.ntis.gov	
19. Security Classif. (of this report)	20. Security Classi	f. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified		298	

DEVELOPMENT OF MASH TL-2 CRASHWORTHY W-BEAM TERMINALS FOR LOW-SPEED/VOLUME ROADS

by

Akram A. Abu-Odeh, Ph.D.
Research Scientist
Texas A&M Transportation Institute

D. Lance Bullard, P.E. Senior Research Engineer Texas A&M Transportation Institute

Nathan D. Schulz, Ph.D. Assistant Research Scientist Texas A&M Transportation Institute

William J. L. Schroeder Research Engineering Associate Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 615181-01
Contract No.: DTFH6116D0039L
Project Title: Development of *MASH* TL-2 Crashworthy W-beam Terminals for Low-Speed/Volume Roads

Sponsored by the Federal Highway Administration

June 2023

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration, The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above-listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware, Second Edition (MASH) guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to the Federal Highway Administration, and both parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE FEDERAL HIGHWAY ADMINISTRATION OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

ACKNOWLEDGMENTS

The authors of this report are deeply grateful to all those who have contributed to its successful completion. This project was funded by the Federal Highway Administration (FHWA). The FHWA Task Order Contracting Officer's Representative for this project was Christine Black, who provided invaluable support, guidance, and encouragement throughout the course of this project.

The authors appreciate the support of the members of the Technical Advisory Committee (TAC). They provided great input and feedback. The members of the TAC were Dick Albin, Eduardo Arispe, Shawn Debenham, Jeff T. Boutwell, Wayne R. Emington, and Peter Tomczik.

The authors would also like to acknowledge the support of Ronald Faller from the Midwest Roadside Safety Facility (MwRSF) for sharing reports and presentations of different tests conducted at the MwRSF.

Moreover, the authors acknowledge the support of Kristen Maldonado, Sophie Tullos, Sun Hee Park, Roger Bligh, Glenn Schroeder, Adam Mayer, and Maysam Kiani from the Texas A&M Transportation Institute.

Finally, the authors acknowledge the support of ANSYS LS-DYNA for providing the simulation software and Texas A&M University High Performance Research Computing for providing the computational resource to perform LS-DYNA simulations.

REPORT AUTHORIZATION

REPORT REVIEWED BY:

— Docusigned by:

Glenn Schoeder

= E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

—DocuSigned by:

Adam Mayer

F7A06F754E02430...

Adam Mayer, Research Specialist Construction

Scott Dobrovolny

Scott Dobrovolny, Research Specialist Mechanical Instrumentation DocuSigned by:
Ken Reeves
60D556935596468.

Ken Reeves, Research Specialist Electronics Instrumentation

Docusigned by:

Pichard Badillo

0F51DA60AB144F9...

Richard Badillo, Research Specialist Photographic Instrumentation

DocuSigned by:
25F29E1BAD624E8...

William J. L. Schroeder, Research Engineering Associate Research Evaluation and Reporting

Docusigned by:
Bill Griffith

44A122CB271845B...

Bill L. Griffith, Research Specialist Deputy Quality Manager

Docusigned by:

Matt Kobinson

EAA22BFA5BFD417...

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager DocuSigned by:

Danall Kulm

D4CC23E85D5B4E7.

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

6066AE1BB17D407...

Akram A. Abu-Odeh, Ph.D. Research Scientist

TABLE OF CONTENTS

		Page
Chapter	1. Introduction and Background	1
1.1.	Introduction	1
1.2.	$\boldsymbol{\varepsilon}$	
1.2.	1. Vermont Guardrail Terminal	1
	2. Texas Turndown Terminal	
1.2.	3. Slotted Rail Terminal	4
Chapter	2. System Design	5
2.1.	Simulation Introduction	
2.2.	Simulation Setup	
2.3.	Texas Twist Design Evaluation	
2.4.	Vermont Terminal Design Concept	8
2.5.	Flared Slotted Terminal Design Concept	10
2.6.	Discussion	12
Chapter		
3.1.	MASH Test 2-32 (Crash Test No. 615181-01-1, Test Date 2021-08-31)	
	1. Test Article and Installation Details	
	2. Crash Test Results for Crash Test 615181-01-1	
3.2.	MASH Test 2-30 (Crash Test No. 615181-01-2, Test Date 2021-09-02)	
	1. Test Article and Installation Details	
3.2.		
3.3.	MASH Test 2-30 (Crash Test No. 615181-01-10, Test Date 2021-12-15)	
	1. Test Article and Installation Details	
	2. Crash Test Results for Crash Test 615181-01-10	
3.4.	MASH Test 2-30 (Crash Test No. 615181-01-9, Test Date 2022-02-11)	
_	1. Test Article and Installation Details	
_	2. Crash Test Results for Crash Test 615181-01-9	
	MASH Test 2-31 (Crash Test No. 615181-01-3, Test Date 2022-02-16)	
3.5.		
3.6.	,	
	1. Test Article and Installation Details	
	2. Crash Test Results for Crash Test 615181-01-8	
3.7.	MASH Test 2-30 (Crash Test No. 615181-01-4, Test Date 2022-07-20)	38
3.7.		
3.7.		
Chapter	· ·	
4.1.	Model Design Concept and Simulation Introduction	
4.2.	Flared End Terminal Model	
4.3.	Test 2-30 Simulation	
4.4.	Test 2-31 Simulation	
4.5.	Test 2-35 Simulation	
4.6.	Test 2-37b Simulation	
4.7.	Discussion	53

Chapter	5. System Details	55
5.1.	Test Article and Installation Details	
5.2.	Design Modifications during Tests	
5.3.	Material Specifications	
5.4.	Soil Conditions	
Chapter		
6.1.	Crash Test Performed/Matrix	
6.2.	Evaluation Criteria	
Chapter	7. Test Conditions	73
7.1.	Test Facility	73
7.2.	Vehicle Tow and Guidance System	
7.3.	Data Acquisition Systems	
7.3.	± •	
7.3.	_	
7.3.	3. Photographic Instrumentation Data Processing	
Chapter	6 1	
8.1.	Test Designation and Actual Impact Conditions	
8.2.	Weather Conditions	
8.3.	Test Vehicle	
8.4.	Test Description	
8.5.	Damage to Test Installation	
8.6.	Damage to Test Vehicle	
8.7.	Occupant Risk Factors	
8.8.	Test Summary	
Chapter	· · · · · · · · · · · · · · · · · · ·	
9.1.	MASH Test 2-30 (Crash Test No. 615181-01-6, Test Date 2022-09-14)	
9.1.		
	2. Crash Test Results for Crash Test 615181-01-6	
9.2.		
9.2.		
_	2. Crash Test Results for Crash Test 615181-01-7	
Chapter		
10.1.		97
10.2.	Weather Conditions	
10.3.	Test Vehicle	
10.4.	Test Description	
10.5.	Damage to Test Installation	
10.6.	Damage to Test Vehicle	
10.7.	Occupant Risk Factors	
10.8.	Test Summary	
Chapter	·	
11.1.	Test Designation and Actual Impact Conditions	
11.2.	Weather Conditions	
11.3.	Test Vehicle	
11.4.	Test Description	
	Damage to Test Installation	

11.6.	Damage to Test Vehicle	113
11.7.	E	
11.8.	1	
Chapter		
12.1.	Test Designation and Actual Impact Conditions	
12.2.	Weather Conditions	
12.3.	Test Vehicle	
12.4.	Test Description	
12.5.	Damage to Test Installation	
12.6.	Damage to Test Vehicle	
12.7.	Occupant Risk Factors	
12.8.	Test Summary	127
Chapter	: 13. Non-Critical Simulations	131
13.1.	Introduction and Justification	131
13.2.	Test 2-32 Simulation (5-Degree Impact Angle)	132
13.3.	Test 2-32 Simulation (15-Degree Impact Angle)	
13.4.	Test 2-33 Simulation (5-Degree Impact Angle)	136
13.5.	Test 2-33 Simulation (15-Degree Impact Angle)	138
13.6.	Test 2-34 Simulation.	
13.7.	Test 2-37a Simulation	142
13.8.	Discussion	146
Chapter	: 14. Summary and Conclusions	147
14.1.	Assessment of Test Results	147
14.2.	Conclusions	148
14.3.	Engineering Opinion on the Results of MASH Testing	149
Referen	ces	151
APPEN	DIX A. Details of TL-2 W-beam End Terminal	153
	Orawings for Crash Test 615181-01-5	
A.2. I	Drawings for Crash Test 615181-01-11 & 615181-01-12	176
A.3. I	Drawings for Crash Test 615181-01-13	201
APPEN	DIX B. Supporting Certification Documents	221
APPEN	DIX C. MASH Test 2-35 (Crash Test No. 615181-01-5)	
C.1.	Vehicle Properties and Information	260
C.2.	Sequential Photographs	
C.3.	Vehicle Angular Displacements	
C.4.	Vehicle Accelerations	
	DIX D. <i>MASH</i> Test 2-30 (Crash Test No. 615181-01-11)	
D.1.	Vehicle Properties and Information	
D.2.	Sequential Photographs	
D.3.	Vehicle Angular Displacements	
D.4.	Vehicle Accelerations	
	DIX E. <i>MASH</i> Test 2-31 (Crash Test No. 615181-01-12)	
E.1.	Vehicle Properties and Information	
E.2.	Sequential Photographs	
E.3.	Vehicle Angular Displacements	
E.4.	Vehicle Accelerations	287

APPEN	DIX F. <i>MASH</i> Test 2-37b (Crash Test No. 615181-01-13)	289
	Vehicle Properties and Information	
	Sequential Photographs	
	Vehicle Angular Displacements	
	Vehicle Accelerations	

LIST OF FIGURES

	Page
Figure 1.1. Vermont W-Beam Guardrail Terminal (2)	
Figure 1.2. Vehicle and Test Installation after Test 2-30 (2)	
Figure 1.3. Vehicle and Test Installation after Test 2-34 (2)	2
Figure 1.4. Texas Turndown Terminal System (3).	3
Figure 1.5. Test Vehicle after Head-On Crash Test (3).	3
Figure 2.1. FE Vehicle Models.	
Figure 2.2. FE Model of Texas Twist End Terminal Design.	6
Figure 2.3. Texas Twist Test 2-30 Simulation Sequential Images (Downstream View)	7
Figure 2.4. FE Model of Vermont End Terminal Design.	8
Figure 2.5. Vermont Terminal Test 2-34 Simulation Sequential Images (Overhead View)	9
Figure 2.6. FE Model of Flared Slotted End Terminal Design.	10
Figure 2.7. Flared Slotted Terminal Test 2-30 Simulation Sequential Images	
(Overhead View)	
Figure 3.1. Details of TL-2 Terminal on MGS for Crash Test 615181-01-1.	14
Figure 3.2. Upstream Terminal Details of TL-2 Terminal on MGS for Crash Test 615181-	
01-1	15
Figure 3.3. TL-2 Terminal on MGS prior to Crash Test 615181-01-1	16
Figure 3.4. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-1	16
Figure 3.5. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-1.	17
Figure 3.6. Details of TL-2 Terminal on MGS for Crash Test 615181-01-2.	18
Figure 3.7. Upstream Terminal Details of TL-2 Terminal on MGS for Crash Test 615181-	
01-2	
Figure 3.8. TL-2 Terminal on MGS prior to Crash Test 615181-01-2.	
Figure 3.9. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-2	20
Figure 3.10. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-2.	
Figure 3.11. Detailed View of the Windshield after Crash Test 615181-01-2.	22
Figure 3.12. Overall View of the Windshield after Crash Test 615181-01-2	22
Figure 3.13. Details of TL-2 Terminal on MGS for Crash Test 615181-01-10.	24
Figure 3.14. Upstream Terminal Details of TL-2 Terminal on MGS for Crash Test 615181-	
01-10.	
Figure 3.15. TL-2 Terminal on MGS prior to Crash Test 615181-01-10.	26
Figure 3.16. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-	
10	
Figure 3.17. TL-2 Terminal on MGS Post Impact Crash Test 615181-01-10	
Figure 3.18. TL-2 Terminal on MGS Post Impact Crash Test 615181-01-10	
Figure 3.19. TL-2 Terminal on MGS Post Impact Crash Test 615181-01-10	
Figure 3.20. Details of TL-2 Terminal on MGS for Crash Test 615181-01-9.	
Figure 3.21. Details of TL-2 Terminal on MGS for Crash Test 615181-01-9.	
Figure 3.22. TL-2 Terminal on MGS prior to Crash Test 615181-01-9.	
Figure 3.23. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-9	
Figure 3.24. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-9.	
Figure 3.25. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-3.	
Figure 3.26. Details of TL-2 Terminal on MGS for Crash Test 615181-01-8.	36

Figure 3.27. TL-2 Terminal on MGS prior to Crash Test 615181-01-8	. 37
Figure 3.28. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-8	
Figure 3.29. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-8	
Figure 3.30. Details of TL-2 Terminal on MGS for Crash Test 615181-01-4.	
Figure 3.31. TL-2 Terminal on MGS prior to Crash Test 615181-01-4	
Figure 3.32. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-4	
Figure 3.33. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-4	
Figure 4.1. Rendered Model of the First Post with the Anchor Details	
Figure 4.2. FE Model of Flared Terminal Design.	
Figure 4.3. Flared Terminal Test 2-30 Simulation Sequential Images (Overhead View)	
Figure 4.4. Flared Terminal Test 2-30 Simulation Sequential Images (Downstream View)	
Figure 4.5. Flared Terminal Test 2-31 Simulation Sequential Images (Overhead View)	
Figure 4.6. Flared Terminal Test 2-31 Simulation Sequential Images (Downstream View)	
Figure 4.7. Flared Terminal Test 2-35 Simulation Sequential Images (Overhead View)	
Figure 4.8. Flared Terminal Test 2-35 Simulation Sequential Images (Downstream View)	
Figure 4.9. Flared Terminal Test 2-37b Simulation Sequential Images (Overhead View)	
Figure 4.10. Flared Terminal Test 2-37b Simulation Sequential Images	
(Downstream View)	. 52
Figure 5.1. Details of TL-2 W-beam End Terminal Test 615181-01-5	. 57
Figure 5.2. TL-2 W-beam Installation prior to Test 615181-01-5	. 58
Figure 5.3. TL-2 W-beam End Terminal prior to Test 615181-01-5	
Figure 5.4. TL-2 W-beam End Terminal at Posts 3 and 4 prior to Test 615181-01-5.	
Figure 5.5. TL-2 W-beam End Terminal at Post 5 prior to Test 615181-01-5	
Figure 5.6. Field Side of the TL-2 W-beam End Terminal prior to Test 615181-01-5	
Figure 5.7. Field Side of the TL-2 W-beam End Terminal Installation prior to Test 615181-	
01-5.	. 60
Figure 5.8. Details of TL-2 W-beam End Terminal Tests 615181-01-11 & 615181-01-12	
Figure 5.9. TL-2 W-beam End Terminal prior to Tests 615181-01-11 & 615181-01-12	
Figure 5.10. The Anchor Bolt with Cap Nut on the TL-2 W-beam End Terminal prior to	
Tests 615181-01-11 & 615181-01-12	. 62
Figure 5.11. TL-2 W-beam End Terminal on the Impact Side of Post 4 prior to Tests	
615181-01-11 & 615181-01-12.	. 63
Figure 5.12. TL-2 W-beam End Terminal on the Non-Impact Side of Post 4 prior to Tests	
615181-01-11 & 615181-01-12.	. 63
Figure 5.13. Details of TL-2 W-beam End Terminal Test 615181-01-13	
Figure 5.14. TL-2 W-beam End Terminal Prior to Test 615181-01-13.	
Figure 5.15. TL-2 W-beam End Terminal Anchor Post Prior to Test 615181-01-13	
Figure 5.16. Rear View of the TL-2 W-beam End Terminal Prior to Test 615181-01-13	
Figure 5.17. Downstream View of the TL-2 W-beam End Terminal Prior to Test 615181-	
01-13.	. 66
Figure 6.1. Target CIP for MASH 2-35 Test on TL-2 W-beam End Terminal Test 615181-	. 00
01-5.	. 69
Figure 6.2. Target CIP for <i>MASH</i> 2-30 Test on TL-2 W-beam End Terminal Test 615181-	. 07
1-11	. 69
Figure 6.3. Target CIP for <i>MASH</i> 2-31 Test on TL-2 W-beam End Terminal Test 615181-	. 57
1-12	. 70
= ·································	. , 0

Figure 6.4. Target CIP for MASH 2-37b Test on TL-2 W-beam End Terminal Test 615181-	
1-13	
Figure 8.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-5	78
Figure 8.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-5	78
Figure 8.3. Impact Side of Test Vehicle before Test 615181-01-5.	79
Figure 8.4. Opposite Impact Side of Test Vehicle before Test 615181-01-5	80
Figure 8.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-5	
Figure 8.6. TL-2 W-beam End Terminal after Test at the Upstream End Terminal 615181-	
01-5	
Figure 8.7. Impact Side of Test Vehicle after Test 615181-01-5.	83
Figure 8.8. Rear Impact Side of Test Vehicle after Test 615181-01-5.	83
Figure 8.9. Overall Interior of Test Vehicle after Test 615181-01-5	84
Figure 8.10. Interior of Test Vehicle on Impact Side after Test 615181-01-5.	84
Figure 8.11. Summary of Results for MASH Test 2-35 on TL-2 W-beam End Terminal	
Figure 9.1. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-6.	
Figure 9.2. Occupant Compartment Penetration after Crash Test 615181-01-6.	
Figure 9.3. Undercarriage Damage after Crash Test 615181-01-6	
Figure 9.4. Details of TL-2 Terminal on MGS for Crash Test 615181-01-7.	
Figure 9.5. TL-2 Terminal on MGS prior to Crash Test 615181-01-7	
Figure 9.6. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-7	
Figure 9.7. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-7.	
Figure 9.8. Post Engaged with Undercarriage of Vehicle after Crash Test 615181-01-7	
Figure 9.9. Occupant Compartment Damage after Crash Test 615181-01-7.	
Figure 10.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-11	
Figure 10.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-11	
Figure 10.3. Impact Side of Test Vehicle before Test 615181-01-11.	
Figure 10.4. Overall Interior of Test Vehicle before Test 615181-01-11	
Figure 10.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-11	
Figure 10.6. TL-2 W-beam End Terminal after Test after the Small Car was Removed	
615181-01-11.	102
Figure 10.7. Right Side of Test Vehicle after Test 615181-01-11.	
Figure 10.8. Left Side of Test Vehicle after Test 615181-01-11	103
Figure 10.9. Overall Interior of Test Vehicle after Test 615181-01-11	
Figure 10.10. Interior of Test Vehicle on Impact Side after Test 615181-01-11.	
Figure 10.11. Summary of Results for <i>MASH</i> Test 2-30 on TL-2 W-beam End Terminal	
Figure 11.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-12	
Figure 11.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-12	
Figure 11.3. Impact Side of Test Vehicle before Test 615181-01-12.	
Figure 11.4. Interior of the Test Vehicle before Test 615181-01-12.	
Figure 11.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-12	
Figure 11.6. TL-2 W-beam End Terminal after Test at the Downstream Terminal 615181-	112
01-12.	112
Figure 11.7. Impact Side of Test Vehicle after Test 615181-01-12.	
Figure 11.8. Left Side of Test Vehicle after Test 615181-01-12.	113
Figure 11.9. Overall Interior of Test Vehicle after Test 615181-01-12	114
Figure 11.10. Interior of Test Vehicle on Impact Side after Test 615181-01-12.	
1 15010 11.10. Interior of feat ventere on impact blue after feat 01.7101 01 12	TT

Figure 11.11. Summary of Results for MASH Test 2-31 on TL-2 W-beam End Terminal	.117
Figure 12.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-13	120
Figure 12.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-13	120
Figure 12.3. Impact Side of Test Vehicle before Test 615181-01-13	121
Figure 12.4. Opposite Impact Side of Test Vehicle before Test 615181-01-13	
Figure 12.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-13	
Figure 12.6. End of the Rail and Anchor Post of the TL-2 W-beam End Terminal after Test	
615181-01-13	124
Figure 12.7. Impact Side of Test Vehicle after Test 615181-01-13.	
Figure 12.8. Rear Impact Side of Test Vehicle after Test 615181-01-13	
Figure 12.9. Overall Interior of Test Vehicle after Test 615181-01-13	
Figure 12.10. Interior of Test Vehicle on Impact Side after Test 615181-01-13.	
Figure 12.11. Summary of Results for MASH Test 2-37b on TL-2 W-beam End Terminal	
Figure 13.1. Flared Terminal Test 2-32 (5 Degrees) Simulation Sequential Images	
(Overhead View)	132
Figure 13.2. Flared Terminal Test 2-32 (5 Degrees) Simulation Sequential Images	
(Downstream View)	133
Figure 13.3. Flared Terminal Test 2-32 (15 Degrees) Simulation Sequential Images	
(Overhead View)	134
Figure 13.4. Flared Terminal Test 2-32 (15 Degrees) Simulation Sequential Images	
(Downstream View).	135
Figure 13.5. Flared Terminal Test 2-33 (5 Degrees) Simulation Sequential Images	
(Overhead View)	136
Figure 13.6. Flared Terminal Test 2-33 (5 Degrees) Simulation Sequential Images	
(Downstream View)	137
Figure 13.7. Flared Terminal Test 2-33 (15 Degrees) Simulation Sequential Images	
(Overhead View)	138
Figure 13.8. Flared Terminal Test 2-33 (15 Degrees) Simulation Sequential Images	
(Downstream View)	139
Figure 13.9. Flared Terminal Test 2-34 Simulation Sequential Images (Overhead View)	
Figure 13.10. Flared Terminal Test 2-34 Simulation Sequential Images	
(Downstream View)	141
Figure 13.11. Flared Terminal Test 2-37a Simulation CIP01 Sequential Images	
(Overhead View)	142
Figure 13.12. Flared Terminal Test 2-37a Simulation CIP01 Sequential Images	
(Downstream View)	143
Figure 13.13. Flared Terminal Test 2-37a Simulation CIP02 Sequential Images	
(Overhead View)	144
Figure 13.14. Flared Terminal Test 2-37a Simulation CIP02 Sequential Images	
(Downstream View)	145
Figure B.1. Test Day Static Soil Strength Documentation for Test No. 615181-01-5	
Figure B.2. Test Day Static Soil Strength Documentation for Test No. 615181-01-11	
Figure B.3. Test Day Static Soil Strength Documentation for Test No. 615181-01-12	
Figure B.4. Test Day Static Soil Strength Documentation for Test No. 615181-01-13	
Figure C.1. Vehicle Properties for Test No. 615181-01-5.	
Figure C.2. Exterior Crush Measurements for Test No. 615181-01-5.	
•	

Figure C.3. Occupant Compartment Measurements for Test No. 615181-01-5	262
Figure C.4. Sequential Photographs for Test No. 615181-01-5 (Overhead Views)	263
Figure C.5. Sequential Photographs for Test No. 615181-01-5 (Frontal Views)	
Figure C.6. Sequential Photographs for Test No. 615181-01-5 (Rear Views)	
Figure C.7. Vehicle Angular Displacements for Test No. 615181-01-5.	
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-5	
(Accelerometer Located at Center of Gravity).	267
Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-5	
(Accelerometer Located at Center of Gravity).	267
Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-5	
(Accelerometer Located at Center of Gravity).	268
Figure D.1. Vehicle Properties for Test No. 615181-01-11.	
Figure D.2. Exterior Crush Measurements for Test No. 615181-01-11.	
Figure D.3. Occupant Compartment Measurements for Test No. 615181-01-11	
Figure D.4. Sequential Photographs for Test No. 615181-01-11 (Overhead Views)	
Figure D.5. Sequential Photographs for Test No. 615181-01-11 (Frontal Views)	
Figure D.6. Sequential Photographs for Test No. 615181-01-11 (Oblique Views)	
Figure D.7. Vehicle Angular Displacements for Test No. 615181-01-11	
Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-11	= , 0
(Accelerometer Located at Center of Gravity).	277
Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-11	2 , ,
(Accelerometer Located at Center of Gravity).	277
Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-11	2 , ,
(Accelerometer Located at Center of Gravity).	278
Figure E.1. Vehicle Properties for Test No. 615181-01-12.	
Figure E.2. Exterior Crush Measurements for Test No. 615181-01-12	281
Figure E.3. Occupant Compartment Measurements for Test No. 615181-01-12	
Figure E.4. Sequential Photographs for Test No. 615181-01-12 (Overhead Views)	
Figure E.5. Sequential Photographs for Test No. 615181-01-12 (Frontal Views)	
Figure E.6. Sequential Photographs for Test No. 615181-01-12 (Oblique Views)	
Figure E.7. Vehicle Angular Displacements for Test No. 615181-01-12.	
Figure E.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-12	200
(Accelerometer Located at Center of Gravity).	287
Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-12	207
(Accelerometer Located at Center of Gravity).	287
Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-12	207
(Accelerometer Located at Center of Gravity).	288
Figure F.1. Vehicle Properties for Test No. 615181-01-13.	
Figure F.2. Exterior Crush Measurements for Test No. 615181-01-13	
Figure F.3. Occupant Compartment Measurements for Test No. 615181-01-13	
Figure F.4. Sequential Photographs for Test No. 615181-01-13 (Overhead Views)	
Figure F.5. Sequential Photographs for Test No. 615181-01-13 (Frontal Views)	
Figure F.6. Sequential Photographs for Test No. 615181-01-13 (Rear Views)	
Figure F.7. Vehicle Angular Displacements for Test No. 615181-01-13	
Figure F.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-13	200
(Accelerometer Located at Center of Gravity).	297
(1 190010110101 Doubled at Collect of Old 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	

Figure F.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-13	
(Accelerometer Located at Center of Gravity).	297
Figure F.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-13	
(Accelerometer Located at Center of Gravity).	298

LIST OF TABLES

	Page
Table 4.1. Flared Terminal Test 2-37b Occupant Risk	
Table 5.1. Soil Strength for Crash Test 615181-01-5.	67
Table 5.2. Soil Strength for Crash Test 615181-01-11.	67
Table 5.3. Soil Strength for Crash Test 615181-01-12.	68
Table 5.4. Soil Strength for Crash Test 615181-01-13.	68
Table 6.1. Test Conditions and Evaluation Criteria Specified for MASH TL-2 Non-gating	
Terminals	
Table 6.2. Evaluation Criteria Required for MASH Testing.	70
Table 8.1. Impact Conditions for Test 615181-01-5	77
Table 8.2. Exit Parameters for Test 615181-01-5	
Table 8.3. Weather Conditions 615181-01-5	79
Table 8.4. Vehicle Measurements 615181-01-5.	80
Table 8.5. Events during Test 615181-01-5	
Table 8.6. Damage to TL-2 W-beam End Terminal 615181-01-5.	81
Table 8.7. Deflections of the TL-2 W-beam End Terminal 615181-01-5.	81
Table 8.8. Occupant Compartment Deformation 615181-01-5.	85
Table 8.9. Exterior Vehicle Damage 615181-01-5.	85
Table 8.10. Occupant Risk Factors for Test 615181-01-5	86
Table 10.1. Impact Conditions for Test 615181-01-11	97
Table 10.2. Exit Parameters for Test 615181-01-11.	
Table 10.3. Weather Conditions 615181-01-11	99
Table 10.4. Vehicle Measurements 615181-01-11.	100
Table 10.5. Events during Test 615181-01-11	101
Table 10.6. Occupant Compartment Deformation 615181-01-11.	104
Table 10.7. Exterior Vehicle Damage 615181-01-11	104
Table 10.8. Occupant Risk Factors for Test 615181-01-11	105
Table 11.1. Impact Conditions for Test 615181-01-12	107
Table 11.2. Exit Parameters for Test 615181-01-12.	107
Table 11.3. Weather Conditions 615181-01-12.	
Table 11.4. Vehicle Measurements 615181-01-12.	
Table 11.5. Events during Test 615181-01-12	111
Table 11.6. Occupant Compartment Deformation 615181-01-12.	115
Table 11.7. Exterior Vehicle Damage 615181-01-12.	
Table 11.8. Occupant Risk Factors for Test 615181-01-12	116
Table 12.1. Impact Conditions for Test 615181-01-13	
Table 12.2. Exit Parameters for Test 615181-01-13.	119
Table 12.3. Weather Conditions 615181-01-13	121
Table 12.4. Vehicle Measurements 615181-01-13.	122
Table 12.5. Events during Test 615181-01-13	123
Table 12.6. Occupant Compartment Deformation 615181-01-13.	126
Table 12.7. Exterior Vehicle Damage 615181-01-13.	126
Table 12.8. Occupant Risk Factors for Test 615181-01-13	127
Table 13.1. Flared Terminal Test 2-32 (5 Degrees) Simulation Occupant Risk	133

Table 13.2. Flared Terminal Test 2-32 (15 Degrees) Simulation Occupant Risk	135
Table 13.3. Flared Terminal Test 2-33 (5 Degrees) Simulation Occupant Risk	137
Table 13.4. Flared Terminal Test 2-33 (15 Degrees) Simulation Occupant Risk	139
Table 13.5. Flared Terminal Test 2-34 Simulation Occupant Risk.	141
Table 13.6. Flared Terminal Test 2-37a Simulation Occupant Risk	145
Table 14.1. Summary of Tests in Numerical Order	147
Table 14.2. Assessment Summary for MASH TL-2 Tests on TL-2 W-beam End Terminal	148
Table B.1. Test Day Static Soil Strength Documentation for Test No. 615181-01-5	254
Table B.2. Test Day Static Soil Strength Documentation for Test No. 615181-01-11	255
Table B.3. Test Day Static Soil Strength Documentation for Test No. 615181-01-12	256
Table B.4. Test Day Static Soil Strength Documentation for Test No. 615181-01-13	257

SI* (MODERN METRIC) CONVERSION FACTORS								
APPROXIMATE CONVERSIONS TO SI UNITS								
Symbol	When You Know	Multiply By	To Find	Symbol				
		LENGTH						
in	inches	25.4	millimeters	mm				
ft	ft	0.305	meters	m				
yd	yards 	0.914	meters	m				
mi	miles	1.61	kilometers	km				
. 2		AREA	-112	2				
in ² ft ²	square inches	645.2	square millimeters	mm ²				
	square yards	0.093 0.836	square meters	m² m²				
yd² ac	square yards acres	0.405	square meters hectares	ha				
mi ²	square miles	2.59	square kilometers	km²				
1111	equale miles	VOLUME	equale kilomotore	MII				
fl oz	fluid ounces	29.57	milliliters	mL				
gal	gallons	3.785	liters	L				
ft ³	cubic ft	0.028	cubic meters	m ³				
yd ³	cubic yards	0.765	cubic meters	m^3				
J		imes greater than 1000L	shall be shown in m ³					
		MASS						
oz	ounces	28.35	grams	g				
lb	pounds	0.454	kilograms	kg				
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")				
		EMPERATURE (exac						
°F	Fahrenheit	5(F-32)/9	Celsius	°C				
		or (F-32)/1.8						
		RCE and PRESSURE						
lbf	noundtorce	4.45	newtons	N				
	poundforce							
lbf/in ²	poundforce per square inc	h 6.89	kilopascals	kPa				
lbf/in ²	poundforce per square inc	h 6.89 MATE CONVERSION	kilopascals IS FROM SI UNITS	kPa				
	poundforce per square inc	h 6.89 MATE CONVERSION Multiply By	kilopascals					
Ibf/in ² Symbol	poundforce per square inc APPROXI When You Know	h 6.89 MATE CONVERSION Multiply By LENGTH	kilopascals IS FROM SI UNITS To Find	kPa Symbol				
Symbol mm	poundforce per square inc APPROXI When You Know millimeters	MATE CONVERSION Multiply By LENGTH 0.039	kilopascals IS FROM SI UNITS To Find inches	kPa Symbol				
Symbol mm m	poundforce per square inc APPROXI When You Know millimeters meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28	kilopascals IS FROM SI UNITS To Find inches ft	kPa Symbol in ft				
Symbol mm m m	poundforce per square inc APPROXI When You Know millimeters meters meters meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09	kilopascals IS FROM SI UNITS To Find inches ft yards	Symbol in ft yd				
Symbol mm m	poundforce per square inc APPROXI When You Know millimeters meters	h 6.89 MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621	kilopascals IS FROM SI UNITS To Find inches ft	kPa Symbol in ft				
Symbol mm m m km	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	kilopascals IS FROM SI UNITS To Find inches ft yards miles	Symbol in ft yd mi				
Symbol mm m km km	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches	Symbol in ft yd mi in²				
Symbol mm m km mm² m² m²	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft	kPa Symbol in ft yd mi in² ft²				
Symbol mm m km km	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches	kPa Symbol in ft yd mi in² ft² yd² ac				
Symbol mm m km mm² m² m² m² m²	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches ft yards miles square inches square ft square yards	kPa Symbol in ft yd mi in² ft² yd²				
Symbol mm m km mm² m² m² ha	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft square yards acres	kPa Symbol in ft yd mi in² ft² yd² ac				
Ibf/in ² Symbol mm m km mm ² m ² m ² ha km ² mL	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters square meters hectares Square kilometers milliliters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft square yards acres square miles fluid ounces	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz				
Ibf/in ² Symbol mm m km mm² m² ha km² mL L	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal				
Ibf/in ² Symbol mm m km mm² m² ha km² mL L m³	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³				
Ibf/in ² Symbol mm m km mm² m² ha km² mL L	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal				
Ibf/in ² Symbol mm m m km m ² m ² ha km ² mL L m ³ m ³	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³				
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² mL L m ³ m ³	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards ounces	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz				
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² mL L m ³ m ³ g kg	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	MATE CONVERSION Multiply By	inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards ounces pounds	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb				
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² mL L m ³ m ³	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric tor	## 6.89 MATE CONVERSION Multiply By	inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards ounces pounds short tons (2000lb)	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz				
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric tor	MATE CONVERSION Multiply By	kilopascals IS FROM SI UNITS To Find inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards ounces pounds short tons (2000lb)	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T				
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² mL L m ³ m ³ g kg	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric tor Celsius	MATE CONVERSION Multiply By	inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb				
Ibf/in² Symbol mm m m km m² m² m² ha km² mL L m³ m³ g kg Mg (or "t") °C	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric tor Ti Celsius	MATE CONVERSION Multiply By	inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T				
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	poundforce per square inc APPROXI When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric tor Celsius	MATE CONVERSION Multiply By	inches ft yards miles square inches square ft square yards acres square miles fluid ounces gallons cubic ft cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T				

*SI is the symbol for the International System of Units

Chapter 1. INTRODUCTION AND BACKGROUND

1.1. INTRODUCTION

The objective of this research was to design a simple low-cost guardrail terminal at American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* Test Level 2 (TL-2) (44 mi/h) that assumed use of a current generic MGS W-beam guardrail, which is the most widely used guardrail in the country. The terminal design was tested and evaluated according to the safety-performance evaluation guidelines included in the second edition of *MASH (1)*. The crash tests were performed in accordance with *MASH* TL-2 for gating end terminals (as discussed in Chapter 6).

1.2. BACKGROUND

Guardrail terminals have been developed and evaluated for decades to improve safety during vehicle crashes with the end section of guardrail systems. A few of the previously tested TL-2 guardrail terminal systems are summarized in this section.

1.2.1. Vermont Guardrail Terminal

The Vermont W-beam guardrail terminal was evaluated by the Texas A&M Transportation Institute (TTI) according to National Cooperative Highway Research Program (NCHRP) Report 350 TL-2 (2).

The terminal consisted of a flared radius end section across two steel posts. The total flare offset was 58 inches. The length-of-need (LON) section was anchored at the third post, where the end treatment transitions to the tangent LON section, using an anchor spider. Figure 1.1 shows the Vermont W-beam guardrail terminal. The terminal end component was a standard W-beam end section.

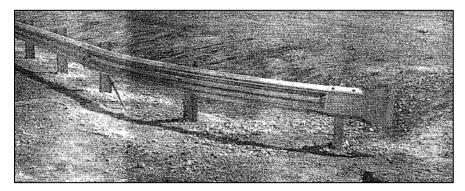


Figure 1.1. Vermont W-Beam Guardrail Terminal (2).

Three crash tests were conducted to evaluate the crashworthy performance of the Vermont W-beam guardrail terminal: NCHRP Report 350 Tests 2-30, 2-34, and 2-35.

For NCHRP Report 350 Test 2-30, the vehicle gated through the terminal and came to a stop behind the installation. During the vehicle impact, the first steel post yielded and was

deflected down toward the ground as the vehicle traversed over it. The end rail section bent backward during vehicle impact and was curved around the second post. There was minimal movement of the other posts. The damage to the vehicle was acceptable, and the occupant risk values were within the limits. Figure 1.2 shows the vehicle and test installation after the crash test.

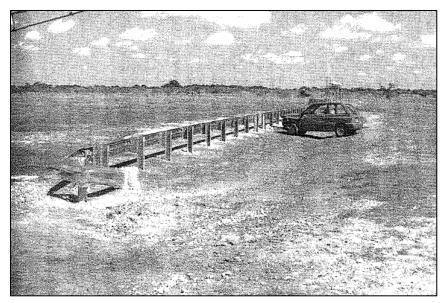


Figure 1.2. Vehicle and Test Installation after Test 2-30 (2).

For NCHRP Report 350 Test 2-34, the small car vehicle came to a controlled stop after impacting the end terminal. The second steel post yielded during vehicle impact and was deflected down toward the ground. The rail end section detached at posts 1 and 2. No other significant damage was noted for the installation. The damage to the vehicle was acceptable, and the occupant risk values were within the limits. Figure 1.3 shows the vehicle and test installation after the crash test.

Figure 1.3. Vehicle and Test Installation after Test 2-34 (2).

For NCHRP Report 350 Test 2-35, the pickup truck vehicle was successfully contained and redirected. There was minimal damage to the test installation. The damage to the vehicle was acceptable, and the occupant risk values were within the limits.

The Vermont W-beam guardrail terminal met all the evaluation criteria for NCHRP Report 350 TL-2 end terminals.

1.2.2. Texas Turndown Terminal

A turndown version of a guardrail terminal was developed and evaluated by TTI according to NCHRP Report 153 and later to NCHRP Report 230 (3).

The turndown terminal system consisted of a 25-ft guardrail section twisted down from the guardrail LON height to the ground. There were no guardrail posts in this section, and the rail was attached to a concrete foundation. The twisted guardrail section was not attached to the first five wood posts. The section was held in place by steel straps that were attached to W-beam backup plates connected to the wood posts. Figure 1.4 shows the terminal system.

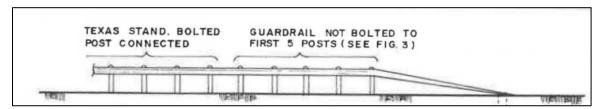


Figure 1.4. Texas Turndown Terminal System (3).

Five crash tests were conducted to evaluate the crashworthy performance of the Texas turndown terminal. The terminal system was considered satisfactory for the NCHRP Report 153 evaluation criteria. The turndown system allowed the vehicle to ride over the twisted section without rolling over. In the head-on crash test, the vehicle depressed the rail and rode along the length of the guardrail installation. Figure 1.5 shows the vehicle after the crash test.

Figure 1.5. Test Vehicle after Head-On Crash Test (3).

The Texas turndown terminal was later evaluated according to NCHRP Report 230. The design failed NCHRP Report 230 Test 45 because the vehicle launched into the air during the head-on impact and rolled over. Different adaptions of the Texas turndown terminal were developed and evaluated over the years. These systems were also found to be unsuccessful for NCHRP Report 230. The main components of the twisted, unsupported, and ground-anchored rail were similar among the different designs.

1.2.3. Slotted Rail Terminal

The slotted rail terminal (SRT) is a guardrail end terminal that has been tested and evaluated according to NCHRP Report 350 and *MASH* TL-3 (4). The SRT incorporates some of the following design elements: a cable release anchor post, steel terminal posts, two slotted W-beam rails, and a standard cable anchor bracket. The use of slotted rails was considered during the design phase of this project. The other design elements of the SRT were not considered in this research.

Chapter 2. SYSTEM DESIGN

2.1. SIMULATION INTRODUCTION

Finite element (FE) computer simulations were utilized to evaluate three end terminal design concepts according to *MASH* TL-2 evaluation criteria. The three design concepts were similar to the systems discussed in Chapter 1. The simulations were conducted using LS-DYNA, which is a general-purpose FE program capable of simulating complex engineering systems with impact-contact phenomena (5). This chapter discusses the simulation setup, design concepts, and computer simulation results. The designs considered early in this project were based on the non-proprietary systems, mainly the Vermont terminal and the Texas twist or turned down terminal due to their simplicity. Neither of these designs has been tested per *MASH* test conditions, and known performance issues have to be addressed through design modification to evaluate their performance per *MASH* test conditions and evaluation criteria.

2.2. SIMULATION SETUP

Representative FE models of the 1100C and 2270P test vehicles are shown in Figure 2.1. The vehicle models were developed by the Center for Collision Safety and Analysis. These vehicle models were used to evaluate the crashworthy performance of the end terminal models.

Figure 2.1. FE Vehicle Models.

Geometrical representations of the three end terminal design concepts were developed, and an FE mesh was applied to each of the parts. Appropriate section and material properties were applied for the end terminal system components (steel posts, wood posts, guardrail, anchor, etc.). Boundary conditions and contact between the vehicle and end terminal model were defined.

2.3. TEXAS TWIST DESIGN EVALUATION

The Texas twist end terminal design was evaluated with FE computer simulations. Figure 2.2 shows the FE model of the end terminal. A standard 12-ft section of W-beam guardrail was anchored at groundline (applied boundary constraint) and twisted to attach at the first steel post. The remaining system consists of a standard LON guardrail.

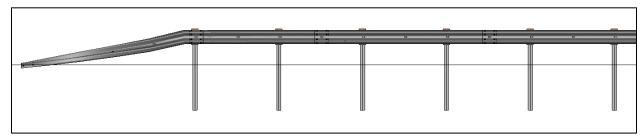


Figure 2.2. FE Model of Texas Twist End Terminal Design.

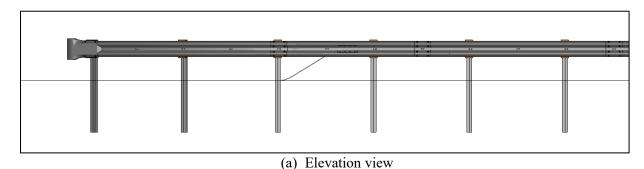

The first impact simulation for this system was *MASH* Test 2-30, which is a head-on impact. This test involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 0 degrees. The 1100C vehicle model impacted the terminal system with the quarter point of the vehicle bumper aligned with the tangent guardrail. Figure 2.3 shows sequential images for the *MASH* Test 2-30 simulation impact. The small car vehicle model climbed the rail during impact and rolled over. Thus, the system would be considered unsatisfactory according to *MASH*. Additional simulations were not conducted on this system based on the unsatisfactory performance.

Figure 2.3. Texas Twist Test 2-30 Simulation Sequential Images (Downstream View).

2.4. VERMONT TERMINAL DESIGN CONCEPT

The Vermont end terminal design was evaluated with FE computer simulations. Figure 2.4 shows the FE model of the end terminal. The first two posts are attached to a curved section of W-beam guardrail. A rounded W-beam end section is located at the end of the terminal. The remaining system consists of a standard LON guardrail. An anchor cable is connected between the tangent guardrail section and the third steel post.

(b) Plan view

Figure 2.4. FE Model of Vermont End Terminal Design.

The following impact simulations were performed on the Vermont terminal model system: *MASH* Tests 2-30, 2-31, 2-32, 2-33, 2-34, 2-35, and 2-37b. For conciseness, only the results of the *MASH* Test 2-34 simulation are discussed.

MASH Test 2-34 involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 15 degrees. The 1100C vehicle model impacted the terminal system 30 inches upstream of the third steel post. Figure 2.5 shows sequential images for the MASH Test 2-34 simulation impact. The impact side front wheel of the car model snagged on the cable anchor during impact. This resulted in a longitudinal occupant ridedown acceleration (ORA) of 25.6 g, which was above the MASH limit. Thus, the system would be considered unsatisfactory according to MASH. Additional simulations were not conducted on this system based on the unsatisfactory performance.

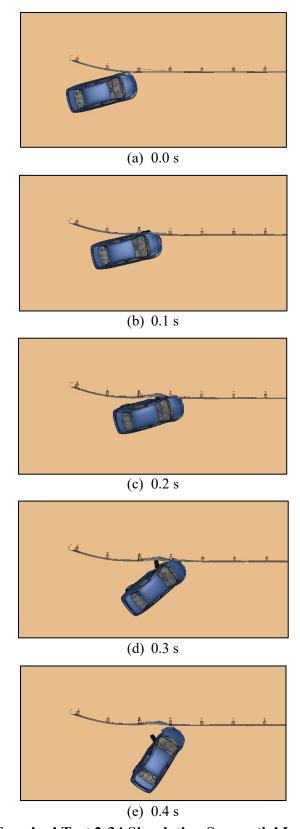
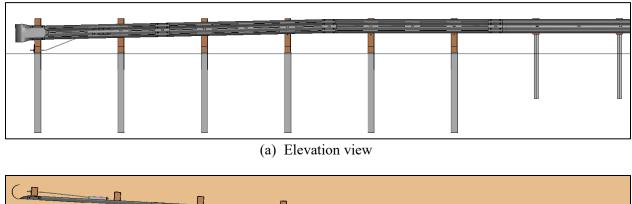



Figure 2.5. Vermont Terminal Test 2-34 Simulation Sequential Images (Overhead View).

2.5. FLARED SLOTTED TERMINAL DESIGN CONCEPT

The flared slotted end terminal design was evaluated with FE computer simulations. Figure 2.6 shows the FE model of the end terminal. The first two slotted rail sections transitioned from a height of 25 inches to 31 inches. The first six posts were wood breakaway posts inserted in steel sleeves. The remaining guardrail posts were standard steel posts. The terminal was anchored at the first wood breakaway post with a steel anchor cable. The remaining system consists of a standard LON guardrail.

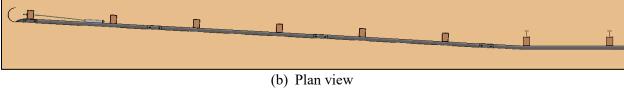


Figure 2.6. FE Model of Flared Slotted End Terminal Design.

Two critical impact simulations were performed on the flared slotted end terminal model system: *MASH* Tests 2-30 and 2-35.

MASH Test 2-30 involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 0 degrees. The 1100C vehicle model impacted the terminal system with the quarter point of the vehicle bumper aligned with the end terminal head. Figure 2.7 shows sequential images for the MASH Test 2-30 simulation impact. The end terminal released as designed, and the vehicle gated through the system. The occupant risk values were within the MASH limits.

Figure 2.7. Flared Slotted Terminal Test 2-30 Simulation Sequential Images (Overhead View).

2.6. DISCUSSION

Three end terminal design concepts were evaluated according to *MASH* TL-2 evaluation criteria. FE computer simulations were performed with impact conditions representative of the *MASH* TL-2 crash test conditions for end terminals.

The small car vehicle rolled over during the *MASH* Test 2-30 impact simulation with the Texas twist end terminal system. This result indicates that more design modifications must be done for the Texas twist terminal system to have a chance at eliminating vehicular rollover.

The Vermont terminal design did perform acceptably for most of the *MASH* TL-2 crash tests. However, the small car wheel snagged on the cable anchor during the Test 2-34 impact simulation. This snagging phenomenon led to ridedown accelerations exceeding the *MASH* limit. The failure of the vehicle suspension is a complex phenomenon to be accurately modeled and simulated. Thus, having a simulated higher ridedown acceleration value is not necessarily going to be reflected in the physical tests given that small car suspension fails easily from an overall anecdotal observation of recent testing.

The flared slotted end terminal design did perform acceptably for *MASH* Test 2-30 but had unsatisfactory performance for *MASH* Test 2-35. The anchor cable assembly needed modification to successfully contain and redirect the pickup truck.

These initial simulations indicated that the Vermont terminal design was the candidate to be evaluated via crash testing. Use of a slotted rail was also appropriate given that the rail would have less stiffness than a non-slotted rail for head-on impacts. The initial tests were focused on the terminal end performance in a head-on impact. The redirection tests were not evaluated first since the anchors in these candidate systems have historically performed well. Consequently, a Texas twist terminal was evaluated with weaker rail segments via slotting of initial rail segments. This evaluation provided an assessment on whether making changes to the design would be worth pursuing if the performance was significantly improved and the vehicular rollover was prevented.

Chapter 3. INITIAL TESTING

Several different designs were tested before the final configuration successfully completed the *MASH* Tests 2-35, 2-30, 2-31, and 2-37b for gating terminals. Those installations, their differences, and any test failure mechanisms are presented in this chapter.

3.1. *MASH* TEST 2-32 (CRASH TEST NO. 615181-01-1, TEST DATE 2021-08-31)

3.1.1. Test Article and Installation Details

The test installation was 131 ft 3 inches long. A TL-2 Terminal, which was approximately 21.8 ft. long, was at one end, and a Steel Post Terminal which was approximately 9.5 ft was at the opposite end. Between the two end terminals was 100 ft. of standard length-ofneed guardrail. The LON consisted of 12-gauge W-beam supported by W6×8.5 posts with timber blockouts. All posts were spaced at 75 inches.

The TL-2 Terminal spanned four posts, with the first one offset toward the field side 24 inches and the second one offset 5½ inches. All other posts were in line with the LON. A BCT anchor cable was attached to the W-beam between posts 3 and 4 and anchored to a W6×15 post on the traffic side of post 3. This anchor post protruded 3 inches above grade.

Figure 3.1 and Figure 3.2 present the overall information on the TL-2 Terminal, and Figure 3.3 and Figure 3.4 provide photographs of the installation.

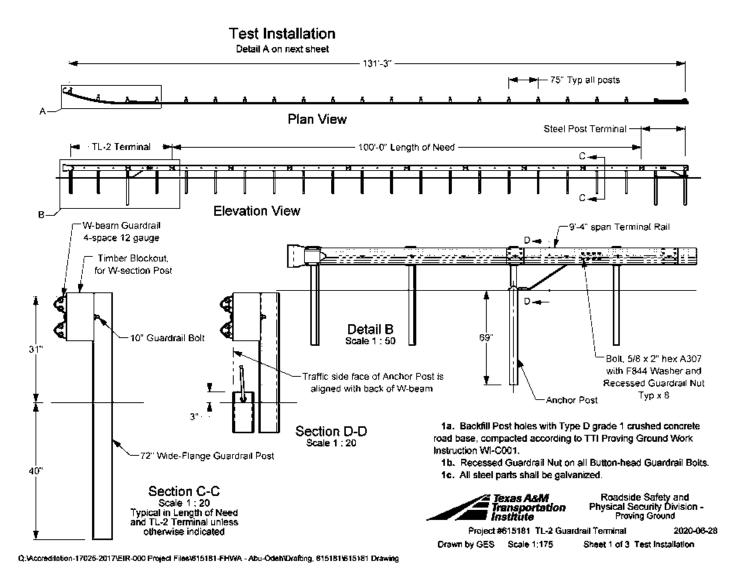
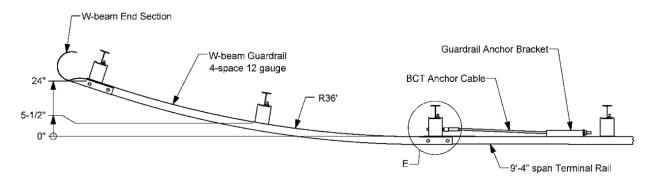
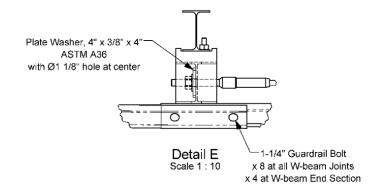
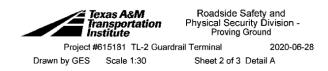





Figure 3.1. Details of TL-2 Terminal on MGS for Crash Test 615181-01-1.

Detail A

Q:\Accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\615181 Drawing

Figure 3.2. Upstream Terminal Details of TL-2 Terminal on MGS for Crash Test 615181-01-1.

Figure 3.3. TL-2 Terminal on MGS prior to Crash Test 615181-01-1.

Figure 3.4. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-1.

3.1.2. Crash Test Results for Crash Test 615181-01-1

The TL-2 Terminal for crash test 615181-01-1 met the performance criteria for *MASH* TL-2 Test 2-32 for Gating Terminals. Thus, crash test 615181-01-2 for *MASH* Test 2-30 was performed next. Its details follow in section 3.2.

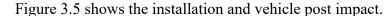


Figure 3.5. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-1.

3.2. *MASH* TEST 2-30 (CRASH TEST NO. 615181-01-2, TEST DATE 2021-09-02)

3.2.1. Test Article and Installation Details

The 615181-01-2 test installation differed from the 615181-01-1 installation in that the TL-2 terminal was used on both ends of the installation. This shortened the overall length of the installation by 1 ft-3 inches to 130 ft-0 inches.

Figure 3.6 and Figure 3.7 present the overall information on the TL-2 Terminal on MGS, and Figure 3.8 and Figure 3.9 provide photographs of the installation.

Test Installation

Some Section and Detail Views on next sheet. TL-2 Terminal details typical each end.

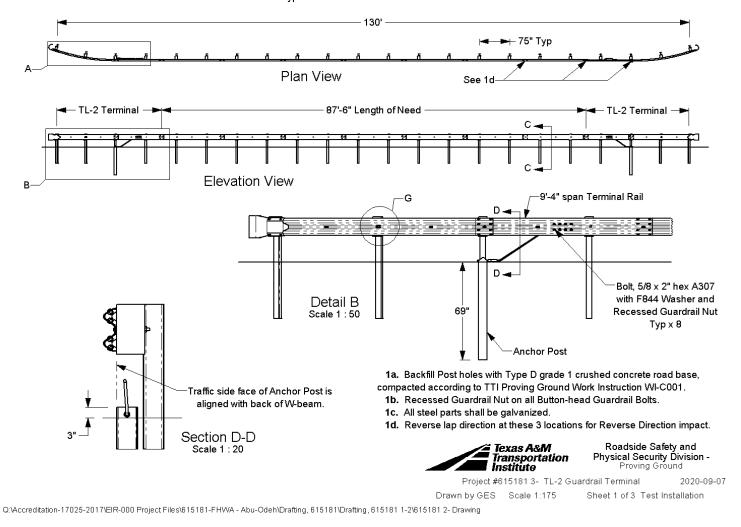


Figure 3.6. Details of TL-2 Terminal on MGS for Crash Test 615181-01-2.

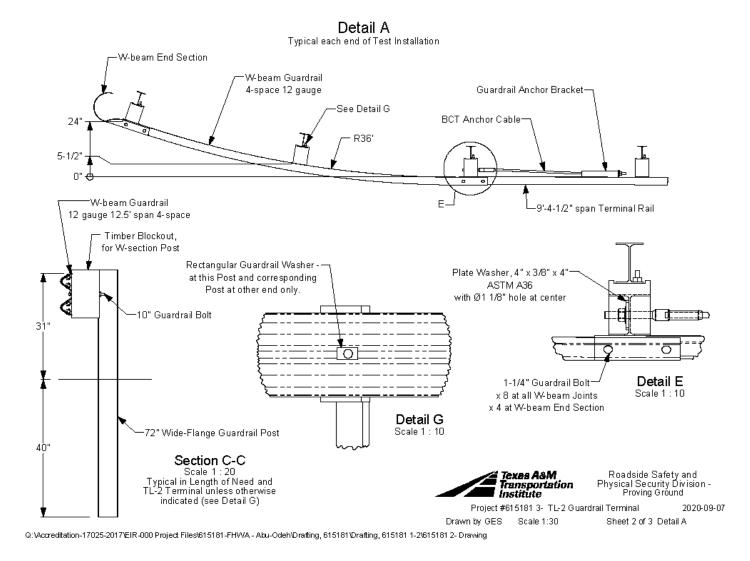


Figure 3.7. Upstream Terminal Details of TL-2 Terminal on MGS for Crash Test 615181-01-2.

Figure 3.8. TL-2 Terminal on MGS prior to Crash Test 615181-01-2.

Figure 3.9. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-2.

3.2.2. Crash Test Results for Crash Test 615181-01-2

The TL-2 Terminal for *MASH* Test 2-30 crash test 615181-01-2 did not meet the performance criteria for *MASH* TL-2 Gating Terminals. The rail impacted and tore the windshield, thus showing potential for penetration of the occupant compartment, which is considered a failure under *MASH* Evaluation Criteria D, as detailed in Chapter 6. The installation was redesigned, and the details of the 615181-01-10 installation for *MASH* Test 2-30 are presented in section 3.3.

Figure 3.10, Figure 3.11, and Figure 3.12 show the installation and vehicle damage after impact.

Figure 3.10. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-2.

Figure 3.11. Detailed View of the Windshield after Crash Test 615181-01-2.

Figure 3.12. Overall View of the Windshield after Crash Test 615181-01-2.

3.3. *MASH* TEST 2-30 (CRASH TEST NO. 615181-01-10, TEST DATE 2021-12-15)

3.3.1. Test Article and Installation Details

The 615181-01-10 test installation differed from the 615181-01-2 installation in that the W-beam rails from posts 1 through 6 and 17 through 22 were slotted along the two ridges and the valley of the rail in between the connection slots, and the rail did not attach to post 7. The flare was also increased from spanning 3 posts to spanning 7 posts on each end of the installation. The embedded anchor post in front of post 3 was also not used, and the rail was anchored to post 1 using an anchor cable assembly.

Figure 3.13 and Figure 3.14 present the overall information on the TL-2 Terminal on MGS for crash test 615181-01-10, and Figure 3.15 and Figure 3.16 provide photographs of the installation.

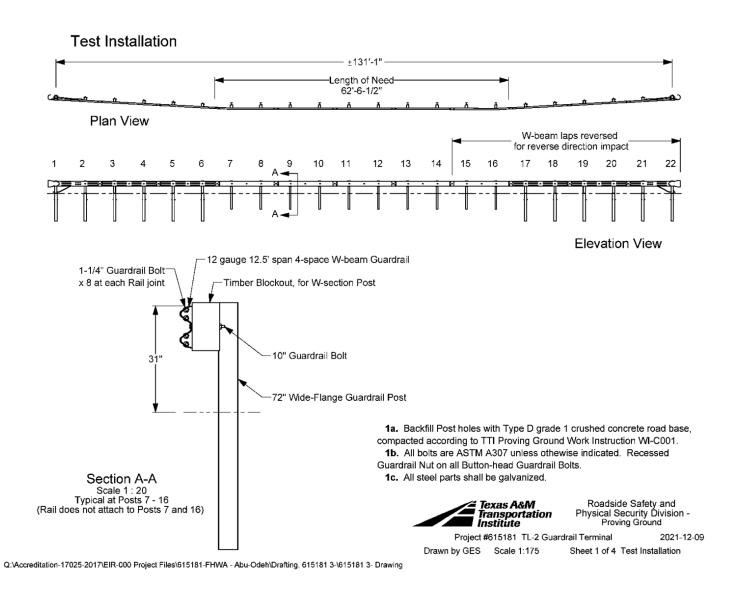


Figure 3.13. Details of TL-2 Terminal on MGS for Crash Test 615181-01-10.

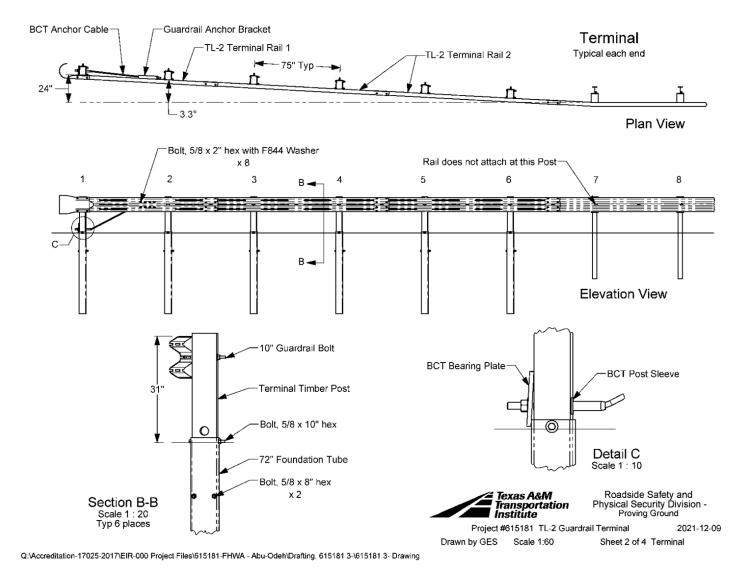


Figure 3.14. Upstream Terminal Details of TL-2 Terminal on MGS for Crash Test 615181-01-10.

Figure 3.15. TL-2 Terminal on MGS prior to Crash Test 615181-01-10.

Figure 3.16. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-10.

3.3.2. Crash Test Results for Crash Test 615181-01-10

The TL-2 Terminal for crash test 615181-01-10 did not meet the performance criteria for *MASH* TL-2 Gating Terminals. The rail impacted and tore the windshield thus showing potential for penetration of the occupant compartment, which is considered a failure under *MASH* Evaluation Criteria D as detailed in Chapter 6. The installation was redesigned, and the details of the 615181-01-9 installation and crash test are presented in section 3.3.

Figure 3.17, Figure 3.18, and Figure 3.19 show the installation and vehicle damage after impact.

Figure 3.17. TL-2 Terminal on MGS Post Impact Crash Test 615181-01-10.



Figure 3.18. TL-2 Terminal on MGS Post Impact Crash Test 615181-01-10.

Figure 3.19. TL-2 Terminal on MGS Post Impact Crash Test 615181-01-10.

3.4. *MASH* TEST 2-30 (CRASH TEST NO. 615181-01-9, TEST DATE 2022-02-11)

3.4.1. Test Article and Installation Details

The 615181-01-9 test installation differed from the 615181-01-10 installation in that the rail height was lowered upstream of post 7 and downstream of post 16 from 31 inches to a height of 25 inches at the end posts.

Figure 3.20 and Figure 3.21 present the overall information on the TL-2 Terminal on MGS for crash test 615181-01-9, and Figure 3.22 and Figure 3.23 provide photographs of the installation.

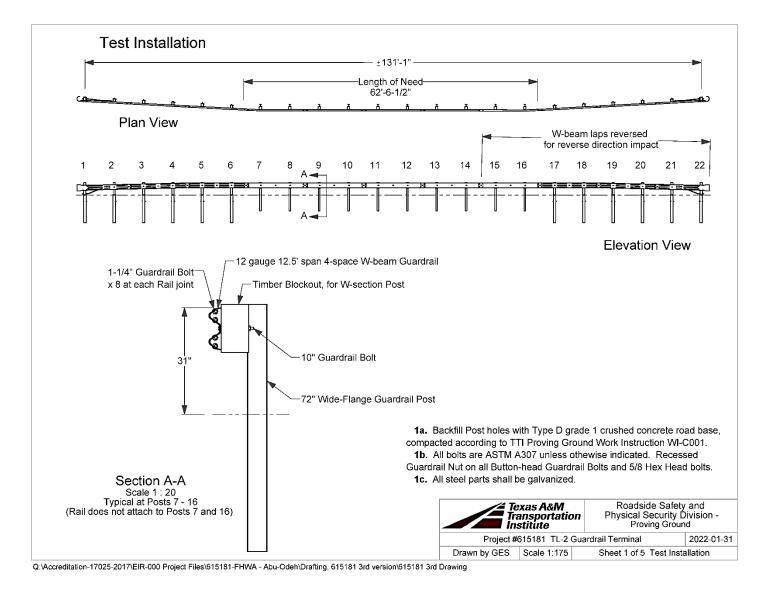


Figure 3.20. Details of TL-2 Terminal on MGS for Crash Test 615181-01-9.

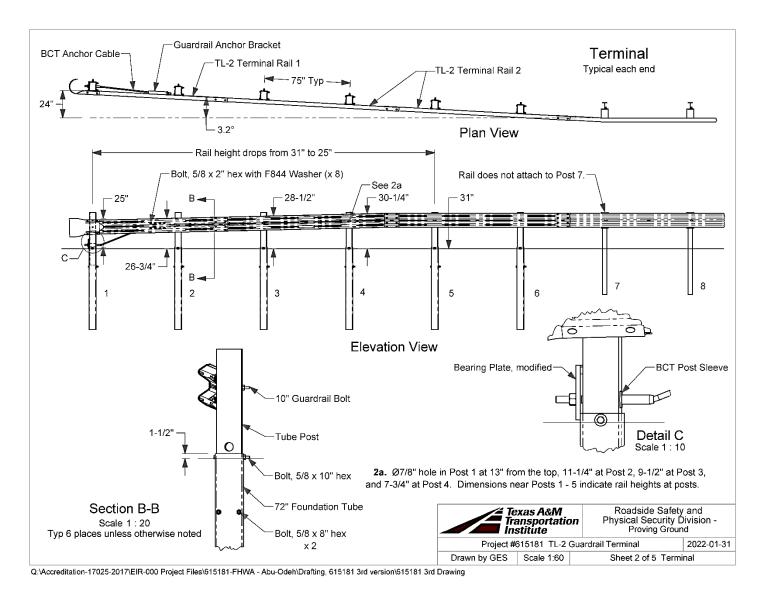


Figure 3.21. Details of TL-2 Terminal on MGS for Crash Test 615181-01-9.

Figure 3.22. TL-2 Terminal on MGS prior to Crash Test 615181-01-9.

Figure 3.23. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-9.

3.4.2. Crash Test Results for Crash Test 615181-01-9

The TL-2 Terminal for crash test 615181-01-9 met the performance criteria for *MASH* TL-2 Test 2-30 for Gating Terminals. Therefore, testing continued with *MASH* Test 2-31 as Test 615181-01-3. Its details are in section 3.5.

Figure 3.24 shows the installation and vehicle after impact.

Figure 3.24. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-9.

3.5. *MASH* TEST 2-31 (CRASH TEST NO. 615181-01-3, TEST DATE 2022-02-16)

3.5.1. Test Article and Installation Details

The installation details for Test 615181-01-3 were the same as those for Test 615181-01-9. Crash Test Results for Crash Test 615181-01-3

The TL-2 Terminal for *MASH* Test 2-31 crash test 615181-01-3 met the performance criteria for *MASH* TL-2 Gating Terminals. Therefore, testing continued with *MASH* Test 2-35 as Test 615181-01-8, which is detailed in section 3.6.

Figure 3.25 shows the installation and vehicle after impact.

Figure 3.25. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-3.

3.6. *MASH* TEST 2-35 (CRASH TEST NO. 615181-01-8, TEST DATE 2022-04-06)

3.6.1. Test Article and Installation Details

A crash test simulation showed that the 2270P vehicle could override the system as tested in 615181-01-3 when tested to *MASH* Test 2-35 criteria, therefore a strut was added between posts 1 and 2, and then again at posts 25 and 26. The length of need was also increased, which led to an overall length of 156 ft- 1 inch. All other details remained the same as the installations for crash tests 615181-01-09 and 615181-01-3.

Figure 3.26 presents the overall information on the TL-2 Terminal on MGS for crash test 615181-01-8, and Figure 3.27 and Figure 3.28 provide photographs of the installation

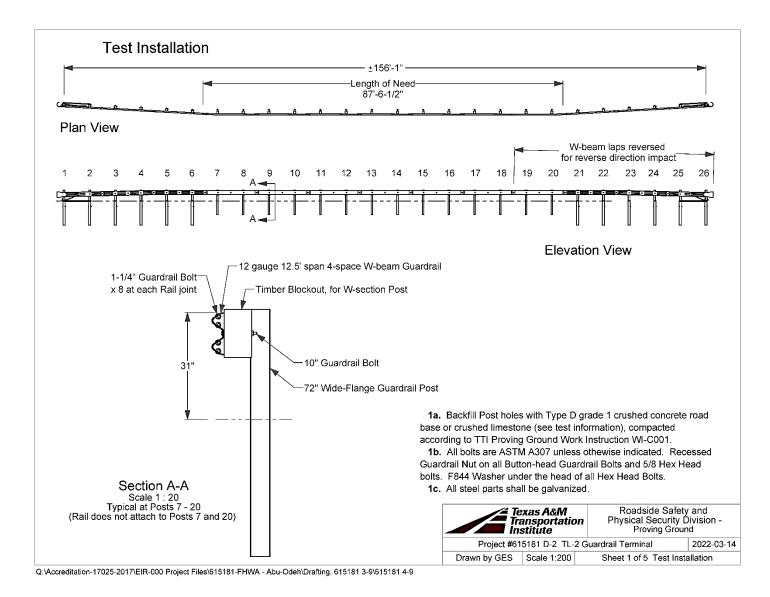


Figure 3.26. Details of TL-2 Terminal on MGS for Crash Test 615181-01-8.

Figure 3.27. TL-2 Terminal on MGS prior to Crash Test 615181-01-8.

Figure 3.28. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-8.

3.6.2. Crash Test Results for Crash Test 615181-01-8

The TL-2 Terminal for crash test 615181-01-8 did not meet the performance criteria for *MASH* TL-2 Test 2-35 for Gating Terminals. The installation did not redirect the vehicle, which is considered a failure under *MASH* Evaluation Criteria A as detailed in Chapter 6. The installation was redesigned, and the details of the 615181-01-4 installation and crash test are presented in section 3.7.

Figure 3.29. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-8.

3.7. *MASH* TEST 2-30 (CRASH TEST NO. 615181-01-4, TEST DATE 2022-07-20).

3.7.1. Test Article and Installation Details

The 615181-01-4 test installation differed from the 615181-01-8 installation in that an anchor post was added upstream of post 1 and the rail began to turn down starting at post 2 and connected to the anchor post at grade. The downstream terminal remained unchanged. The spacing on the posts between posts 2 and 6 also changed.

Figure 3.30 presents the overall information on the TL-2 Terminal on MGS, and Figure 3.31 and Figure 3.32 provide photographs of the installation.

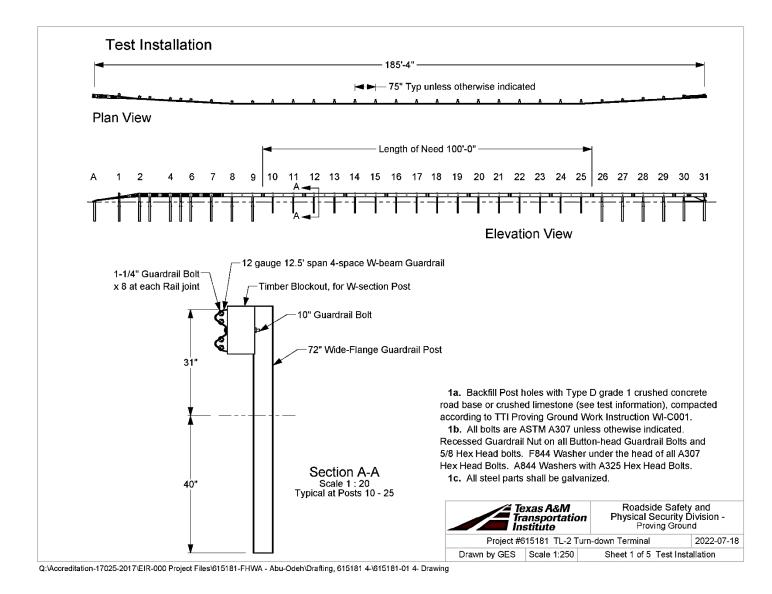


Figure 3.30. Details of TL-2 Terminal on MGS for Crash Test 615181-01-3.

Figure 3.31. TL-2 Terminal on MGS prior to Crash Test 615181-01-3.

Figure 3.32. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-3.

3.7.2. Crash Test Results for Crash Test 615181-01-4

The TL-2 Terminal for crash test 615181-01-4 did not meet the performance criteria for *MASH* TL-2 Gating Terminals. The vehicle rolled 103°, which exceeds the 75° maximum specified in *MASH* Evaluation Criteria F as detailed in Chapter 6. The installation was redesigned, and the details of the final designs are presented in the remainder of this report.

Figure 3.33. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-3.

Chapter 4. FINAL END TERMINAL SYSTEM EVALUATION

4.1. MODEL DESIGN CONCEPT AND SIMULATION INTRODUCTION

An additional end terminal model design concept was developed for evaluation according to *MASH* TL-2. This design incorporates a new anchor mechanism to enhance the anchor performance when it is subjected to the tensile force due to the redirectional impact of the *MASH* 2-35 test by the 2270P vehicle while being easily releasable from the direct impact by the small car under *MASH* 2-30 conditions. This innovative anchor design is based on the generic cable anchor design with two simple innovative components: a supporting member for the anchor plate that consists of two steel angles that are welded to the foundation tube of the first post and a thin gage pull plate that is nailed to the upstream face of the first post and extends downward behind the anchor plate. This innovative design is depicted in Figure 4.1.

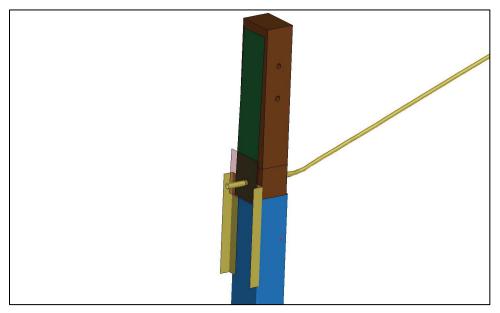
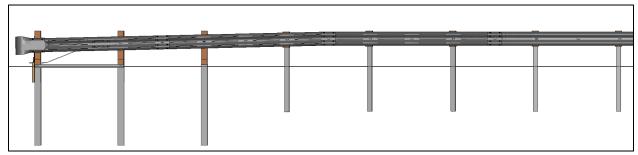


Figure 4.1. Rendered Model of the First Post with the Anchor Details.


The new design keeps the slotted rail segments to reduce the severity of the head-on impact given that it does not have a terminal head commonly used to act as an energy absorption mechanism in different terminal designs. The design keeps the tapered initial section of the rail to prevent the rail components from sliding on the vehicle hood and interacting with the windshield of the vehicle. Such an interaction might cause cracks and holes in the windshield that violate *MASH* evaluation criteria relating to occupant risk.

FE simulations were performed to evaluate the crashworthiness of the system. The model details and impact simulation results are discussed in this chapter. The following critical impact simulations were conducted:

- MASH Test 2-30—small car head-on impact at 44 mi/h.
- MASH Test 2-31—pickup truck head-on impact at 44 mi/h.
- MASH Test 2-35—pickup truck redirective impact at 44 mi/h.
- *MASH* Test 2-37b—small car opposite-direction impact at 44 mi/h.

4.2. FLARED END TERMINAL MODEL

The flared terminal design concept consisted of three slotted rail sections connecting to a standard LON guardrail section. The first two slotted rail sections transitioned from a height of 25 inches to 31 inches. The first three posts were wood breakaway posts inserted in steel sleeves. The remaining guardrail posts were standard steel posts. The terminal was anchored at the first wood breakaway post with a BCT anchor cable. To enhance the performance of the anchor assembly, two steel angles were added to the upstream side of the first wood breakaway post steel sleeve. Figure 4.2 shows the FE model of the end terminal.

(a) Elevation view

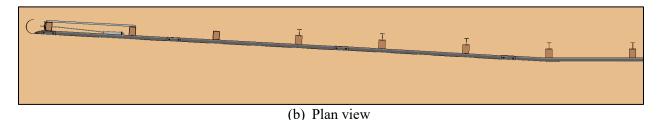


Figure 4.2. FE Model of Flared Terminal Design.

4.3. TEST 2-30 SIMULATION

MASH Test 2-30 involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 0 degrees. The 1100C vehicle model impacted the terminal system with the quarter point of the vehicle bumper aligned with the terminal head. Figure 4.3 and Figure 4.4 show sequential images for the MASH Test 2-30 simulation impact. The end terminal released as designed, and the vehicle came to a controlled stop. The occupant risk values were within the MASH limits.

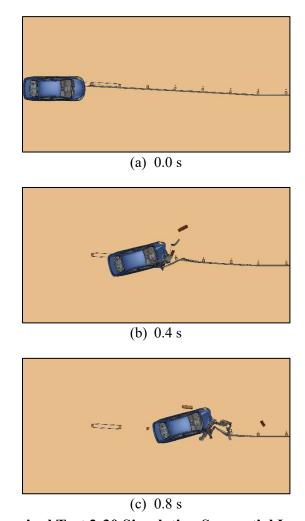


Figure 4.3. Flared Terminal Test 2-30 Simulation Sequential Images (Overhead View).

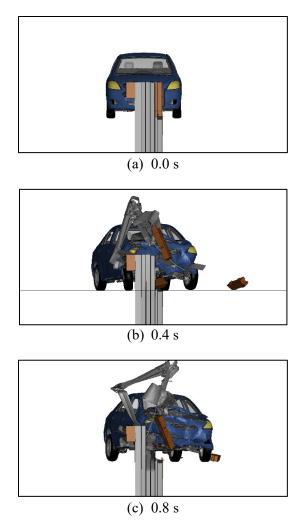


Figure 4.4. Flared Terminal Test 2-30 Simulation Sequential Images (Downstream View).

4.4. TEST 2-31 SIMULATION

MASH Test 2-31 involved impacting the end terminal with the 2270P vehicle model at a speed of 44 mi/h and an angle of 0 degrees. The 2270P vehicle model impacted the terminal system with the centerline of the truck aligned with the terminal head. Figure 4.5 and Figure 4.6 show sequential images for the MASH Test 2-31 simulation impact. The end terminal released as designed, and the vehicle came to a controlled stop. The occupant risk values were within the MASH limits.

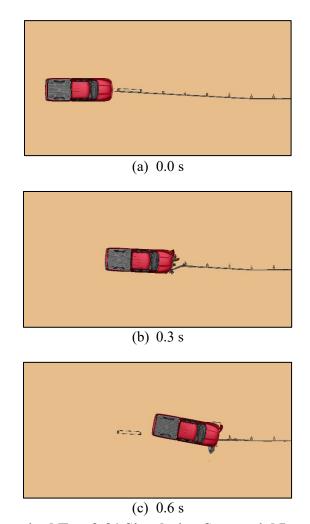


Figure 4.5. Flared Terminal Test 2-31 Simulation Sequential Images (Overhead View).

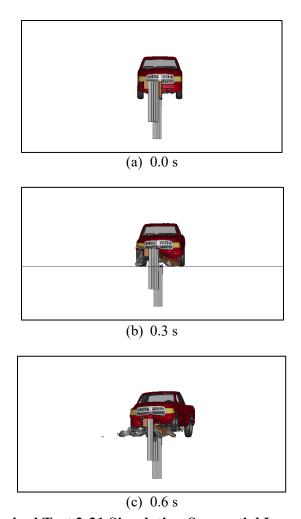


Figure 4.6. Flared Terminal Test 2-31 Simulation Sequential Images (Downstream View).

4.5. TEST 2-35 SIMULATION

MASH Test 2-35 involved impacting the end terminal with the 2270P vehicle model at a speed of 44 mi/h and an angle of 25 degrees. The 2270P vehicle model impacted the terminal system at the beginning of the LON section. Figure 4.7 and Figure 4.8 show sequential images for the MASH Test 2-35 simulation impact. The pickup truck vehicle was successfully contained and redirected. The occupant risk values were within the MASH limits.

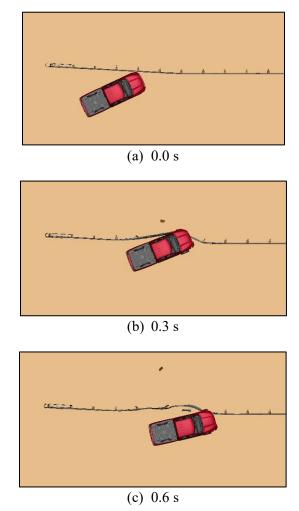


Figure 4.7. Flared Terminal Test 2-35 Simulation Sequential Images (Overhead View).

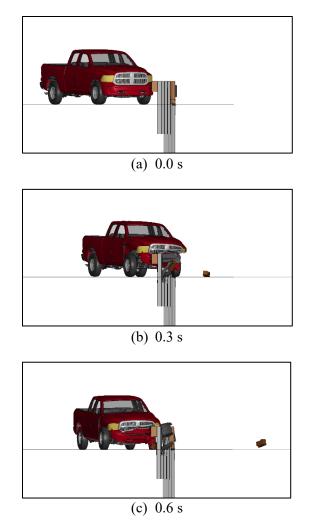


Figure 4.8. Flared Terminal Test 2-35 Simulation Sequential Images (Downstream View).

4.6. TEST 2-37B SIMULATION

MASH Test 2-37b involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 25 degrees. The 1100C vehicle model impacted the terminal system in the reverse direction. Four different impact locations were evaluated to determine which was most critical. Figure 4.9 and Figure 4.10 show sequential images for one of the MASH Test 2-37b impact simulations. For the three impact locations nearest to the second steel post, the end terminal released, and the vehicle gated through the system. For the impact location farthest upstream from the second steel post, the end terminal did not release, and the vehicle was contained and redirected. Table 4.1 shows a comparison of the occupant risk values for each impact location. The impact location of 42 inches upstream of post 2 resulted in the highest longitudinal ORA value and the highest roll angle. Thus, this impact location was determined to be most critical.

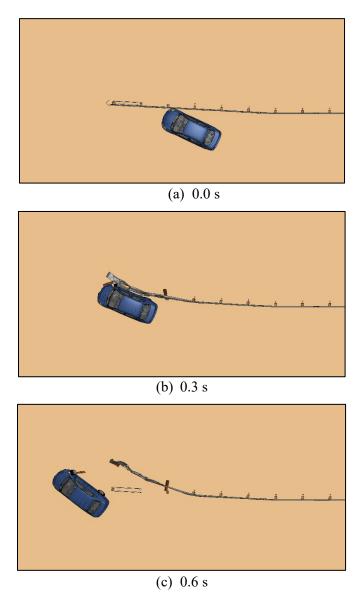


Figure 4.9. Flared Terminal Test 2-37b Simulation Sequential Images (Overhead View).



Figure 4.10. Flared Terminal Test 2-37b Simulation Sequential Images (Downstream View).

Table 4.1. Flared Terminal Test 2-37b Occupant Risk.

Impact Location	OIV Longitudinal (m/s)	OIV Lateral (m/s)	ORA Longitudinal (g)	ORA Lateral (g)	Max. Roll (deg)	Max. Pitch (deg)	Max. Yaw (deg)
6 inches u/s post 2	3.6	2.8	-1.6	2.4	-1.5	0.9	-9.5
42 inches u/s post 2 ^a	5.8	3.0	-10.6	-5.0	-23.9	-1.5	19.2
76 inches u/s post 2	-7.9	-6.5	-6.7	-5.3	4.4	-5.7	-33.4
156 inches u/s post 2	5.4	6.3	-5.3	-3.9	-2.8	-1.8	19.2

^a Impact location that resulted in the highest longitudinal ORA value and the highest roll angle, and thus determined to be most critical.

Note: u/s = upstream.

4.7. DISCUSSION

The simulation cases with the new design indicated that this design with the enhanced anchorage had a significant chance of passing *MASH* TL-2 testing for the critical tests simulated, and thus this design was recommended for further evaluation by full-scale crash testing.

Chapter 5. SYSTEM DETAILS

5.1. TEST ARTICLE AND INSTALLATION DETAILS

For crash test 615181-01-5 (*MASH* Test 2-35), the test installation was 156 ft - 1-inch long. A TL-2 Terminal (approximately 46 ft - 3 inches long) was installed on the upstream end and a Steel Post Terminal on the opposite end, with 75 ft. of standard Length-of-Need guardrail between them. Posts 1, 2, and 3 were wood timber posts, and posts 4 through 24 were standard Wide-Flange W6×8.5 guardrail posts with timber blockouts supporting 12-gauge W-beam guardrail. All posts were spaced at 75 inches.

The TL-2 Terminal spanned eight posts, with the first one offset toward the field side 24 inches, and posts 2 through 6 gradually positioned closer to the Length-of-Need. The downstream terminal was similarly flared. There was a brace cable attached to the W-beam between posts 1 and 2 and anchored to the upstream side of post 1 at its base. The bearing plate was a single 8-inch × 8-inch × 5%-inch thick plate. The bearing plate rested on a 6-inch × 30-inch × 0.1875-inch thick pull plate that was added to the upstream side of the first post. The rail at the terminal sloped downward, beginning at a height of 31 inches at the top of the rail at post 5, and terminating with a final height of 25 inches at post 1. The first three rails on the upstream end of the installation had slots along the two ridges and the valley of the rail in between the connection slots, and the rail did not attach to posts 3 and 7. The guardrail post bolt slot on the upstream end of the first rail was extended to the upstream end of the rail.

Figure 5.1 presents the overall information on the TL-2 W-beam End Terminal, and Figure 5.2 thru Figure 5.7 provide photographs of the installation. Appendix A provides further details on the TL-2 W-beam End Terminal. Drawings were provided by the TTI Proving Ground, and construction was performed by TTI Proving Ground personnel.

5.2. DESIGN MODIFICATIONS DURING TESTS

For crash tests 615181-01-11 (*MASH* Test 2-30) and 615181-01-12 (*MASH* Test 2-31), the flanges on posts 4 through 7 were rounded at the top, and a wood trapezoidal block was attached to the upstream side of the webbing so that the top of the block was flush with the top of the post. These modifications were warranted due to the penetration of the post flanges into the floorboard of the vehicle during test 615181-01-7 (*MASH* Test 2-30). At the opposite end, the downstream terminal was sloped downward in the same manner as the upstream terminal and likewise, the last three rails were slotted to match the first three rails. On the downstream terminal, the posts were not rounded, and trapezoidal blocks were not added to the posts. The Length-of-Need was also shortened to 63 ft - 6 inches since both terminals now spanned 46 ft - 3 inches. The overall length remained 156 ft - 1 inch. All other details remained the same.

Figure 5.8 presents the overall information on the TL-2 W-beam End Terminal, and Figure 5.9 thru Figure 5.12 provide photographs of the installation for tests 615181-01-11 (*MASH* Test 2-30) and 615181-01-12 (*MASH* Test 2-31),. Appendix A provides further details on the TL-2 W-beam End Terminal. Drawings were provided by the TTI Proving Ground, and construction was performed by TTI Proving Ground personnel.

To accommodate the reverse direction impact for crash test 615181-01-13 (*MASH* Test 2-37b), top rounded posts were used, and trapezoidal blocks were added to posts 20 through 23. The order that the guardrail was overlapped was reversed for the last three sections of rail in order to simulate a reverse direction impact.

Figure 5.13 presents the overall information on the TL-2 W-beam End Terminal, and Figure 5.14 thru Figure 5.17 provide photographs of the installation for test 615181-01-13 (*MASH* Test 2-37b). Appendix A provides further details on the TL-2 W-beam End Terminal. Drawings were provided by the TTI Proving Ground, and construction was performed by TTI Proving Ground personnel.

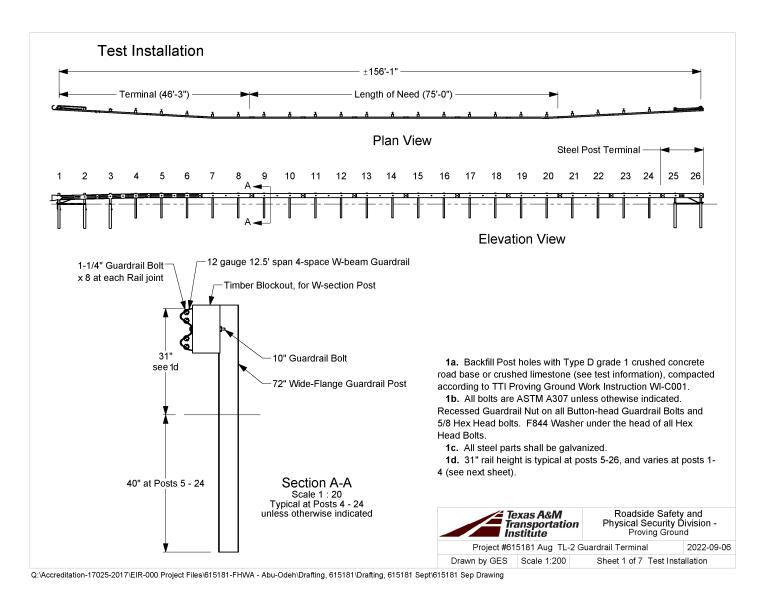


Figure 5.1. Details of TL-2 W-beam End Terminal Test 615181-01-5.

Figure 5.2. TL-2 W-beam Installation prior to Test 615181-01-5.

Figure 5.3. TL-2 W-beam End Terminal prior to Test 615181-01-5.

Figure 5.4. TL-2 W-beam End Terminal at Posts 3 and 4 prior to Test 615181-01-5.

Figure 5.5. TL-2 W-beam End Terminal at Post 5 prior to Test 615181-01-5.

Figure 5.6. Field Side of the TL-2 W-beam End Terminal prior to Test 615181-01-5.

Figure 5.7. Field Side of the TL-2 W-beam End Terminal Installation prior to Test 615181-01-5.

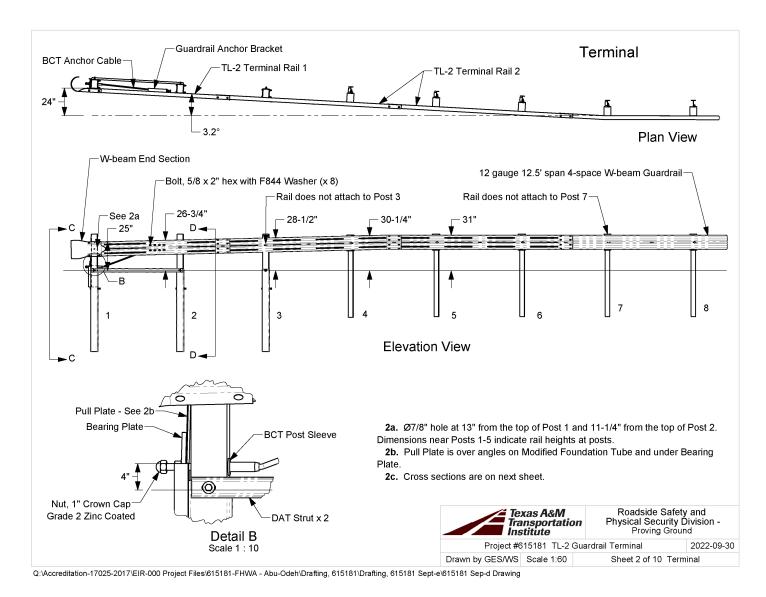


Figure 5.8. Details of TL-2 W-beam End Terminal Tests 615181-01-11 & 615181-01-12.

Figure 5.9. TL-2 W-beam End Terminal prior to Tests 615181-01-11 & 615181-01-12.

Figure 5.10. The Anchor Bolt with Cap Nut on the TL-2 W-beam End Terminal prior to Tests 615181-01-11 & 615181-01-12.

Figure 5.11. TL-2 W-beam End Terminal on the Impact Side of Post 4 prior to Tests $615181-01-11\ \&\ 615181-01-12.$

Figure 5.12. TL-2 W-beam End Terminal on the Non-Impact Side of Post 4 prior to Tests 615181-01-11 & 615181-01-12.

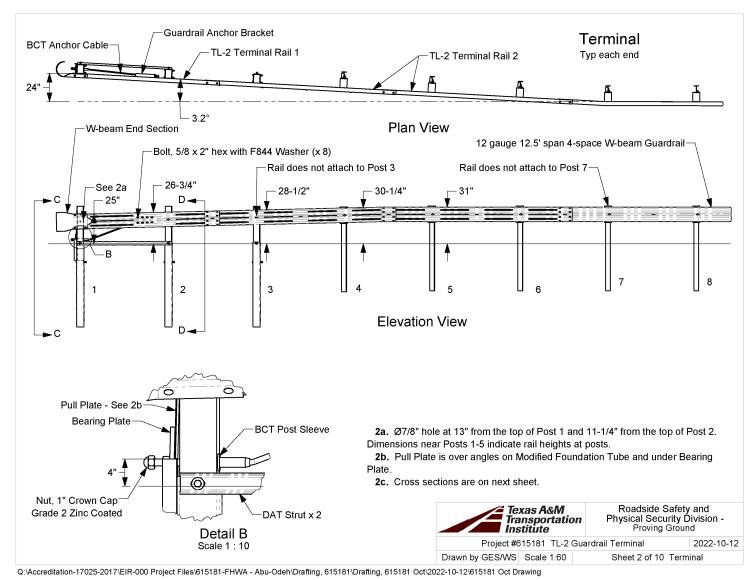


Figure 5.13. Details of TL-2 W-beam End Terminal Test 615181-01-13.

Figure 5.14. TL-2 W-beam End Terminal Prior to Test 615181-01-13.

Figure 5.15. TL-2 W-beam End Terminal Anchor Post Prior to Test 615181-01-13.

Figure 5.16. Rear View of the TL-2 W-beam End Terminal Prior to Test 615181-01-13.

Figure 5.17. Downstream View of the TL-2 W-beam End Terminal Prior to Test 615181-01-13.

5.3. MATERIAL SPECIFICATIONS

Appendix B provides material certification documents for the materials used to install/construct the TL-2 W-beam End Terminal.

5.4. SOIL CONDITIONS

The test installation was installed in standard soil meeting Type 1 Grade D of AASHTO standard specification M147-17 "Materials for Aggregate and Soil Aggregate Subbase, Base, and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of each crash test. During installation of the TL-2 W-beam End Terminal for full-scale crash testing, 6-ft long W6×16 posts were installed in the immediate vicinity of the TL-2 W-beam End Terminal using the same fill materials and installation procedures used in the test installation and the standard dynamic test. Table B.1 through Table B.4 in Appendix B presents minimum soil strength properties established through the dynamic testing performed in accordance with *MASH* Appendix B.

On the day of *MASH* Test 2-35, 2022-09-09, loads on the post at deflections were as follows: the backfill material in which the TL-2 W-beam End Terminal was installed met minimum *MASH* requirements for soil strength.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)
5	4420	8120
10	4981	8664
15	5282	9181

Table 5.1. Soil Strength for Crash Test 615181-01-5.

On the day of *MASH* Test 2-30, 2022-10-06, loads on the post at deflections were as follows: the backfill material in which the TL-2 W-beam End Terminal was installed met minimum *MASH* requirements for soil strength. Due to the load measurements far surpassing the minimum requirements at 5 and 10 inches, the 15 inch measurement was not taken.

Table 5.2. Soil Strength for Crash Test 615181-01-11.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)
5	4420	9515
10	4981	10909
15	5282	-

On the day of *MASH* Test 2-31, 2022-10-11, loads on the post at deflections were as follows: the backfill material in which the TL-2 W-beam End Terminal was installed met minimum *MASH* requirements for soil strength.

Table 5.3. Soil Strength for Crash Test 615181-01-12.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)
5	4420	7404
10	4981	8757
15	5282	9727

On the day of *MASH* Test 2-37b, 2022-10-20, loads on the post at deflections were as follows: the backfill material in which the TL-2 W-beam End Terminal was installed met minimum *MASH* requirements for soil strength.

Table 5.4. Soil Strength for Crash Test 615181-01-13.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)
5	4420	5818
10	4981	6333
15	5282	6545

Chapter 6. TEST REQUIREMENTS AND EVALUATION CRITERIA

6.1. CRASH TEST PERFORMED/MATRIX

Table 6.1 shows the test conditions and evaluation criteria for *MASH* TL-2 for gating terminals. The target critical impact points (CIPs) for each test were determined using the information provided in *MASH* Section 2.2.1 and Section 2.3.2. Figure 6.1 through Figure 6.4 show the target CIP for *MASH* Tests 2-35, 2-30, 2-31, and 2-37b on the TL-2 W-beam End Terminal.

Table 6.1. Test Conditions and Evaluation Criteria Specified for MASH TL-2 Gating
Terminals

Test Designation	TTI Test Number	Test Vehicle	Impact Speed	Impact Angle	Evaluation Criteria
2-35	615181-01-5	2270P	44 mi/h	25°	A, D, F, H, I
2-30	615181-01-11	1100C	44 mi/h	0°	C, D, F, H, I, N
2-31	615181-01-12	2270P	44 mi/h	0°	C, D, F, H, I, N
2-37b	615181-01-13	1100C	44 mi/h	25°	C, D, F, H, I, N

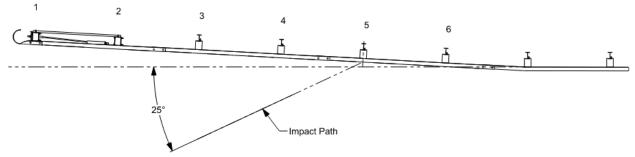


Figure 6.1. Target CIP for *MASH* 2-35 Test on TL-2 W-beam End Terminal Test 615181-01-5.

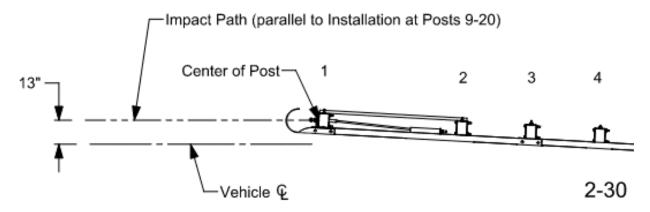


Figure 6.2. Target CIP for *MASH* 2-30 Test on TL-2 W-beam End Terminal Test 615181-1-11

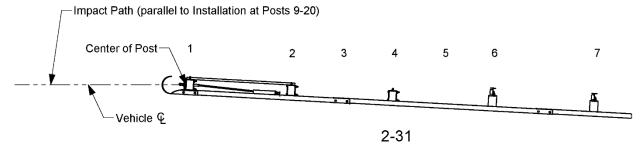


Figure 6.3. Target CIP for *MASH* 2-31 Test on TL-2 W-beam End Terminal Test 615181-1-12

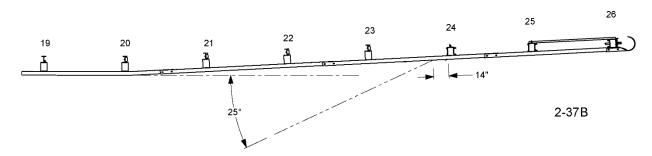


Figure 6.4. Target CIP for MASH 2-37b Test on TL-2 W-beam End Terminal Test 615181-1-13

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

6.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2.2 and 5.1 of *MASH* were used to evaluate the crash tests reported herein. Table 6.1 lists the test conditions and evaluation criteria required for *MASH* TL-2, and Table 6.2 provides detailed information on the evaluation criteria.

Table 6.2. Evaluation Criteria Required for MASH Testing.

Evaluation Factors	Evaluation Criteria	MASH Test
A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	35
C.	Acceptable test article performance may be by redirection, controlled penetration, or controlled stopping of the vehicle.	30, 31, & 37b

Evaluation Factors	Evaluation Criteria	MASH Test
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	30, 31, 35, & 37b
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	30, 31, 35, & 37b
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	30, 31, 35, & 37b
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	30, 31, 35, & 37b
N.	Vehicle trajectory behind the test article is acceptable.	30, 31, & 37b

Chapter 7. TEST CONDITIONS

7.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

7.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the testing utilizing the 1100C and 2270P vehicles, each was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

7.3. DATA ACQUISITION SYSTEMS

7.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of

TR No. 615181-01 73 2023-06-05

the channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO® 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

7.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side/opposite side of impact of the 1100C vehicle. The dummy was not instrumented.

According to MASH, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the tests.

7.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- For all tests, one camera was located overhead with a field of view perpendicular to the ground and directly over the impact point.
- For MASH tests 2-35 and 2-37b (615181-1-5 and -1-13), one camera was placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- For MASH tests 2-30 and 2-31 (615181-1-11 and -1-12), one camera was placed downstream from the installation at an angle to have an oblique view of the interaction of the vehicle with the installation.
- For all tests, one camera was placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the TL-2 W-beam End Terminal. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 8. *MASH* TEST 2-35 (CRASH TEST NO. 615181-01-5)

8.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 8.1 for details on *MASH* impact conditions for this test and Table 8.2 for the exit parameters. Figure 8.1 and Figure 8.2 depict the target impact setup.

Table 8.1. Impact Conditions for Test 615181-01-5.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	45 mi/h	± 2.5 mi/h	45.9
Impact Angle (deg)	25°	± 1.5°	25
Impact Severity (kip-ft)	52 kip-ft	≥52 kip-ft	63.6
Impact Location	Centerline of post 5.	± 12 inches	3.8 inches upstream from the centerline of post 5

Table 8.2. Exit Parameters for Test 615181-01-5.

Exit Parameter	Measured
Speed (mi/h)	20.8
Trajectory (deg)	23
Heading (deg)	17
Brakes applied post impact (s)	≥5
	163 ft downstream of impact point
Vehicle at rest position	3 ft to the traffic side
	3° right
Comments:	Vehicle remained upright and stable.
	Vehicle did not cross exit box a.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 8.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-5.

Figure 8.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-5.

8.2. WEATHER CONDITIONS

Table 8.3 provides the weather conditions for 615181-01-5.

Table 8.3. Weather Conditions 615181-01-5.

Date of Test	2022-09-09 AM
Wind Speed (mi/h)	5
Wind Direction (deg)	88
Temperature (°F)	85
Relative Humidity (%)	65
Vehicle Traveling (deg)	325

8.3. TEST VEHICLE

Figure 8.3 and Figure 8.4 show the 2016 RAM 1500 used for the crash test. Table 8.4 shows the vehicle measurements. Table C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 8.3. Impact Side of Test Vehicle before Test 615181-01-5.

Figure 8.4. Opposite Impact Side of Test Vehicle before Test 615181-01-5.

Table 8.4. Vehicle Measurements 615181-01-5.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Vehicle Inertial Weight (lb)	5000 lbs	± 110 lbs	5054
Gross Static ^a (lb)	5000	± 110	5054
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40.0
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	61.1
CG above Ground ^{c,d} (inches)	28	≥28	28.5

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

8.4. TEST DESCRIPTION

Table 8.5 lists events that occurred during Test No. 615181-01-5. Figures C.1 and C.2 in Appendix C.2 present sequential photographs during the test.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

Table 8.5. Events during Test 615181-01-5.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0080	Post 5 began to lean toward the field side
0.0290	Post 6 began to lean back toward field side
0.0600	Vehicle began to redirect
0.1020	Post 7 began to lean back toward field side
0.1630	Rail released from post 2 and 3
0.3050	Rear driver side bumper impacted rail near post 5
0.3350	Vehicle was parallel to installation
0.8010	Vehicle lost contact with rail, exiting the system at 20.8 mi/h, at a heading and vehicle trajectory of 22.6 and 16.9 degrees respectively.

8.5. DAMAGE TO TEST INSTALLATION

Table 8.7 describes the deflections of the TL-2 W-beam End Terminal. Figure 8.5 and Figure 8.6 show the damage to the TL-2 W-beam End Terminal.

Table 8.6. Damage to TL-2 W-beam End Terminal 615181-01-5.

Post Number	Soil Gap	Post Lean from Vertical
1	1½ inches u/s	-
2	3/8-inch u/s; 1/2-inch d/s	-
3	-	-
4	Soil Disturbed	0.7°
5	1 ³ / ₄ inches t/s; ¹ / ₂ -inch f/s	4.7°
6	-	15°
7	-	15°
8	-	15°
9	½-inch t/s; ½-inch f/s	1.2°

u/s = upstream d/s = downstream f/s = field side t/s = traffic side

Table 8.7. Deflections of the TL-2 W-beam End Terminal 615181-01-5.

Test Parameter	Measured
Permanent Deflection/Location	29.0 inches toward field side, 12 inches downstream of post 7
Dynamic Deflection	38.2 inches toward field side
Working Width a and Height	46.5 inches, at a height of 62.3 inches at the left side mirror

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 8.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-5.

Figure 8.6. TL-2 W-beam End Terminal after Test at the Upstream End Terminal 615181-01-5.

8.6. DAMAGE TO TEST VEHICLE

Figure 8.7 and Figure 8.8 show the damage sustained by the vehicle. Figure 8.9 and Figure 8.10 show the interior of the test vehicle. Table 8.8 and Table 8.9 provide details on the occupant compartment deformation and exterior vehicle damage. Tables C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

Figure 8.7. Impact Side of Test Vehicle after Test 615181-01-5.

Figure 8.8. Rear Impact Side of Test Vehicle after Test 615181-01-5.

Figure 8.9. Overall Interior of Test Vehicle after Test 615181-01-5.

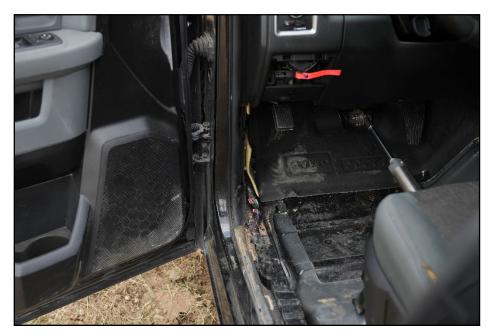


Figure 8.10. Interior of Test Vehicle on Impact Side after Test 615181-01-5.

Table 8.8. Occupant Compartment Deformation 615181-01-5.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0 inches
Windshield	≤3.0 inches	0 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0 inches
Side Front Panel	≤12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 8.9. Exterior Vehicle Damage 615181-01-5.

Side Windows	The side windows remained intact
Maximum Exterior Deformation	10 inches in the front plane at the right front corner at bumper height
VDS	11FLQ2
CDC	11FLEW2
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, left front headlight, left front quarter fender, left front tire and rim, left front door, left rear door, left cab corner, left rear quarter fender, and rear bumper were damaged.

8.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 8.10. Figure C.3 in Appendix C.3 shows the vehicle angular displacements, and Figures C.4 through C.6 in Appendix C.4 show acceleration versus time traces.

Table 8.10. Occupant Risk Factors for Test 615181-01-5.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	16.7	0.1799 seconds on left side of interior
OIV, Lateral (ft/s)	≤40.0	13.6	0.1799 seconds on left side of interior
Ridedown, Longitudinal (g)	≤20.49	5.4	0.3789 - 0.3889 seconds
Ridedown, Lateral (g)	≤20.49	4.7	0.3308 - 0.3408 seconds
THIV (m/s)	N/A	6.3	0.1738 seconds on left side of interior
ASI	N/A	0.6	0.1459 - 0.1959 seconds
50-ms MA Longitudinal (g)	N/A	-4.8	0.1247 - 0.1747 seconds
50-ms MA Lateral (g)	N/A	3.5	0.1248 - 0.1748 seconds
50-ms MA Vertical (g)	N/A	2.0	0.5180 - 0.5680 seconds
Roll (deg)	≤75	6	1.2355 seconds
Pitch (deg)	≤75	5	0.6396 seconds
Yaw (deg)	N/A	44	0.7093 seconds

8.8. TEST SUMMARY

Figure 8.11 presents the summary results for crash test 615181-01-5.



Figure 8.11. Summary of Results for MASH Test 2-35 on TL-2 W-beam End Terminal.

Chapter 9. FAILED TESTS

9.1. *MASH* TEST 2-30 (CRASH TEST NO. 615181-01-6, TEST DATE 2022-09-14)

9.1.1. Test Article and Installation Details

The installation details were the same as 615181-01-5.

9.1.2. Crash Test Results for Crash Test 615181-01-6

The TL-2 Terminal for crash test 615181-01-6 did not meet the performance criteria for *MASH* TL-2 Gating Terminals. The threaded rod on the anchor cable punctured the floor board of the vehicle, penetrating into the occupant compartment, which is considered a failure under *MASH* Evaluation Criteria D, which is detailed in Chapter 6. Changes were made to the installation and the details of the 615181-01-7 installation and crash test are presented in section 9.2.

Figure 9.1, Figure 9.2, and Figure 9.3 show the installation and vehicle damage after impact.



Figure 9.1. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-6.

Figure 9.2. Occupant Compartment Penetration after Crash Test 615181-01-6.



Figure 9.3. Undercarriage Damage after Crash Test 615181-01-6.

9.2. *MASH* TEST 2-30 (CRASH TEST NO. 615181-01-7, TEST DATE 2022-09-20)

9.2.1. Test Article and Installation Details

The installation differed from crash test 615181-01-6 in that a crown cap nut was added to the threaded rod of the anchor cable, and the pull plate thickness was changed to $\frac{1}{8}$ -inch.

Figure 9.4 presents the overall information on the TL-2 Terminal on MGS, and Figure 9.5 and Figure 9.6 provide photographs of the installation

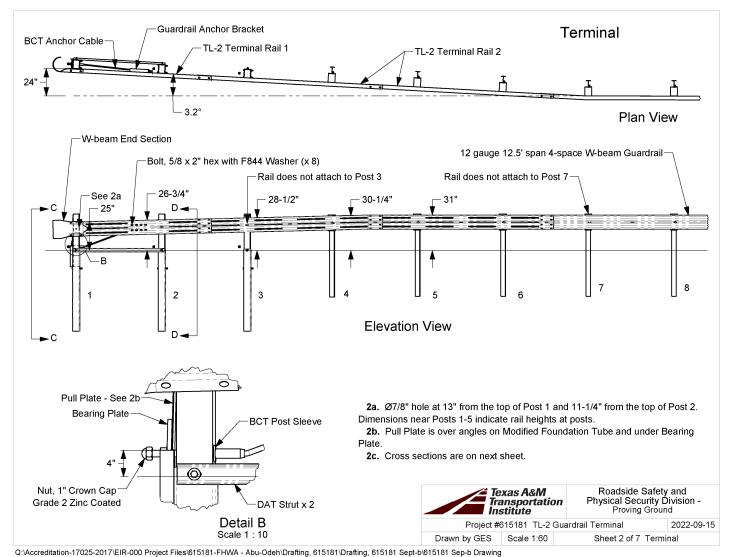


Figure 9.4. Details of TL-2 Terminal on MGS for Crash Test 615181-01-7.

Figure 9.5. TL-2 Terminal on MGS prior to Crash Test 615181-01-7.

Figure 9.6. In-Line View of the TL-2 Terminal on MGS prior to Crash Test 615181-01-7.

9.2.2. Crash Test Results for Crash Test 615181-01-7

The TL-2 Terminal for crash test 615181-01-7 did not meet the performance criteria for *MASH* TL-2 gating terminals. An upstream corner of a steel guardrail post punctured the floor board of the vehicle, penetrating into the occupant compartment, which is considered a failure under *MASH* Evaluation Criteria D as detailed in Chapter 6. Additional changes were made (as described in chapter 7) to the installation and the crash tests are presented in the remainder of this report.

Figure 9.7, Figure 9.8, and Figure 9.9 show the installation and vehicle damage post impact.

Figure 9.7. TL-2 Terminal on MGS Post Impact for Crash Test 615181-01-7.

Figure 9.8. Post Engaged with Undercarriage of Vehicle after Crash Test 615181-01-7.

Figure 9.9. Occupant Compartment Damage after Crash Test 615181-01-7.

Chapter 10. MASH TEST 2-30 (CRASH TEST NO. 615181-01-11)

10.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 10.1 for details on *MASH* impact conditions for this test and Table 10.2 for the exit parameters. Figure 10.1 and Figure 10.2 depict the target impact setup.

Table 10.1. Impact Conditions for Test 615181-01-11.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	45	±2.5 mi/h	45.6
Impact Angle (deg)	0	±1.5°	0
Kinetic Energy (kip-ft)	141	≥141 kip-ft	168.2
Impact Location	Centerline of post 1 aligned 13 inches off the centerline of the vehicle toward drivers side.	± 6 inches	Centerline of post 1 aligned 14.4 inches off the centerline of the vehicle toward drivers side.

Table 10.2. Exit Parameters for Test 615181-01-11.

Exit Parameter	Measured
Speed (mi/h)	N/A
Trajectory (deg)	N/A
Heading (deg)	N/A
Brakes applied post impact (s)	Brakes not applied
Vehicle at rest position	27 ft downstream of impact point 3 ft to the field side 3° left
Comments:	Vehicle remained upright and stable.

Figure 10.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-11.

Figure 10.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-11.

10.2. WEATHER CONDITIONS

Table 10.3 provides the weather conditions for 615181-01-11.

Table 10.3. Weather Conditions 615181-01-11.

Date of Test	2022-10-06 AM
Wind Speed (mi/h)	1
Wind Direction (deg)	309
Temperature (°F)	81
Relative Humidity (%)	57
Vehicle Traveling (deg)	350

10.3. TEST VEHICLE

Figure 10.3 and Figure 10.4 show the 2017 Nissan Versa used for the crash test. Table 10.4 shows the vehicle measurements. Table D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.

Figure 10.3. Impact Side of Test Vehicle before Test 615181-01-11.

Figure 10.4. Overall Interior of Test Vehicle before Test 615181-01-11.

Table 10.4. Vehicle Measurements 615181-01-11.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Inertial Weight (lb)	2420	±55	2420
Gross Static ^a (lb)	2585	±25	2585
Wheelbase (inches)	98	±5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	±8	175.4
Overall Width (inches)	65	±3	66.7
Hood Height (inches)	28	±4	30.5
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	±4	41.4
CG above Ground ^{c,d} (inches)	N/A	N/A	N/A

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

10.4. TEST DESCRIPTION

Table 10.5 lists events that occurred during Test No. 615181-01-11. Figures D.1 and D.2 in Appendix D.2 present sequential photographs during the test.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

Table 10.5. Events during Test 615181-01-11.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0090	Post 1 began to move to the right (toward traffic side)
0.0150	Rail began to buckle between posts 1 and 2
0.0260	Vehicle contacted Post 1, and the post began to move downstream
0.0600	Post 2 began to move upstream toward vehicle
0.0830	Rail began to buckle between posts 2 and 3
0.1030	Post 2 began to move downstream
0.1100	Post 2 began to break longitudinally along post
0.1500	Rail began to buckle between posts 3 and 4
0.2760	Post 3 contacted by debris and vehicle and began to move downstream
0.3210	Rail began to buckle between posts 4 and 5
0.4160	Post 4 contacted by vehicle, began to move downstream
0.6660	Post 5 contacted by the vehicle and debris, began to move downstream
0.3850	Post 6 was contacted by debris in front of the vehicle and began to move downstream
0.9880	Vehicle stopped

10.5. DAMAGE TO TEST INSTALLATION

Posts 1 through 3 were broken off at grade. Post 4 was leaning downstream 30° and post 5 was leaning downstream 54°. The rail released from posts 1 through 5, and it was crumpled in front of the small car. Figure 10.5 and Figure 10.6 show the damage to the TL-2 W-beam End Terminal.

Figure 10.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-11.

Figure 10.6. TL-2 W-beam End Terminal after Test after the Small Car was Removed 615181-01-11.

10.6. DAMAGE TO TEST VEHICLE

Figure 10.7 and Figure 10.8 show the damage sustained by the vehicle. Figure 10.9 and Figure 10.10 show the interior of the test vehicle. Table 10.6 and Table 10.7 provide details on the occupant compartment deformation and exterior vehicle damage. Tables D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 10.7. Right Side of Test Vehicle after Test 615181-01-11.

Figure 10.8. Left Side of Test Vehicle after Test 615181-01-11.

Figure 10.9. Overall Interior of Test Vehicle after Test 615181-01-11.

Figure 10.10. Interior of Test Vehicle on Impact Side after Test 615181-01-11.

Table 10.6. Occupant Compartment Deformation 615181-01-11.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0 inches
Windshield	≤3.0 inches	0 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0 inches
Side Front Panel	≤12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 10.7. Exterior Vehicle Damage 615181-01-11.

Side Windows	The side windows remained intact
Maximum Exterior Deformation	13 inches in the front plane at bumper height
VDS	12FC2
CDC	12FCEN1
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, right and left headlights, bottom of the floor pan and oil pan were damaged. There was a 8-inch × 1-inch × ½-inch deep dent in the underside of the floor pan, but there was no hole or cut. There was a hole in the oil pan.

10.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 10.8. Figure D.3 in Appendix D.3 shows the vehicle angular displacements, and Figures D.4 through D.6 in Appendix D.4 show acceleration versus time traces.

Table 10.8. Occupant Risk Factors for Test 615181-01-11.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	18.6	0.2023 seconds on front of interior
OIV, Lateral (ft/s)	≤40.0	2.1	0.2023 seconds on front of interior
Ridedown, Longitudinal (g)	≤20.49	11.0	0.2768 - 0.2868 seconds
Ridedown, Lateral (g)	≤20.49	6.0	0.2885 - 0.2985 seconds
THIV (m/s)	N/A	5.7	0.2032 seconds on front of interior
ASI	N/A	0.4	0.7111 - 0.7611 seconds
50-ms MA Longitudinal (g)	N/A	-4.7	0.1045 - 0.1545 seconds
50-ms MA Lateral (g)	N/A	-2.3	0.6865 - 0.7365 seconds
50-ms MA Vertical (g)	N/A	2.1	0.3026 - 0.3526 seconds
Roll (deg)	≤75	9	1.4426 seconds
Pitch (deg)	≤75	8	0.7862 seconds
Yaw (deg)	N/A	9	0.6206 seconds

10.8. TEST SUMMARY

Figure 10.11 presents the summary results for crash test 615181-01-11.

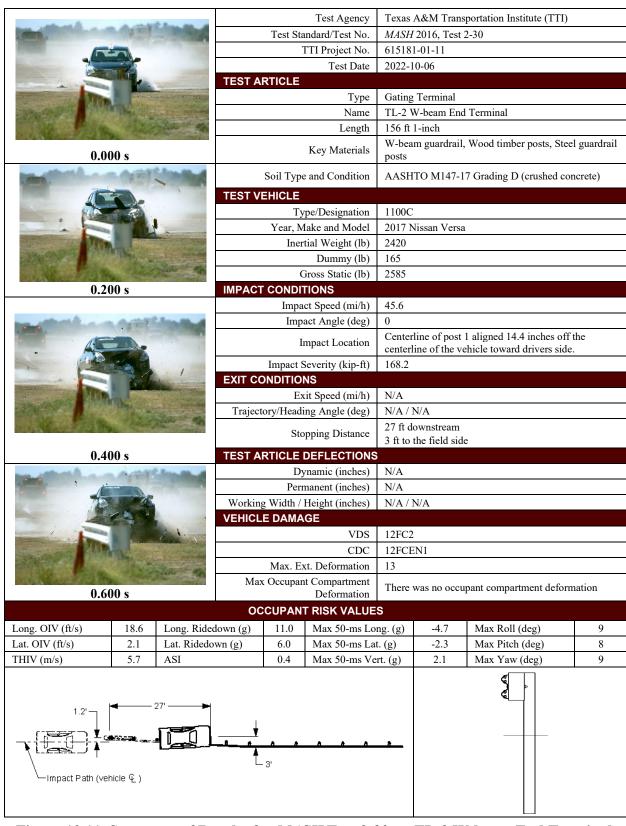


Figure 10.11. Summary of Results for MASH Test 2-30 on TL-2 W-beam End Terminal.

Chapter 11. *MASH* TEST 2-31 (CRASH TEST NO. 615181-01-12)

11.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 11.1 for details on *MASH* impact conditions for this test and Table 11.2 for the exit parameters. Figure 11.1 and Figure 11.2 depict the target impact setup.

Table 11.1. Impact Conditions for Test 615181-01-12.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	45 mi/h	± 2.5 mi/h	46.1
Impact Angle (deg)	0°	± 1.5°	0
Impact Severity (kip-ft)	291 kip-ft	≥291 kip-ft	360.3
Impact Location	Centerline of post 1 aligned with the centerline of the vehicle	± 6 inches	Centerline of post 1 aligned with the centerline of the vehicle

Table 11.2. Exit Parameters for Test 615181-01-12.

Exit Parameter	Measured
Speed (mi/h)	N/A
Trajectory (deg)	N/A
Heading (deg)	N/A
Brakes applied post impact (s)	Brakes not applied
	37 ft downstream of impact point
Vehicle at rest position	3 ft to the traffic side
	80° right
Comments:	Vehicle remained upright and stable

Figure 11.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-12.

Figure 11.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-12.

11.2. WEATHER CONDITIONS

Table 11.3 provides the weather conditions for 615181-01-12.

Table 11.3. Weather Conditions 615181-01-12.

Date of Test	2022-10-11 AM
Wind Speed (mi/h)	10
Wind Direction (deg)	162
Temperature (°F)	79
Relative Humidity (%)	67
Vehicle Traveling (deg)	350

11.3. TEST VEHICLE

Figure 11.3 and Figure 11.4 show the 2017 RAM 1500 used for the crash test. Table 11.4 shows the vehicle measurements. Table E.1 in Appendix E.1 gives additional dimensions and information on the vehicle.

Figure 11.3. Impact Side of Test Vehicle before Test 615181-01-12.

Figure 11.4. Interior of the Test Vehicle before Test 615181-01-12.

Table 11.4. Vehicle Measurements 615181-01-12.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	± 110	5072
Gross Static ^a (lb)	5000	± 110	5072
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40.0.
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	60.0
CG above Ground ^{c,d} (inches)	28	≥28	28.4

a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.
b Average of front and rear axles.
c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

11.4. TEST DESCRIPTION

Table 11.5 lists events that occurred during Test No. 615181-01-12. Figures E.1 and E.2 in Appendix E.2 present sequential photographs during the test.

Table 11.5. Events during Test 615181-01-12.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0200	Vehicle contacted Post 1, and the post began to move downstream
0.0320	Rail began to buckle between posts 1 and 2
0.0470	Post 1 began to break at grade
0.0980	Rail began to buckle between posts 2 and 3
0.0112	Post 2 began to split and move downstream from impact
0.1240	Post 2 began to break at grade
0.1480	Rail began to buckle between posts 3 and 4
0.1850	Post 3 contacted by debris and vehicle and began to move downstream
0.2480	Rail began to buckle between posts 4 and 5
0.3570	Post 4 contacted by vehicle, began to move downstream
0.3700	Rail began to buckle between posts 4 and 5
0.4870	Truck began to yaw to the left
0.4970	Post 5 contacted by the vehicle, began to move downstream
0.6310	Post 6 contacted by the vehicle, began to move downstream
0.6560	Rail began to buckle between posts 6 and 7
0.7700	Rail began to release from post 8
0.0808	Rail was fully released from all posts
2.0030	Vehicle stopped

11.5. DAMAGE TO TEST INSTALLATION

The rail released from all posts and was shifted 7 inches downstream. Posts 1 through 3 were broken off at grade and Posts 4 through 6 were leaning 15° downstream from vertical. Posts 21 and 23 were split, and 22 and 24 were broken off at grade. Post 25 was leaning over, and post 26 released from the rail. Posts 22 through 24 had a ½-inch gap in the soil on the downstream side. Figure 11.5 and Figure 11.6 show the damage to the TL-2 W-beam End Terminal.

Figure 11.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-12.

Figure 11.6. TL-2 W-beam End Terminal after Test at the Downstream Terminal 615181-01-12.

11.6. DAMAGE TO TEST VEHICLE

Figure 11.7 and Figure 11.8 show the damage sustained by the vehicle. Figure 11.9 and Figure 11.10 show the interior of the test vehicle. Table 11.6 and Table 11.7 provide details on the occupant compartment deformation and exterior vehicle damage. Tables E.2 and E.3 in Appendix E.1 provide exterior crush and occupant compartment measurements.

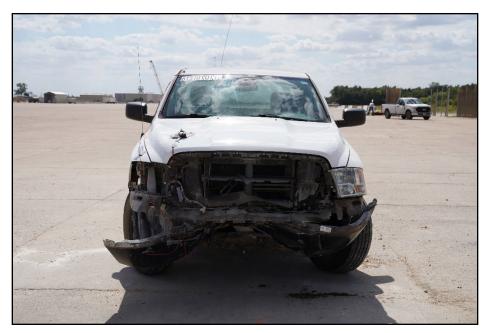


Figure 11.7. Impact Side of Test Vehicle after Test 615181-01-12.

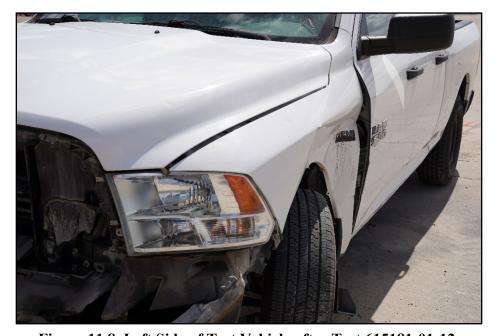


Figure 11.8. Left Side of Test Vehicle after Test 615181-01-12.

Figure 11.9. Overall Interior of Test Vehicle after Test 615181-01-12.

Figure 11.10. Interior of Test Vehicle on Impact Side after Test 615181-01-12.

Table 11.6. Occupant Compartment Deformation 615181-01-12.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0 inches
Windshield	≤3.0 inches	0 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0 inches
Side Front Panel	≤12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 11.7. Exterior Vehicle Damage 615181-01-12.

Side Windows	The side windows remained intact	
Maximum Exterior Deformation	14 inches in the front plane at bumper height	
VDS	12FC2	
CDC	FCEN2	
Fuel Tank Damage	Yes, there was some scuff marks on the fuel tank but no puncture or hole	
Description of Damage to Vehicle:	The front bumper, grill, right and left head lights, radiator and support, left front quarter fender, right rocker, tail pipe, fuel tank, and transmission pan were damaged.	

11.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 11.8. Figure E.3 in Appendix E.3 shows the vehicle angular displacements, and Figures E.4 through E.6 in Appendix E.4 show acceleration versus time traces.

Table 11.8. Occupant Risk Factors for Test 615181-01-12.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	12.6	0.2898 seconds on front of interior
OIV, Lateral (ft/s)	≤40.0	1.1	0.2898 seconds on front of interior
Ridedown, Longitudinal (g)	≤20.49	8.9	0.7741 - 0.7841 seconds
Ridedown, Lateral (g)	≤20.49	4.4	0.7759 - 0.7859 seconds
THIV (m/s)	N/A	3.9	0.2898 seconds on front of interior
ASI	N/A	0.7	0.7821 - 0.8321 seconds
50-ms MA Longitudinal (g)	N/A	-7.3	0.7512 - 0.8012 seconds
50-ms MA Lateral (g)	N/A	2.1	1.4256 - 1.4756 seconds
50-ms MA Vertical (g)	N/A	-4.5	0.8311 - 0.8811 seconds
Roll (deg)	≤75	9	0.8403 seconds
Pitch (deg)	≤75	5	0.9134 seconds
Yaw (deg)	N/A	75	1.9640 seconds

11.8. TEST SUMMARY

Figure 11.11 presents the summary results for crash test 615181-01-12.

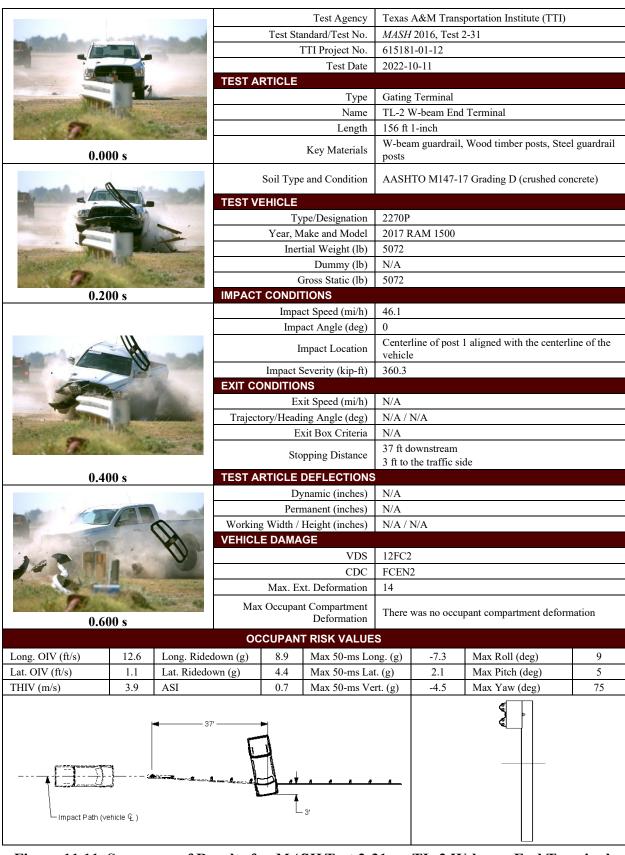


Figure 11.11. Summary of Results for MASH Test 2-31 on TL-2 W-beam End Terminal.

Chapter 12. *MASH* TEST 2-37B (CRASH TEST NO. 615181-01-13)

12.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 12.1 for details on *MASH* impact conditions for this test and Table 12.2 for the exit parameters. Figure 12.1 and Figure 12.2 depict the target impact setup.

Table 12.1. Impact Conditions for Test 615181-01-13.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	45	±2.5 mi/h	45.3
Impact Angle (deg)	25	±1.5°	24.5
Impact Severity (kip-ft)	25	≥25 kip-ft	28.9
Impact Location	14 inches upstream from upstream edge of post 24.	± 12 inches	11.4 inches upstream from upstream edge of post 24.

Table 12.2. Exit Parameters for Test 615181-01-13.

Exit Parameter	Measured	
Speed (mi/h)	27.9	
Trajectory (deg)	8	
Heading (deg)	7	
Brakes applied post impact (s)	Brakes Not Applied	
X7.1.1	99 ft downstream of impact point 3 ft to the field side	
Vehicle at rest position	Facing downstream	
Comments:	Vehicle remained upright and stable.	

Figure 12.1. TL-2 W-beam End Terminal/Test Vehicle Geometrics for Test 615181-01-13.

Figure 12.2. TL-2 W-beam End Terminal/Test Vehicle Impact Location 615181-01-13.

12.2. WEATHER CONDITIONS

Table 12.3 provides the weather conditions for 615181-01-13.

Table 12.3. Weather Conditions 615181-01-13.

Date of Test	2022-10-20 PM
Wind Speed (mi/h)	10
Wind Direction (deg)	211
Temperature (°F)	81
Relative Humidity (%)	37
Vehicle Traveling (deg)	325

12.3. TEST VEHICLE

Figure 12.3 and Figure 12.4 show the 2017 Nissan Versa used for the crash test. Table 12.4 shows the vehicle measurements. Table F.1 in Appendix F.1 gives additional dimensions and information on the vehicle.

Figure 12.3. Impact Side of Test Vehicle before Test 615181-01-13.

Figure 12.4. Opposite Impact Side of Test Vehicle before Test 615181-01-13.

Table 12.4. Vehicle Measurements 615181-01-13.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Inertial Weight (lb)	2420	±55	2450
Gross Static ^a (lb)	2585	±55	2615
Wheelbase (inches)	98	±5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	±8	175.4
Overall Width (inches)	65	±3	66.7
Hood Height (inches)	28	±4	30.5
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	±4	41.7
CG above Ground ^{c,d} (inches)	N/A	N/A	N/A

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

12.4. TEST DESCRIPTION

Table 12.5 lists events that occurred during Test No. 615181-01-13. Figures F.1 and F.2 in Appendix F.2 present sequential photographs during the test.

Table 12.5. Events during Test 615181-01-13.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0110	Post 24 began to lean toward field side
0.0200	Vehicle began to redirect
0.0210	Post 25 began to lean toward field side
0.1900	Vehicle impacted post 26
0.2100	Post 26 began to break
0.3180	Vehicle lost contact with rail and exited the system at 27.9 mi/h and at a trajectory of 8 degrees and vehicle heading of 7.5 degrees.
0.4320	Vehicle was parallel with rail

12.5. DAMAGE TO TEST INSTALLATION

The soil was disturbed at post 23, and post 24 was leaning 3.5° back from vertical. Posts 25 and 26 broke off at grade and released from the rail. Figure 12.5 and Figure 12.6 show the damage to the TL-2 W-beam End Terminal.

Figure 12.5. TL-2 W-beam End Terminal after Test at Impact Location 615181-01-13.

Figure 12.6. End of the Rail and Anchor Post of the TL-2 W-beam End Terminal after Test 615181-01-13.

12.6. DAMAGE TO TEST VEHICLE

Figure 12.7 and Figure 12.8 show the damage sustained by the vehicle. Figure 12.9 and Figure 12.10 show the interior of the test vehicle. Table 12.6 and Table 12.7 provide details on the occupant compartment deformation and exterior vehicle damage. Tables F.2 and F.3 in Appendix F.1 provide exterior crush and occupant compartment measurements.

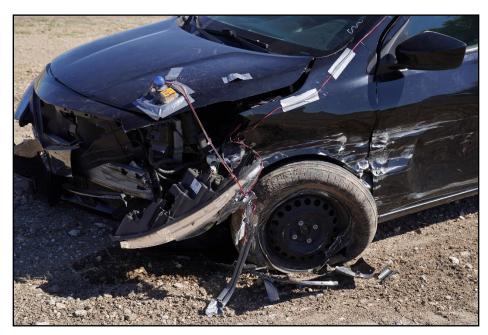


Figure 12.7. Impact Side of Test Vehicle after Test 615181-01-13.



Figure 12.8. Rear Impact Side of Test Vehicle after Test 615181-01-13.

Figure 12.9. Overall Interior of Test Vehicle after Test 615181-01-13.

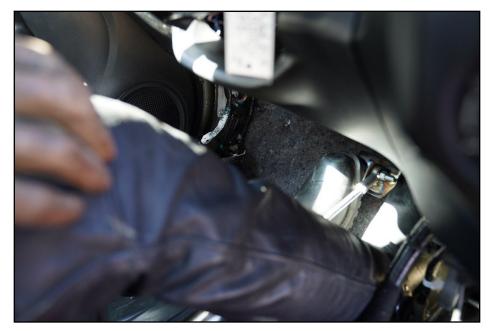


Figure 12.10. Interior of Test Vehicle on Impact Side after Test 615181-01-13.

Table 12.6. Occupant Compartment Deformation 615181-01-13.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0 inches
Windshield	≤3.0 inches	0 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0 inches
Side Front Panel	≤12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 12.7. Exterior Vehicle Damage 615181-01-13.

Side Windows	The side windows remained intact.
Maximum Exterior Deformation	6 inches in the front plane at the left front corner at bumper height
VDS	11LFQ2
CDC	11FLEW2
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, left head light, left front tire and rim, oil pan, left front strut and tower, left front quarter fender, left front door, left rear door, and left rear quarter fender were damaged. The left front door had a 1½-inch gap at the top of the door.

12.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 12.8. Figure F.3 in Appendix F.3 shows the vehicle angular displacements, and Figures F.4 through F.6 in Appendix F.4 show acceleration versus time traces.

Table 12.8. Occupant Risk Factors for Test 615181-01-13.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	10.1	0.1613 seconds on left side of interior
OIV, Lateral (ft/s)	≤40.0	12.6	0.1613 seconds on left side of interior
Ridedown, Longitudinal (g)	≤20.49	11.5	0.2075 - 0.2175 seconds
Ridedown, Lateral (g)	≤20.49	6.4	0.2040 - 0.2140 seconds
THIV (m/s)	N/A	4.6	0.1565 seconds on left side of interior
ASI	N/A	0.8	0.2084 - 0.2584 seconds
50-ms MA Longitudinal (g)	N/A	-7.6	0.1839 - 0.2339 seconds
50-ms MA Lateral (g)	N/A	4.2	0.0444 - 0.0944 seconds
50-ms MA Vertical (g)	N/A	-2.6	0.1797 - 0.2297 seconds
Roll (deg)	≤75	10	0.4921 seconds
Pitch (deg)	≤75	11	4.5000 seconds
Yaw (deg)	N/A	23	0.7334 seconds

12.8. TEST SUMMARY

Figure 12.11 presents the summary results for crash test 615181-01-13.



Figure 12.11. Summary of Results for MASH Test 2-37b on TL-2 W-beam End Terminal.

Chapter 13. NON-CRITICAL SIMULATIONS

13.1. INTRODUCTION AND JUSTIFICATION

Additional FE simulations were performed to evaluate the crashworthy performance of the system for the non-critical *MASH* tests in the TL-2 gating terminal test matrix. The following impact simulations were conducted:

- MASH Test 2-32—small car impact at terminal head (5–15 degrees) at 44 mi/h.
- MASH Test 2-33—pickup truck impact at terminal head (5–15 degrees) at 44 mi/h.
- MASH Test 2-34—small car redirective impact (15 degrees) at 44 mi/h.
- MASH Test 2-37a—reverse-direction pickup truck impact (45 degrees) at 44 mi/h.

These test conditions are considered non-critical for the TL-2 terminal developed under this project. Neither *MASH* Test 2-32 nor *MASH* Test 2-33 are critical because this TL-2 terminal does not have a head component, so the vehicles will experience the impact with only the initial region of the terminal and with a shallower impact angle than *MASH* 2-30 and *MASH* 2-31 tests, and will subsequently gate. This TL-2 system passed both *MASH* Test 2-30 and *MASH* Test 2-31 full-scale crash tests, as presented in Chapter 14. *MASH* Test 2-34 has a shallower impact angle than *MASH* Test 2-35 and with a lighter vehicle (1100C) than the pickup truck (2270P) used in *MASH* Test 2-35. Since the TL-2 system passed the more severe test (*MASH* Test 2-35) in terms of angle and speed, *MASH* Test 2-34 is considered non-critical. Finally, the reverse-direction pickup truck test (*MASH* Test 2-37a) is not as critical as the small car test (*MASH* Test 2-37b) for post-and-beam terminals per *MASH* section 2.2.2.2: "For post-and-beam terminals utilizing a breakaway cable system, the 1100C will generally be the critical vehicle for this test, and the impact point should be selected to maximize the risk of the vehicle snagging on the anchor cable." The reverse small car test passed the full-scale crash testing, as presented in Chapter 12.

The flared terminal design model was the same as the one presented earlier in Chapter 4.

13.2. TEST 2-32 SIMULATION (5-DEGREE IMPACT ANGLE)

MASH Test 2-32 involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 5 degrees. The 1100C vehicle model impacted the terminal system with the centerline of the car aligned with the center of the terminal head. Figure 13.1 and Figure 13.2 show sequential images for the MASH Test 2-32 simulation impact. The end terminal released as designed, and the vehicle gated through the system. Table 13.1 shows the occupant risk values, which were within the limits of the MASH evaluation criteria described in Chapter 6 section 6.2.

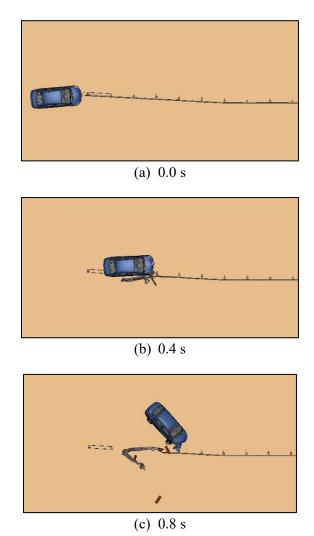
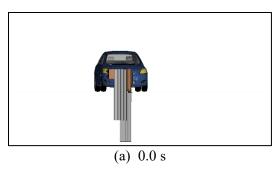
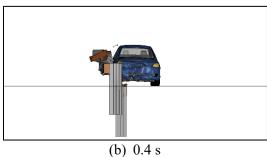




Figure 13.1. Flared Terminal Test 2-32 (5 Degrees) Simulation Sequential Images (Overhead View).

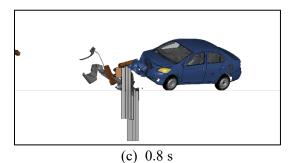


Figure 13.2. Flared Terminal Test 2-32 (5 Degrees) Simulation Sequential Images (Downstream View).

Table 13.1. Flared Terminal Test 2-32 (5 Degrees) Simulation Occupant Risk.

	OIV	OIV	ORA	ORA	Max.	Max.	Max.
Impact	Longitudinal	Lateral	Longitudinal	Lateral	Roll	Pitch	Yaw
Location	(m/s)	(m/s)	(g)	(g)	(deg)	(deg)	(deg)
Terminal Head	5.5	0.4	9.8	5.5	-23.7	-1.5	175

13.3. TEST 2-32 SIMULATION (15-DEGREE IMPACT ANGLE)

MASH Test 2-32 involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 15 degrees. The 1100C vehicle model impacted the terminal system with the centerline of the car aligned with the center of the terminal head. Figure 13.3 and Figure 13.4 show sequential images for the MASH Test 2-32 simulation impact. The end terminal released as designed, and the vehicle gated through the system. Table 13.2 shows the occupant risk values, which were within the limits of the MASH evaluation criteria described in Chapter 6 section 6.2.

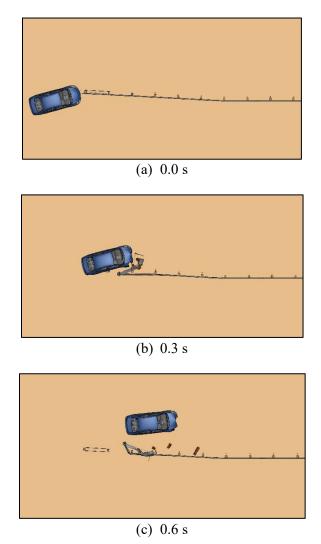
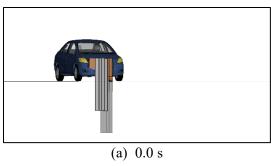
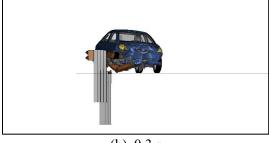
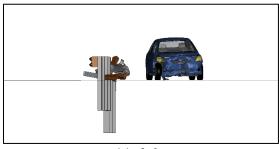





Figure 13.3. Flared Terminal Test 2-32 (15 Degrees) Simulation Sequential Images (Overhead View).

(b) 0.3 s

(c) 0.6 s

Figure 13.4. Flared Terminal Test 2-32 (15 Degrees) Simulation Sequential Images (Downstream View).

Table 13.2. Flared Terminal Test 2-32 (15 Degrees) Simulation Occupant Risk.

npact cation	OIV Longitudinal (m/s)	OIV Lateral (m/s)	ORA Longitudinal (g)	ORA Lateral (g)	Max. Roll (deg)	Max. Pitch (deg)	Max. Yaw (deg)
rminal Head	6.2	1.5	4.8	3.4	-4.6	1.7	36.8

13.4. TEST 2-33 SIMULATION (5-DEGREE IMPACT ANGLE)

MASH Test 2-33 involved impacting the end terminal with the 2270P vehicle model at a speed of 44 mi/h and an angle of 5 degrees. The 2270P vehicle model impacted the terminal system with the centerline of the truck aligned with the terminal head. Figure 13.5 and Figure 13.6 show sequential images for the MASH Test 2-33 simulation impact. The end terminal released as designed, and the vehicle gated through the system. Table 13.3 shows the occupant risk values, which were within the limits of the MASH evaluation criteria described in Chapter 6 section 6.2.

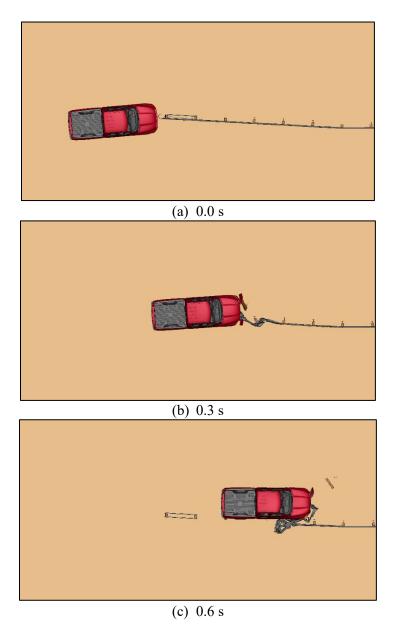
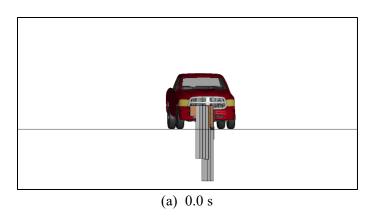
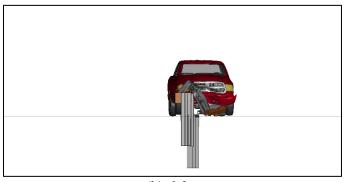
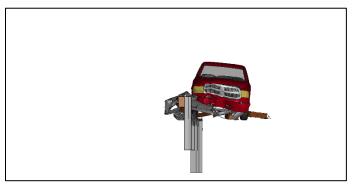





Figure 13.5. Flared Terminal Test 2-33 (5 Degrees) Simulation Sequential Images (Overhead View).

(b) 0.3 s

(c) 0.6 s

Figure 13.6. Flared Terminal Test 2-33 (5 Degrees) Simulation Sequential Images (Downstream View).

Table 13.3. Flared Terminal Test 2-33 (5 Degrees) Simulation Occupant Risk.

Impact Location	OIV Longitudinal (m/s)	OIV Lateral (m/s)	ORA Longitudinal (g)	ORA Lateral (g)	Max. Roll (deg)	Max. Pitch (deg)	Max. Yaw (deg)
Terminal Head	3.8	0.2	4.7	3.2	8.5	2.1	19.5

13.5. TEST 2-33 SIMULATION (15-DEGREE IMPACT ANGLE)

MASH Test 2-33 involved impacting the end terminal with the 2270P vehicle model at a speed of 44 mi/h and an angle of 15 degrees. The 2270P vehicle model impacted the terminal system with the centerline of the truck aligned with the center of the terminal head. Figure 13.7 and Figure 13.8 show sequential images for the MASH Test 2-33 simulation impact. The end terminal released as designed, and the vehicle gated through the system. Table 13.4 shows the occupant risk values, which were within the limits of the MASH evaluation criteria described in Chapter 6 section 6.2.

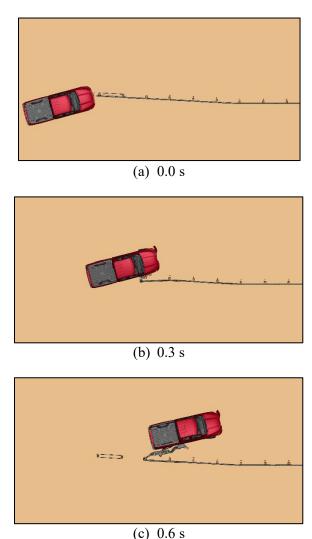
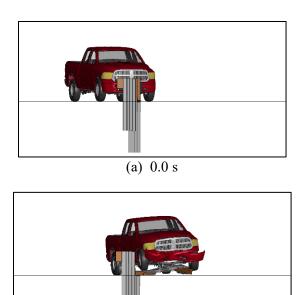



Figure 13.7. Flared Terminal Test 2-33 (15 Degrees) Simulation Sequential Images (Overhead View).

(b) 0.3 s

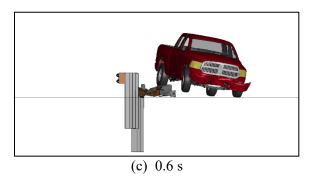


Figure 13.8. Flared Terminal Test 2-33 (15 Degrees) Simulation Sequential Images (Downstream View).

Table 13.4. Flared Terminal Test 2-33 (15 Degrees) Simulation Occupant Risk.

	OIV	OIV	ORA	ORA	Max.	Max.	Max.
Impact	Longitudinal	Lateral	Longitudinal	Lateral	Roll	Pitch	Yaw
Location	(m/s)	(m/s)	(g)	(g)	(deg)	(deg)	(deg)
Terminal Head	2.7	0.4	2.4	2.5	-10.1	-4.6	4.2

13.6. TEST 2-34 SIMULATION

MASH Test 2-34 involved impacting the end terminal with the 1100C vehicle model at a speed of 44 mi/h and an angle of 15 degrees. The 1100C vehicle model impacted the terminal system at the beginning of the LON section. Figure 13.9 and Figure 13.10 show sequential images for the MASH Test 2-34 simulation impact. The small car vehicle was successfully contained and redirected. Table 13.5 shows the occupant risk values, which were within the limits of the MASH evaluation criteria described in Chapter 6 section 6.2.

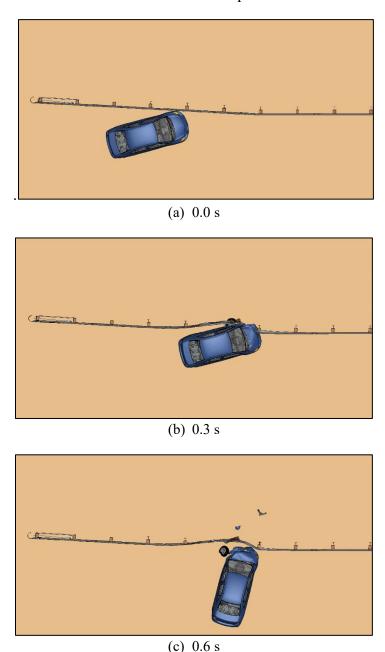
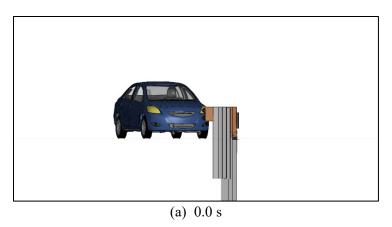
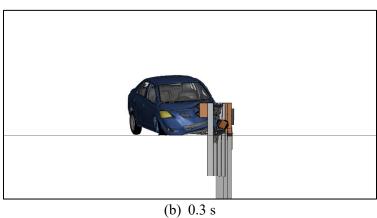




Figure 13.9. Flared Terminal Test 2-34 Simulation Sequential Images (Overhead View).

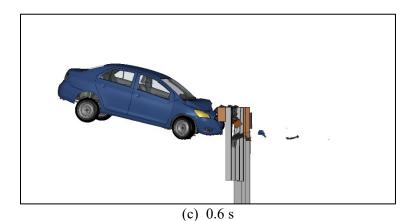


Figure 13.10. Flared Terminal Test 2-34 Simulation Sequential Images (Downstream View).

Table 13.5. Flared Terminal Test 2-34 Simulation Occupant Risk.

pact cation	OIV Longitudinal (m/s)	OIV Lateral (m/s)	ORA Longitudinal (g)	ORA Lateral (g)	Max. Roll (deg)	Max. Pitch (deg)	Max. Yaw (deg)
nches	5.5	4.3	17.9	6.5	5.5	11.5	194.4

Note: u/s = upstream.

13.7. TEST 2-37A SIMULATION

MASH Test 2-37a involved impacting the end terminal with the 2270P vehicle model at a speed of 44 mi/h and an angle of 25 degrees. The 2270P vehicle model impacted the terminal system in the reverse direction. Figure 13.11 and Figure 13.12 show sequential images for the first CIP of the MASH Test 2-37a impact simulations. Figure 13.13 and Figure 13.14 show sequential images for the second CIP of the MASH Test 2-37a impact simulations. Table 13.6 shows the occupant risk values, which were within the limits of the MASH evaluation criteria described in Chapter 6 section 6.2.

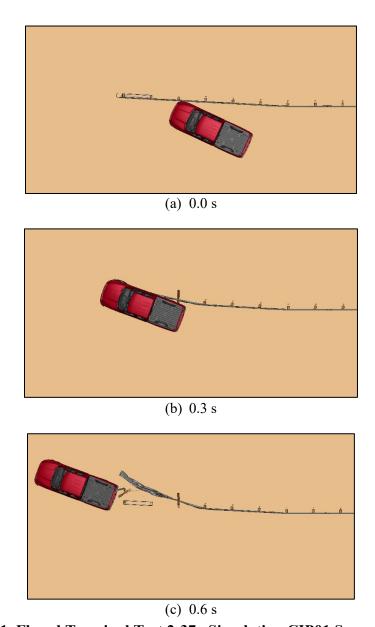


Figure 13.11. Flared Terminal Test 2-37a Simulation CIP01 Sequential Images (Overhead View).

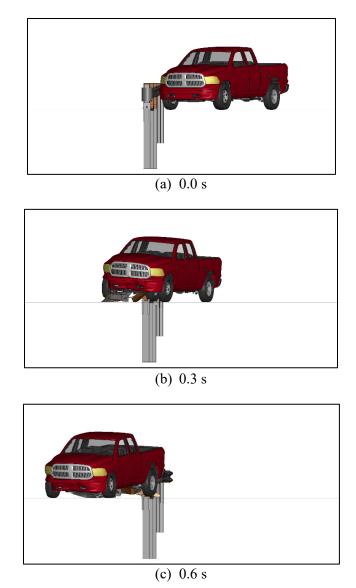


Figure 13.12. Flared Terminal Test 2-37a Simulation CIP01 Sequential Images (Downstream View).

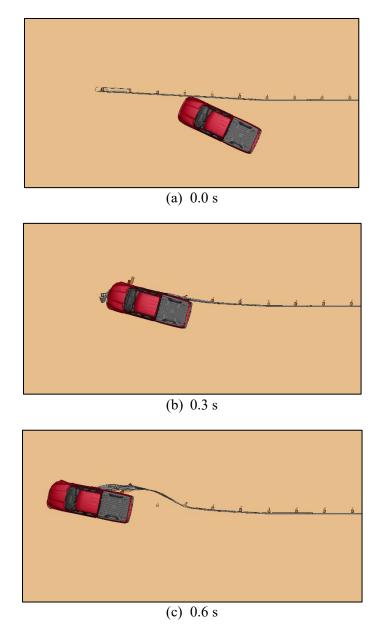
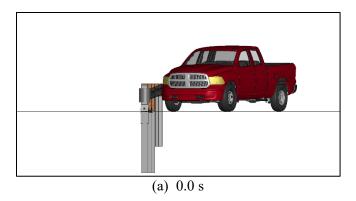
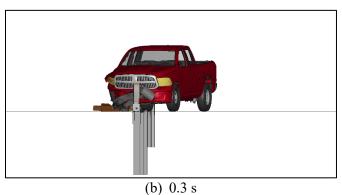
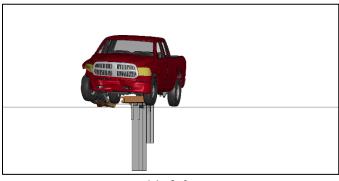





Figure 13.13. Flared Terminal Test 2-37a Simulation CIP02 Sequential Images (Overhead View).

(c) 0.6 s

Figure 13.14. Flared Terminal Test 2-37a Simulation CIP02 Sequential Images (Downstream View).

Table 13.6. Flared Terminal Test 2-37a Simulation Occupant Risk.

	OIV	OIV	ORA	ORA	Max.	Max.	Max.
Impact Location	Longitudinal (m/s)	Lateral (m/s)	Longitudinal (g)	Lateral (g)	Roll (deg)	Pitch (deg)	Yaw (deg)
6 inches u/s post 2	3.2	1.4	1.8	1.9	-5.0	-3.0	5.0
92 inches u/s post 2	3.5	2.8	9.3	5.5	-4.0	2.8	-14.0

Note: u/s = upstream.

13.8. DISCUSSION

These test conditions are considered non-critical for the TL-2 terminal developed under this project, as detailed earlier in this chapter. Nevertheless, nonlinear FE simulations were conducted with the same models used to predict the testing in Chapter 4. These simulations indicated that the TL-2 terminal design passes *MASH* evaluation criteria for the non-critical tests presented herein.

Chapter 14. SUMMARY AND CONCLUSIONS

14.1. ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* TL-2 on the TL-2 W-beam end terminal. The tables at the end of this chapter provide an assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-2 gating terminals. Table 14.1 provides a summary of all test results for project 615181-01 in chronological order.

Table 14.1. Summary of Tests in Numerical Order.

Test Date	TTI Test No. 615181-01	MASH Test No.	Vehicle Class	Notes or Outcome
8/31/2021	-1	2-32	1100C	Developmental
9/2/2021	-2	2-30	1100C	Developmental
2/16/2022	-3	2-31	2270P	Developmental
7/20/2022	-4	2-30	1100C	Failed due to Rollover
9/9/2022	-5	2-35	2270P	Pass
9/14/2022	-6	2-30	1100C	Failed due to Penetration
9/20/2022	-7	2-30	1100C	Failed due to Penetration
4/6/2022	-8	2-35	2270P	Developmental
2/11/2022	-9	2-30	1100C	Developmental
12/15/2021	-10	2-30	1100C	Developmental
10/6/2022	-11	2-30	1100C	Pass
10/11/2022	-12	2-31	2270P	Pass
10/20/2022	-13	2-37b	1100C	Pass

14.2. CONCLUSIONS

Table 14.2 shows that the TL-2 W-beam end terminal met the performance criteria for *MASH* Tests 2-35, 2-30, 2-31, and 2-37b for gating terminals.

Table 14.2. Assessment Summary for MASH TL-2 Tests on TL-2 W-beam End Terminal.

Evaluation Criteria ^a	Description	Test No. 615181-01-5 <i>MASH</i> 2-35	Test No. 615181-01-11 MASH 2-30	Test No. 615181-01-12 MASH 2-31	Test No. 615181-01-13 MASH 2-37b
A	Contain, redirect, or controlled stop	S	N/A	N/A	N/A
С	Redirect, controlled penetration, or controlled stop	N/A	S	S	S
D	No penetration into occupant compartment	S	S	S	S
F	Roll and pitch limit	S	S	S	S
Н	OIV threshold	S	S	S	S
I	Ridedown threshold	S	S	S	S
N	Trajectory behind is acceptable	N/A	S	S	S
Overall Evaluation	Results Per Test	Pass	Pass	Pass	Pass

^a See Table 6.2 for details.

Note: S = Satisfactory; N/A = Not Applicable.

14.3. ENGINEERING OPINION ON THE RESULTS OF *MASH* TESTING*

MASH Tests 2-32 and 2-33 are specified with an angle from 5 to 15 degrees with the roadway, which makes them less critical than MASH Tests 2-30 and 2-31 that have 0-degree angles with the roadway. Without a terminal head, the vehicle would not engage much of the system other than the first post. MASH states that "However, gating redirective systems are designed to allow a vehicle to penetrate behind the system, and increasing the lateral load on the device will likely accentuate the gating process. Therefore, gating redirective terminals and crash cushions should be tested at much lower impact angles, closer to the 5-dgree minimum values." Thus, MASH Tests 2-32 and 2-33 are considered non-critical since the design of this system does not incorporate a head at the terminal end for a vehicle to trip on, accentuate the gating process, or present potential for subsequent dynamic instability. Both MASH Tests 2-30 and 2-31 were tested in this project and passed MASH evaluation criteria. Nevertheless, the research team conducted FE simulations for the MASH 2-32 and 2-33 tests, incorporating both ends of the impact angle range. These simulations, presented previously in this report, showed that the system performance meets the evaluation criteria of MASH.

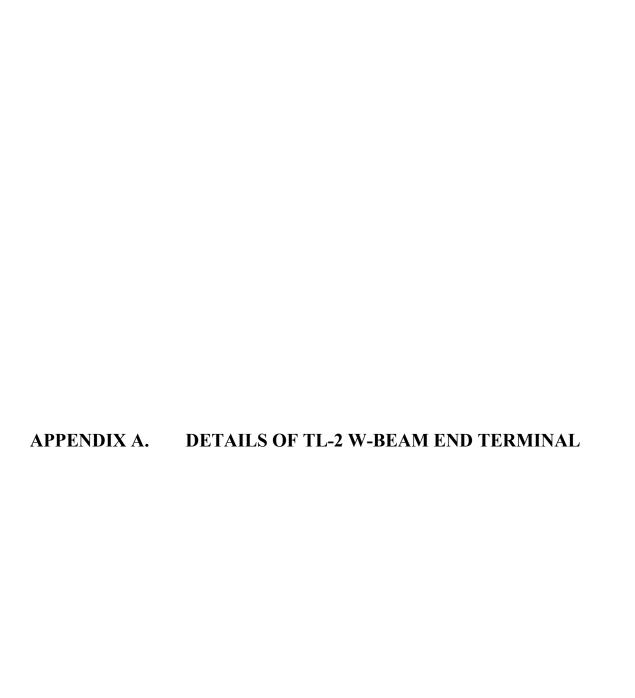
MASH Test 2-34 involves the small car redirecting at a 15-degree impact angle. This test is considered non-critical since the system was able to redirect the pickup test vehicle at the more acute impact angle of 25 degrees per MASH 2-35 conditions. The MASH 2-35 test was physically performed under this project, and the system was able to redirect the vehicle while meeting required MASH evaluation criteria. Thus, a redirective impact with a lesser mass vehicle and shallower impact angle is not expected to be more critical than the one (MASH 2-35) tested. As an additional check, the research team performed FE simulation of the MASH 2-34 test, and the results of the simulation were passing when assessed per MASH evaluation criteria. The impact location of the MASH 2-35 test was post number 5. The same impact point was used for the simulation of MASH 2-34 test. The testing of MASH 2-35 and the simulation of meed (LON) for this system is defined to be post number 5.

Finally, *MASH* Test 2-37b (car) is considered the critical test since *MASH* states the following: "For post-and-beam terminals utilizing a breakaway cable system, the 1100C will generally be the critical vehicle for this test, and the impact point should be selected to maximize the risk of the vehicle snagging on the anchor cable." The car test (*MASH* 2-37b) was physically performed, and the outcome was passing per *MASH* evaluation criteria. Moreover, the research team performed FE simulations for the pickup truck test, *MASH* 2-37a, using two different impact conditions, as presented earlier, and each of these simulations resulted in acceptable performance per *MASH* evaluation criteria.

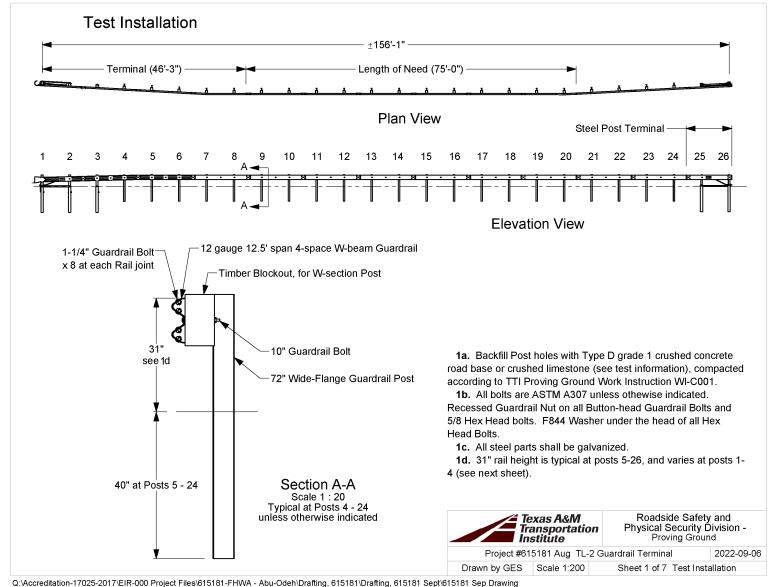
This terminal design does not have a special head component and utilizes the slotting in the rail elements to incorporate several innovative and easy-to-implement features:

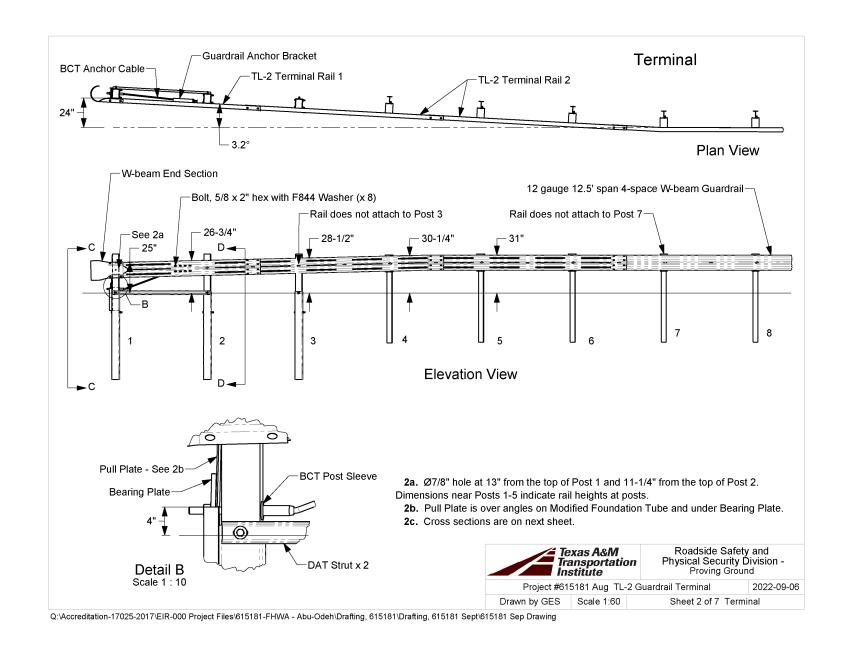
- An open slot at the end of the first rail element to reduce tensile loading on the first post.
- Two support angle sections to better hold the bearing plate and transfer its load to the foundation tube.

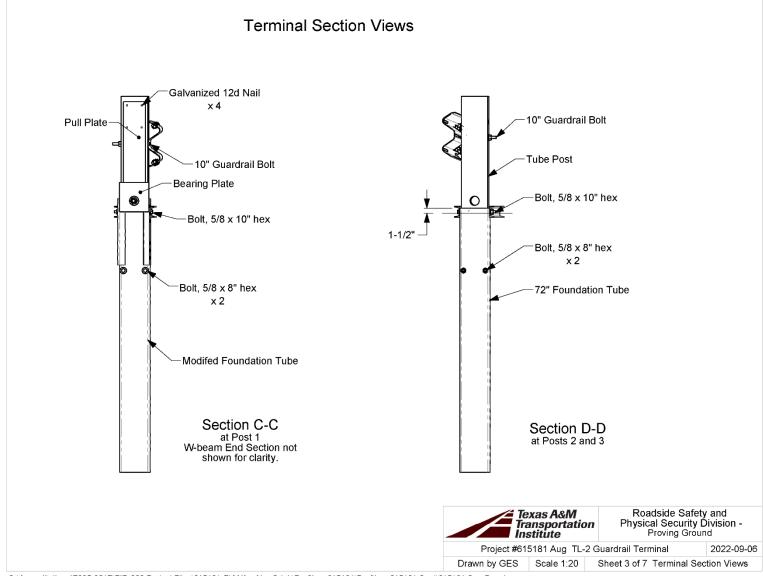
^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

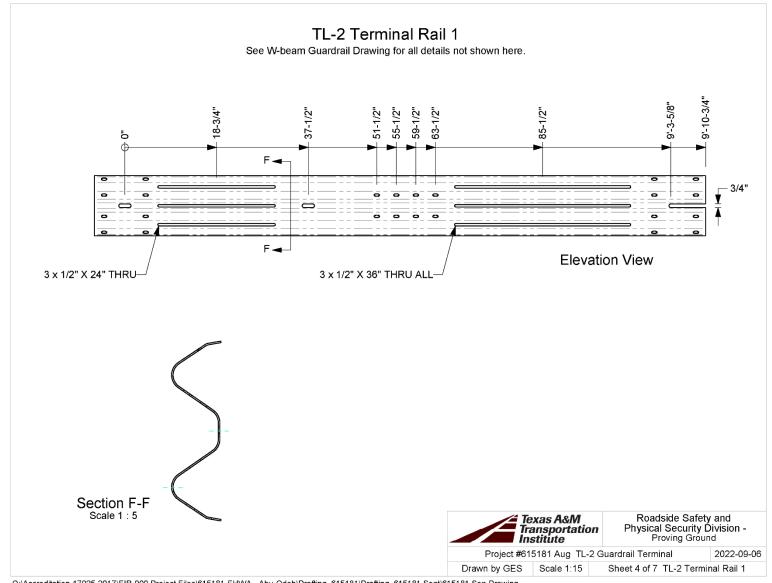

- A pull plate at the upstream face of the first post to facilitate the release of the cable anchor during impacts engaging the first post, such as head-on and reverse impacts.
- A crown nut at the end of the cable anchor threaded rod to prevent the rod end from engaging and cutting the sheet metal of the vehicle.
- Rounded posts at the top of the first five steel posts to reduce sharp post corners interacting with the vehicle undercarriage.
- An upstream-facing trapezoidal wood block to provide separation between the post flanges and the vehicle undercarriage. This trapezoidal is made from high-quality wood, and options such as dense rubber or high-density polyethylene should provide a similar function if desired.
- The rail is not attached to post number 3 and post number 7.

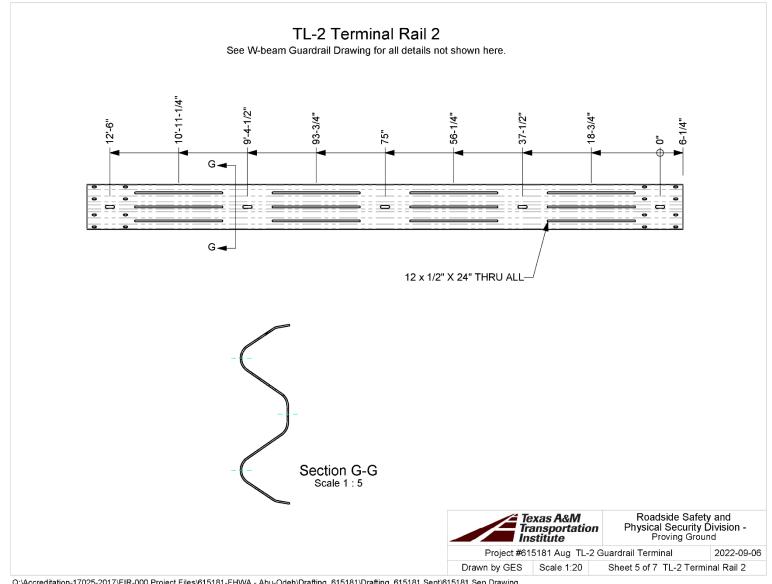
It should be noted that the details of the first installation of this system that was tested under MASH 2-35 conditions did not include the post rounding, the trapezoidal wood block, nor the crown nut. The pull plate was $^{3}/_{16}$ inch which is thicker than the $^{1}/_{8}$ inch pull plate used in later tests. These design modifications do not affect the performance of the system under MASH 2-35 since these innovative modifications interact with the vehicle only when the vehicle impacts the system in a way to release the cable such as head-on or reverse impact. These innovative modifications are meant for such impacts without affecting the system performance under redirective impact conditions.

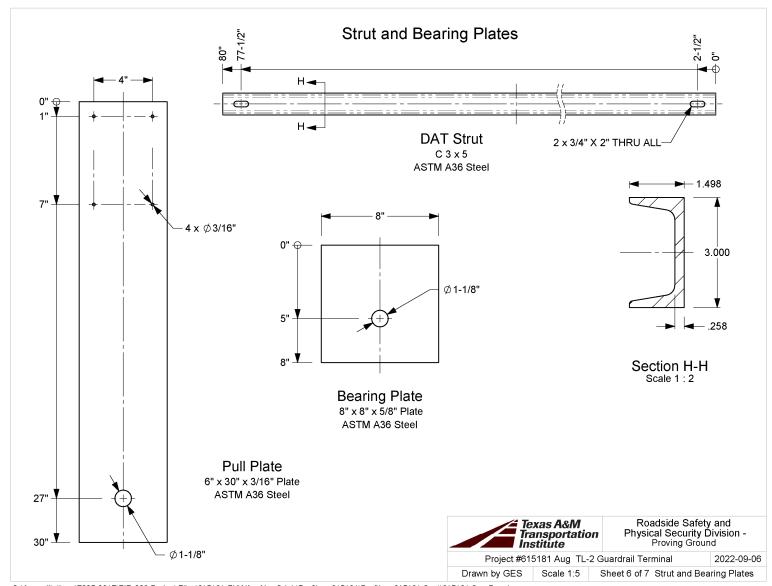

This system was evaluated through both testing and simulations to *MASH* TL-2 and is intended for low-speed roadways where the encroachment speed is 45 mi/h or less. Furthermore, this terminal is compatible with aesthetic coatings such as powder coating and stain.

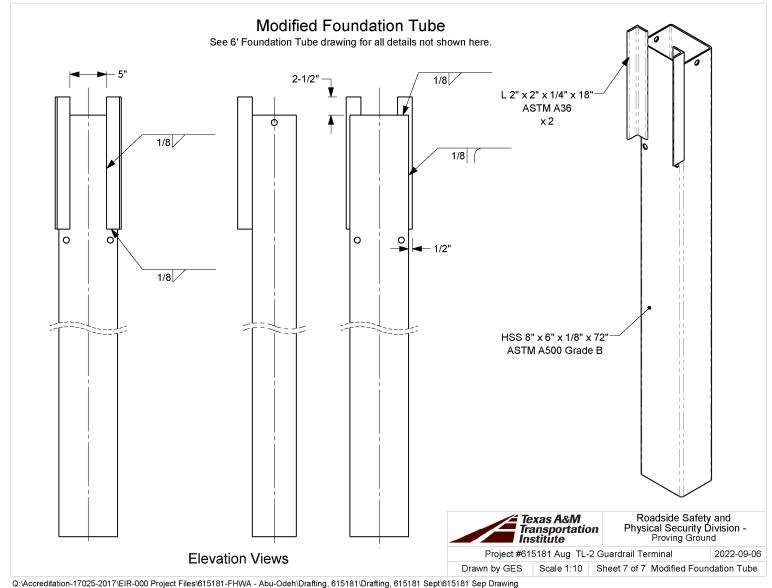

REFERENCES

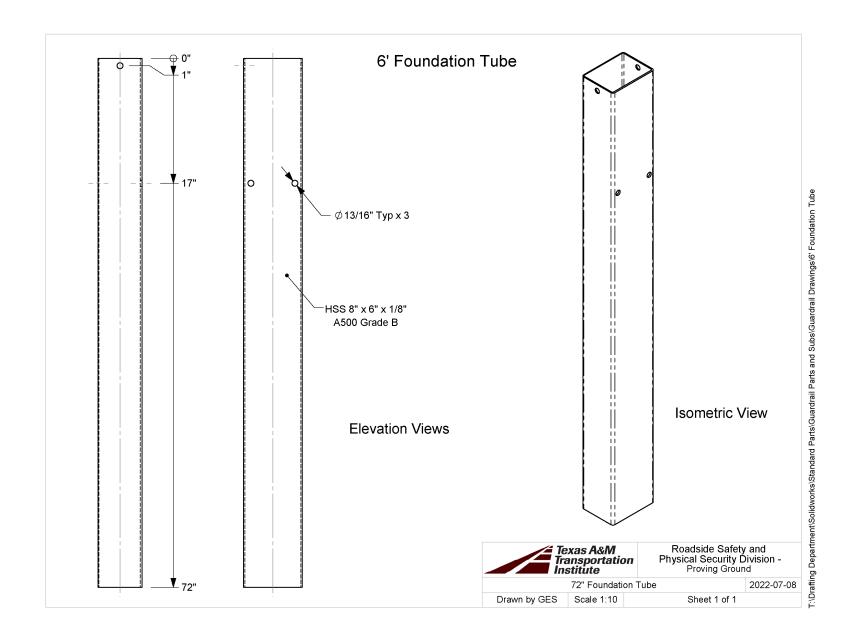

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- 2. Arnold, A. G., Menges, W. L., and Butler, B. G. *Testing and Evaluation of the Vermont W-Beam Guardrail Terminal for Low Speed Areas*. Report No. 473080-1. Texas Transportation Institute, College Station, TX, 1998.
- 3. Hirsch, T. J., Dolf, T. J., and Arnold, A. G. *Maryland Turned-Down Guardrail Terminal*. Texas Transportation Institute, College Station, TX, 1982.
- 4. Mak, K. K., Ross, H. E., Bligh, R. P., and Menges, W. L. NCHRP Report 350 Testing of W-Beam Slotted-Rail Terminal. *Transportation Research Record*, 1599(1), 22–31, 1997.
- 5. *LS-DYNA Keyword User's Manual, Volume 1 R11*. Livermore Software Technology Company (LSTC), Livermore, CA, 2018.



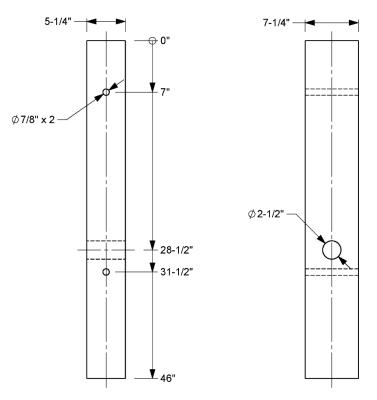

A.1. DRAWINGS FOR CRASH TEST 615181-01-5







Q:\accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\Drafting, 615181 Sept\615181 Sep Drawing



Q:\Accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\Drafting, 615181 Sept\615181 Sep Drawing

Post, Tube

Elevation Views

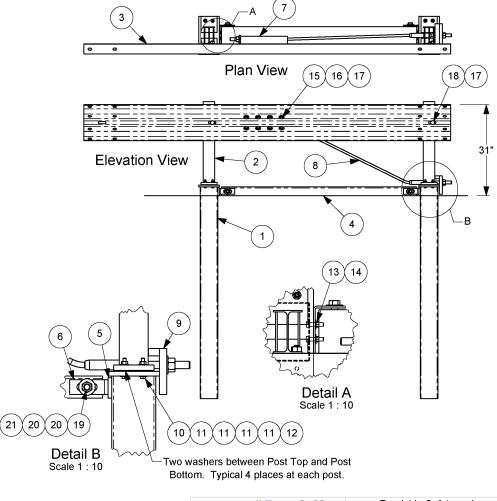
1a. Timber posts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

Roadside Safety and Physical Security Division -Proving Ground

Tube Post

2022-07-08

Drawn by GES


Scale 1:10

Sheet 1 of 1

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Post, Tube

Terminal Details

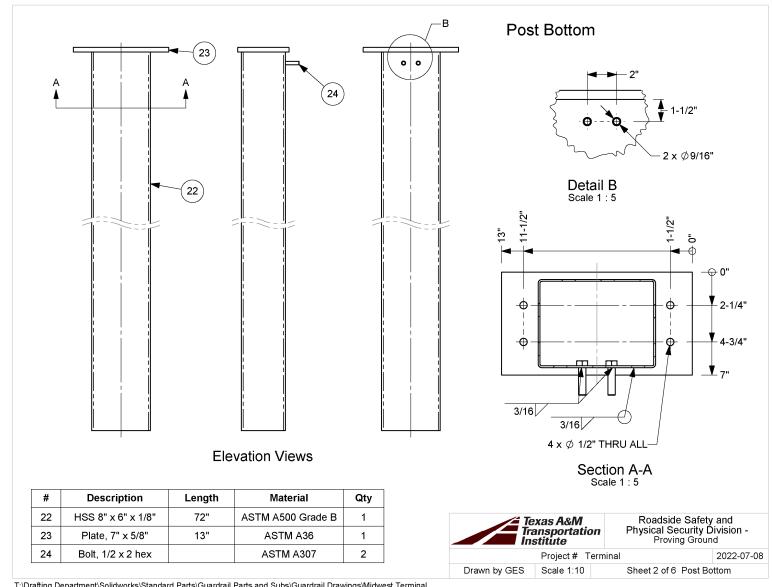
#	Part Name	QTY.
1	Post Bottom	2
2	Post Top	2
3	9'-4" span Terminal Rail	1
4	Strut	1
5	Strut Spacer	2
6	Strut Bracket	2
7	Guardrail Anchor Bracket	1
8	Anchor Cable Assembly	1
9	Bearing Plate	1
10	Bolt, 7/16 x 2 1/2" hex	8
11	Washer, 7/16 F844	32
12	Nut, 7/16 heavy hex	8
13	Nut, 1/2 hex	4
14	Washer, 1/2 F844	4
15	Bolt, 5/8 x 1 1/2" hex	8
16	Washer, 5/8 F844	8
17	Recessed Guardrail Nut	10
18	1-1/4" Guardrail Bolt	2
19	Bolt, 7/8 x 8 1/2" hex	2
20	Washer, 7/8 F844	4
21	Nut, 7/8 hex	2

1a. 7/16" x 2-1/2" Bolts are ASTM A449. All other Bolts are ASTM A307. All Nuts (except Recessed Guardrail Nuts) are ASTM A563A unless otherwise indicated.

1c. All steel parts shall be galvanized.

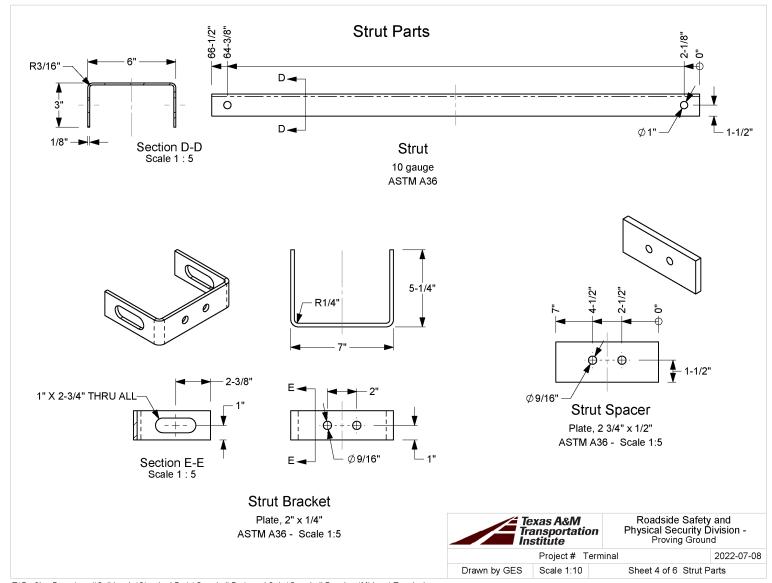
Roadside Safety and Physical Security Division -Proving Ground

Project # Terminal

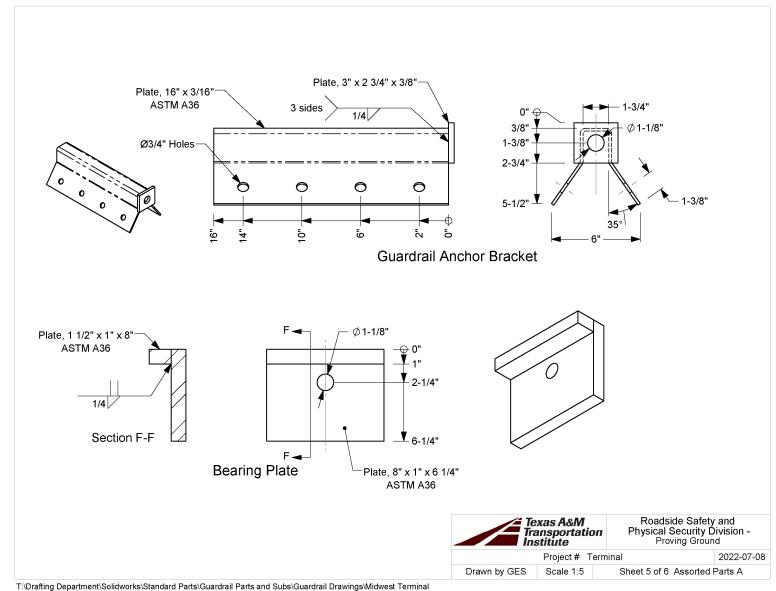

2022-07-08

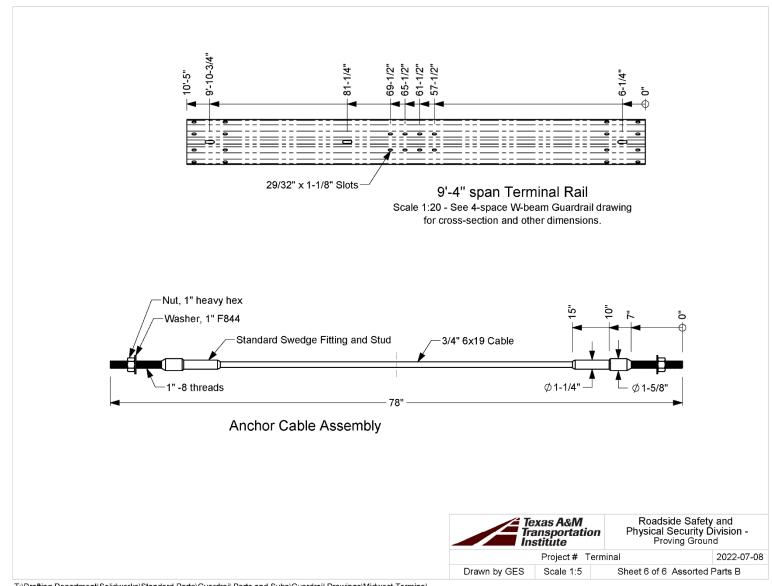
Drawn by GES

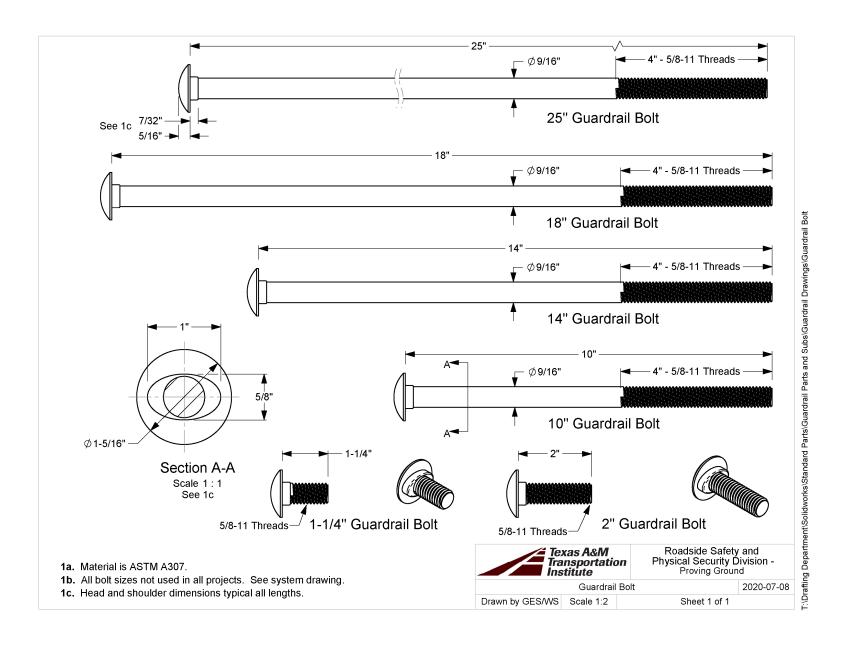
Scale 1:25

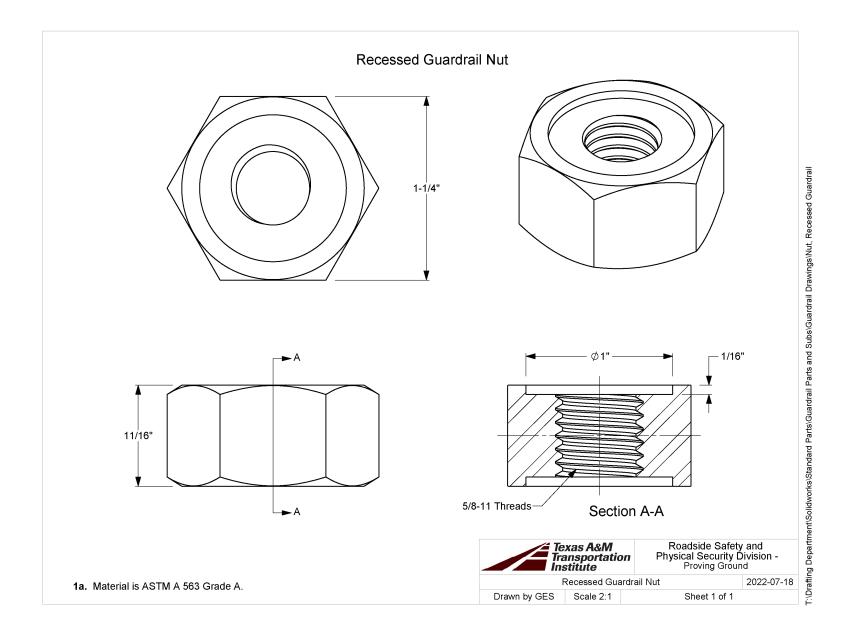

Sheet 1 of 6 Terminal Details

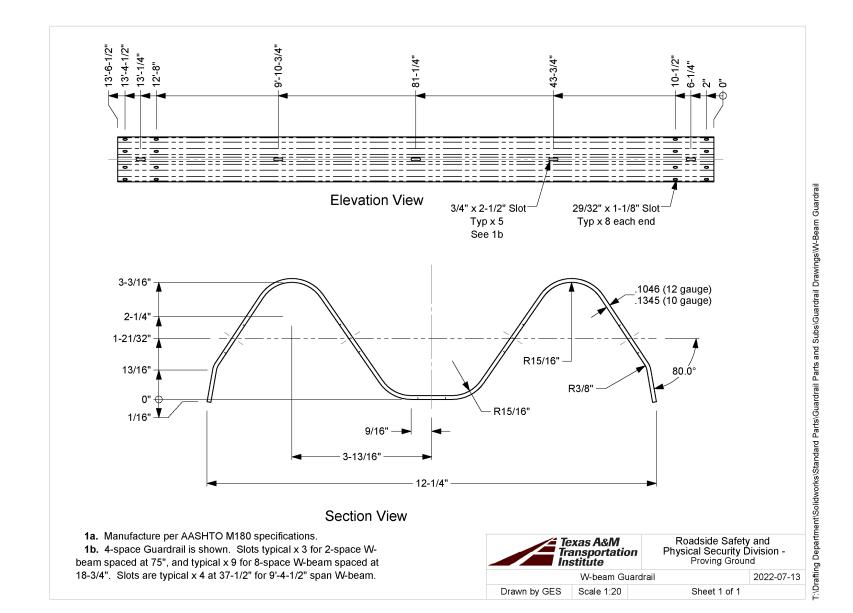
T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

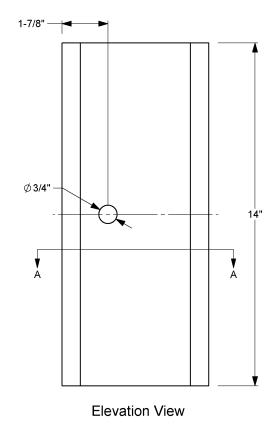


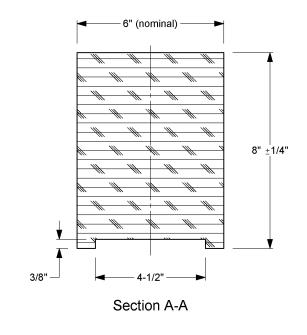

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal






T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

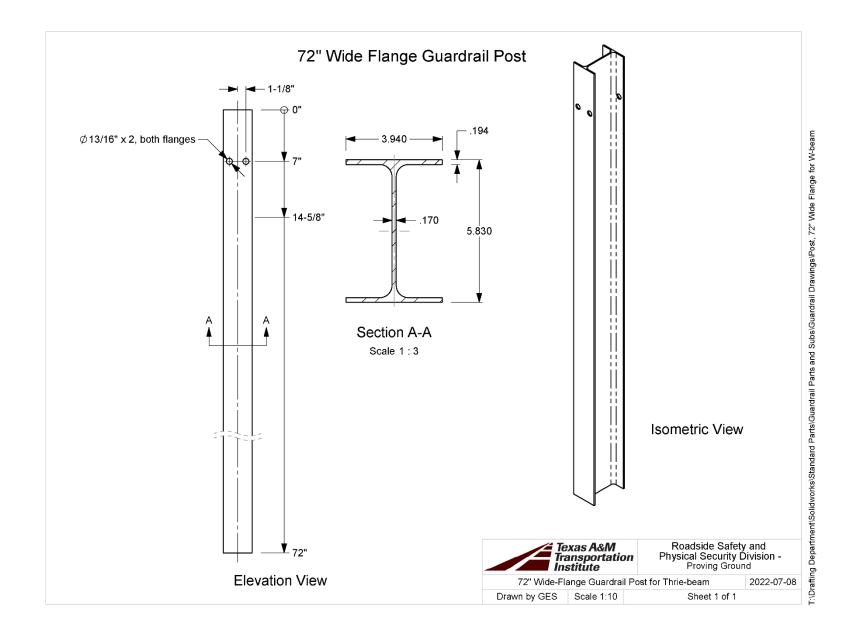


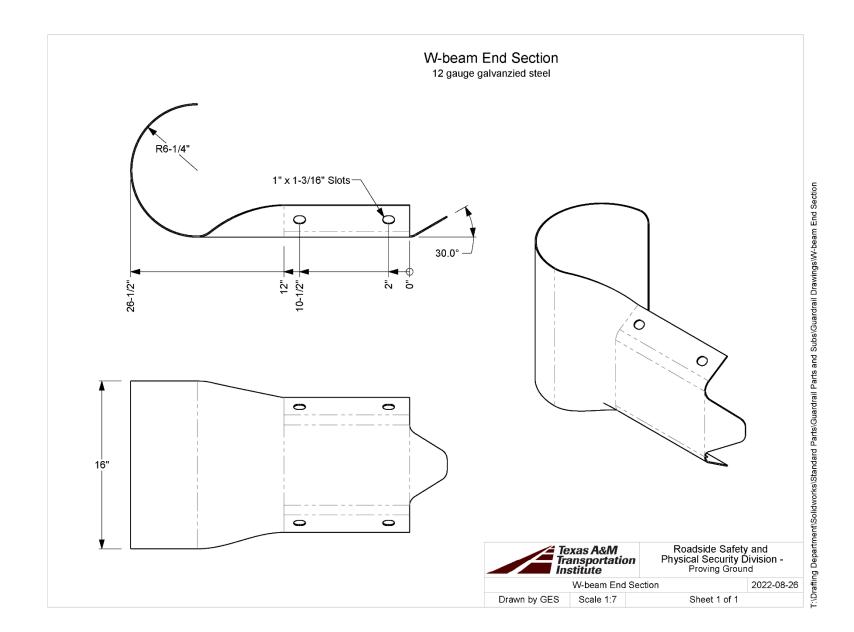


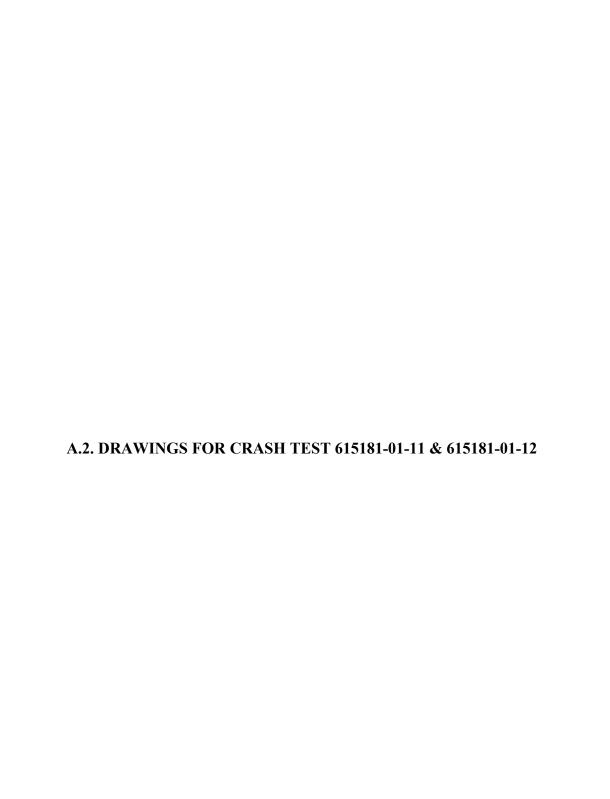
Timber Blockout for W-section Post

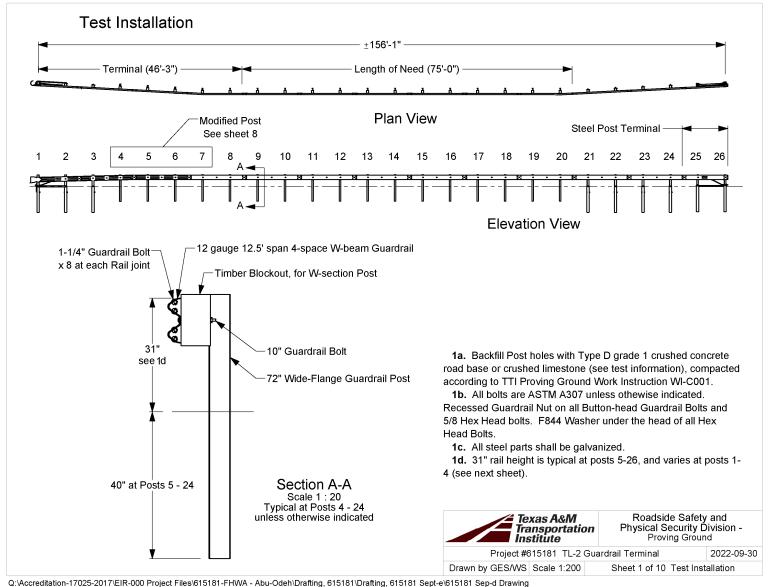
1a. Timber blockouts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

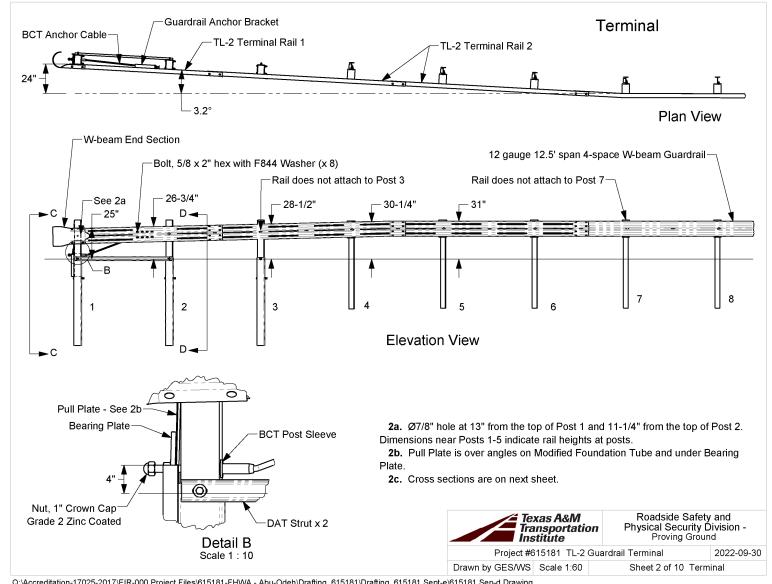
Roadside Safety and Physical Security Division -Proving Ground

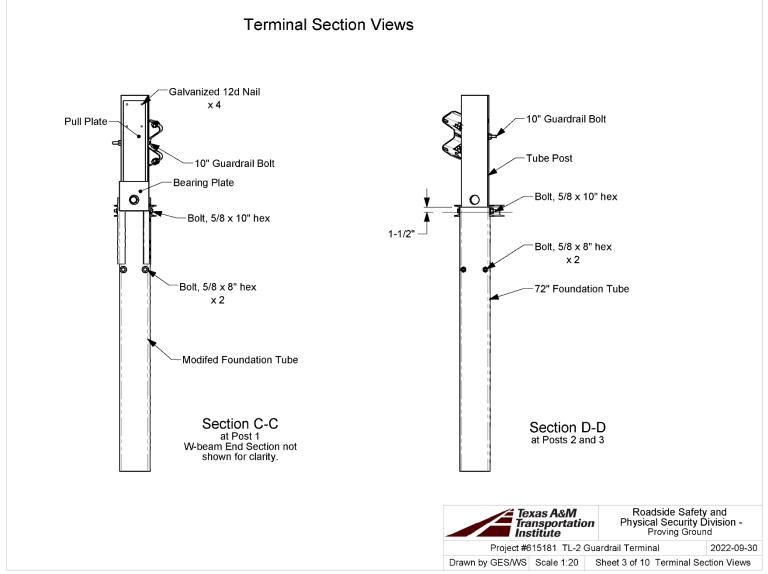

Timber Blockout, for W-section Post

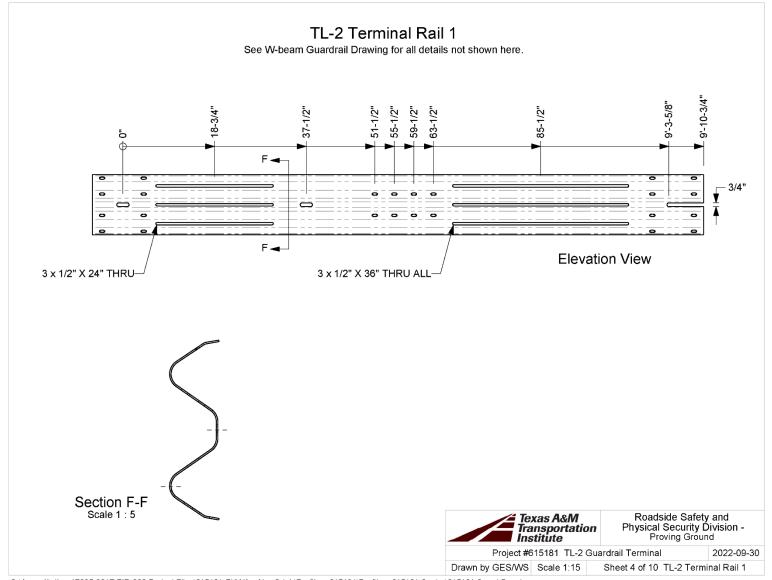

2022-07-08

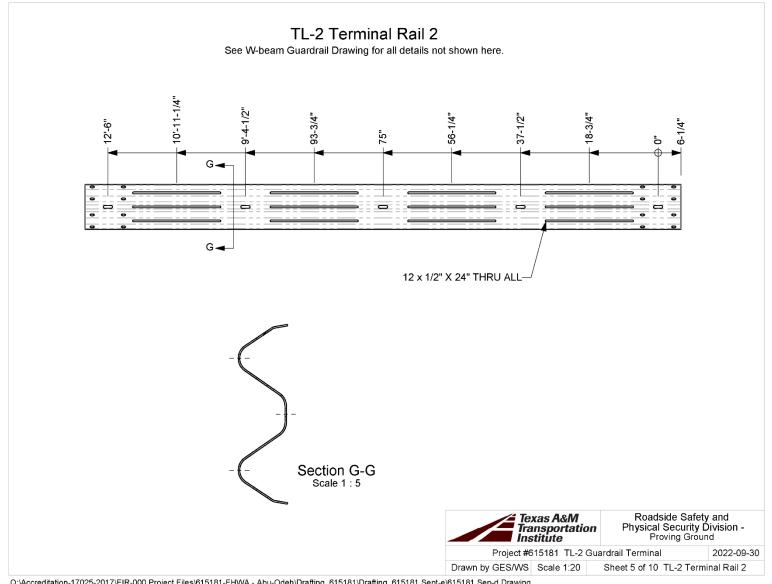

Drawn by GES

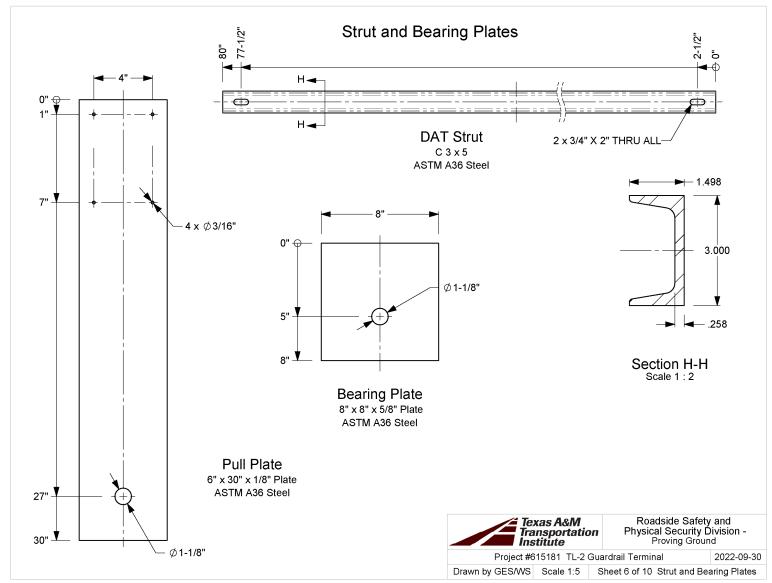

Scale 1:3


Sheet 1 of 1

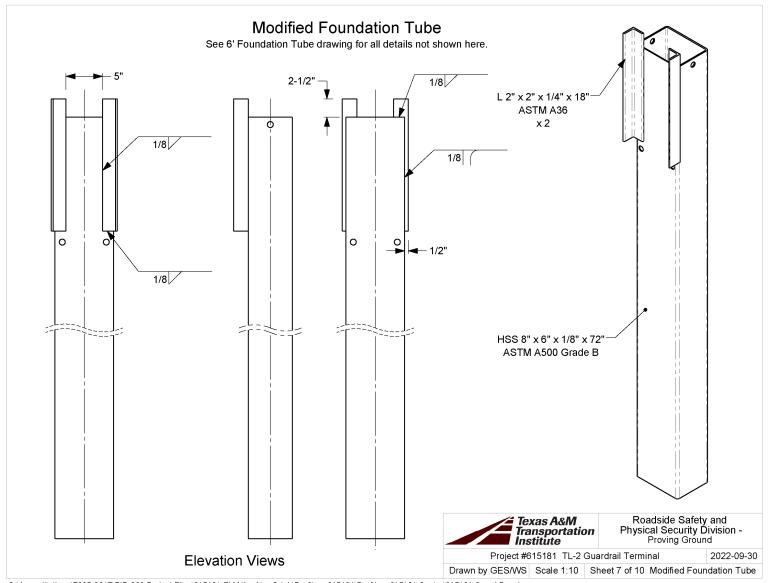


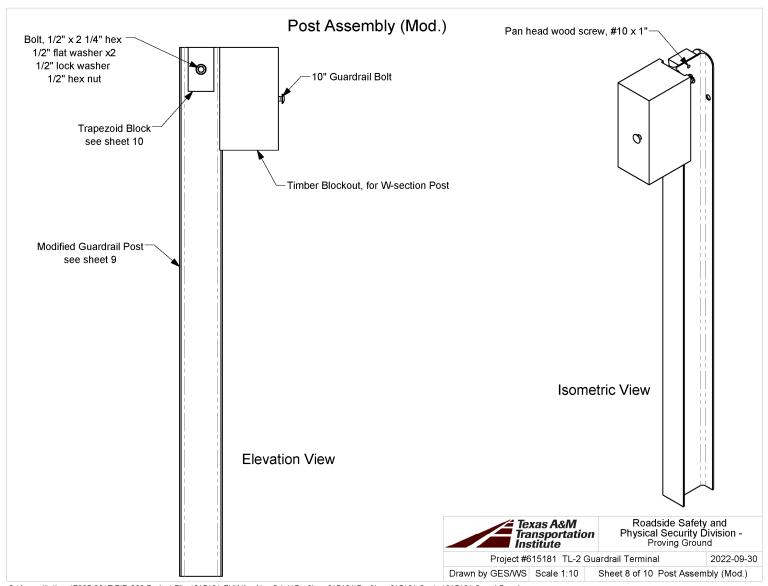


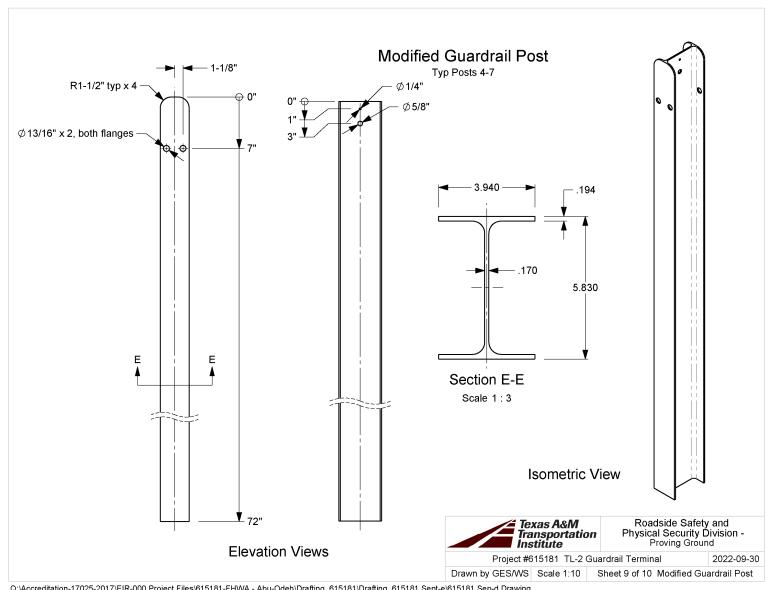




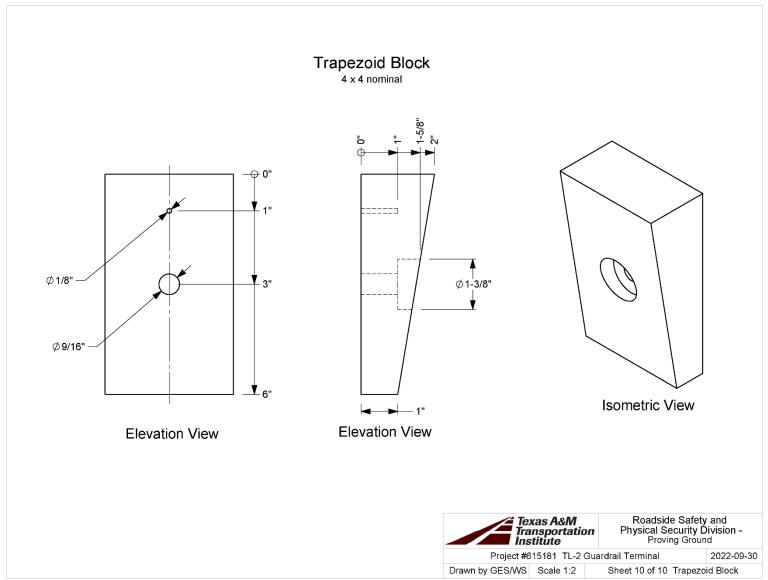
Q:\accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\Drafting, 615181 Sept-e\615181 Sept-d Drawing

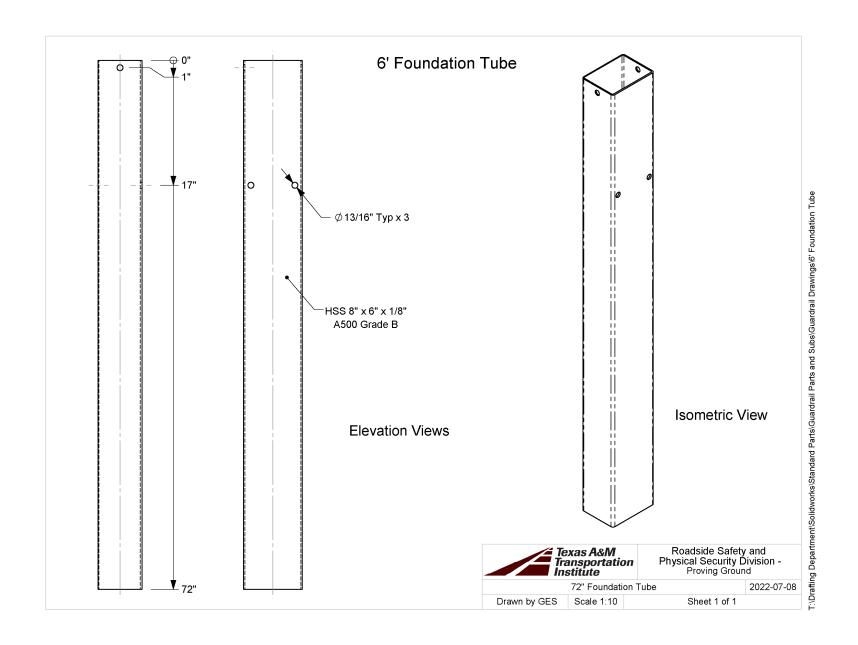


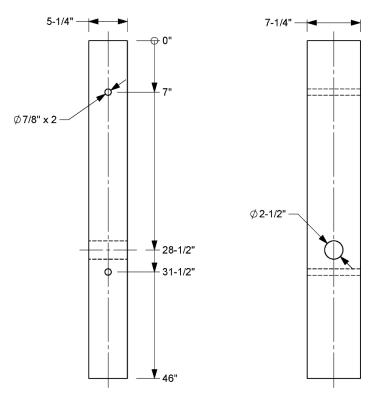




Q:\accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\Drafting, 615181 Sept-e\615181 Sept-d Drawing




Q:\accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\Drafting, 615181 Sept-e\615181 Sept-d Drawing



Q:\accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\Drafting, 615181 Sept-e\615181 Sept-d Drawing

Post, Tube

Elevation Views

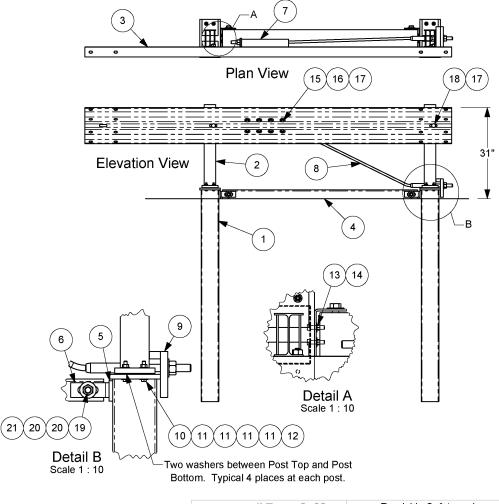
1a. Timber posts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

Roadside Safety and Physical Security Division -Proving Ground

Tube Post

2022-07-08

T:\Draffing Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Post, Tube


Drawn by GES

Scale 1:10

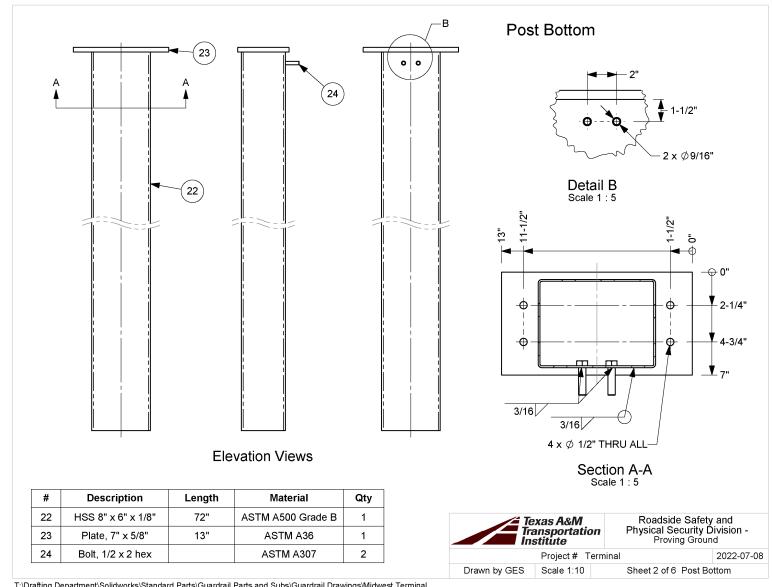
Sheet 1 of 1

Terminal Details

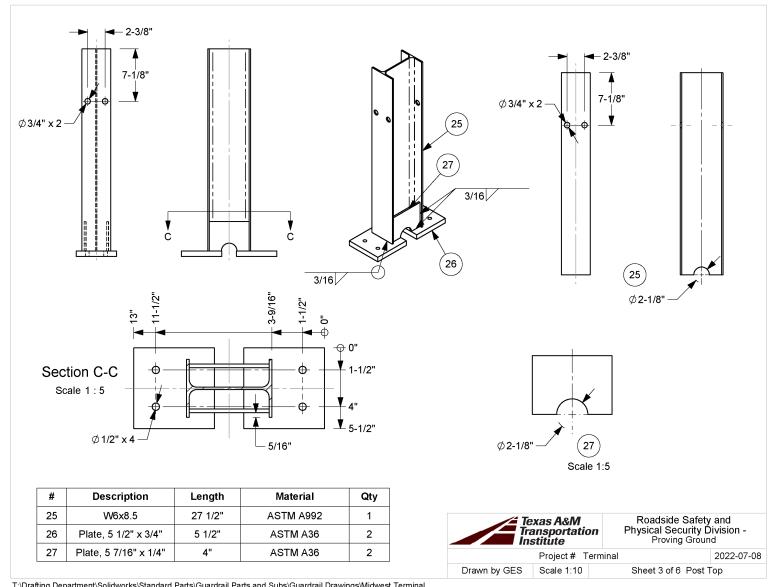
#	Part Name	QTY.
1	Post Bottom	2
2	Post Top	2
3	9'-4" span Terminal Rail	1
4	Strut	1
5	Strut Spacer	2
6	Strut Bracket	2
7	Guardrail Anchor Bracket	1
8	Anchor Cable Assembly	1
9	Bearing Plate	1
10	Bolt, 7/16 x 2 1/2" hex	8
11	Washer, 7/16 F844	32
12	Nut, 7/16 heavy hex	8
13	Nut, 1/2 hex	4
14	Washer, 1/2 F844	4
15	Bolt, 5/8 x 1 1/2" hex	8
16	Washer, 5/8 F844	8
17	Recessed Guardrail Nut	10
18	1-1/4" Guardrail Bolt	2
19	Bolt, 7/8 x 8 1/2" hex	2
20	Washer, 7/8 F844	4
21	Nut, 7/8 hex	2

1a. 7/16" x 2-1/2" Bolts are ASTM A449. All other Bolts are ASTM A307. All Nuts (except Recessed Guardrail Nuts) are ASTM A563A unless otherwise indicated.

1c. All steel parts shall be galvanized.

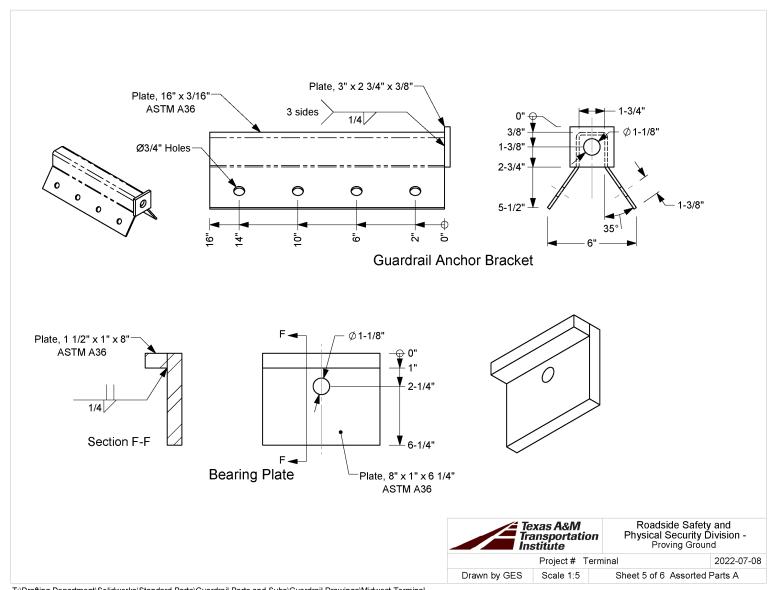


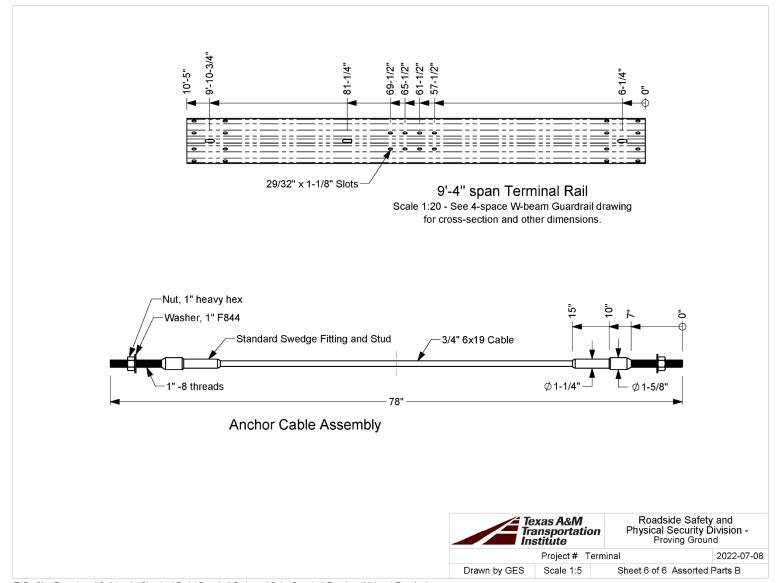
Roadside Safety and Physical Security Division -Proving Ground

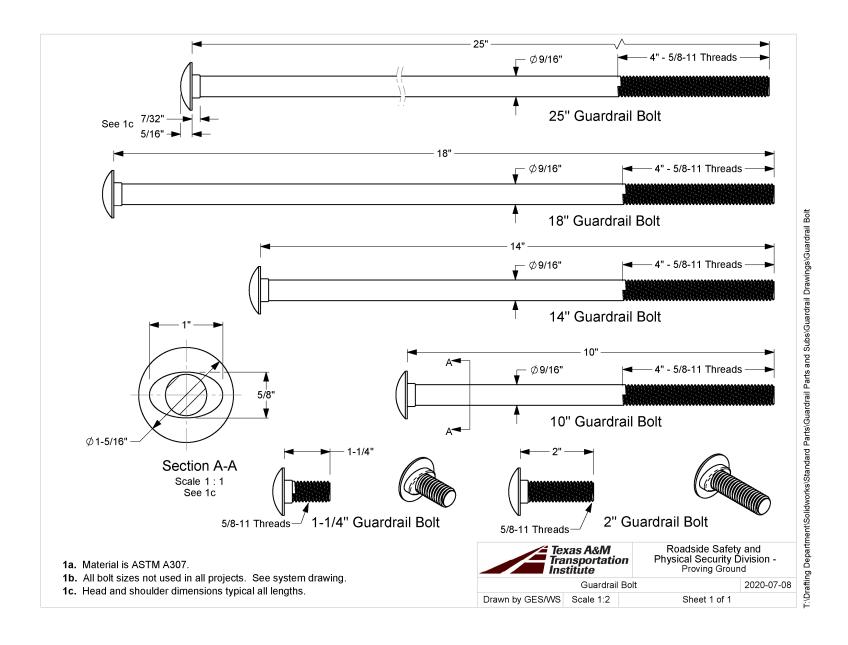

Project # Terminal 2022-07-08

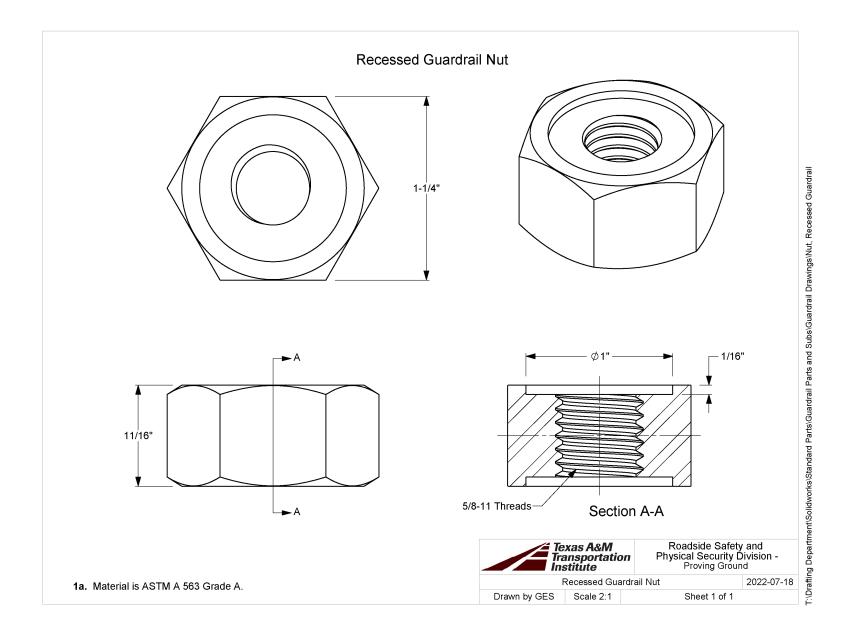
Drawn by GES | Scale 1:25 | Sheet 1 of 6 Terminal Details

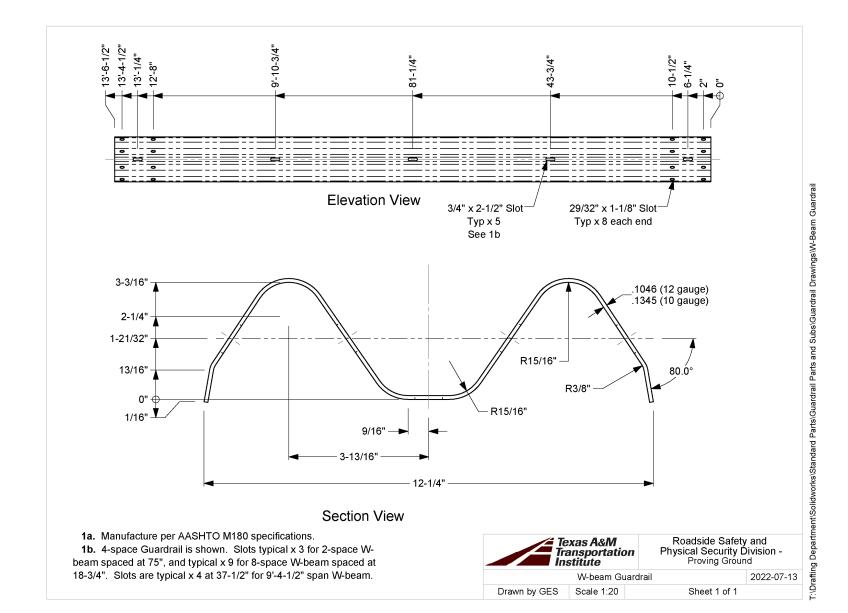
T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal


T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

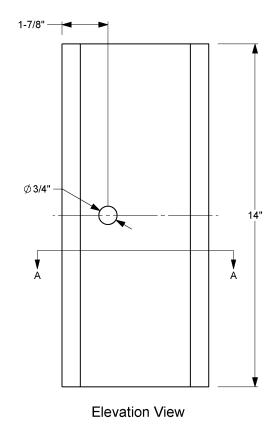

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

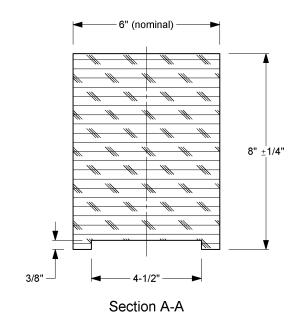



T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal



T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

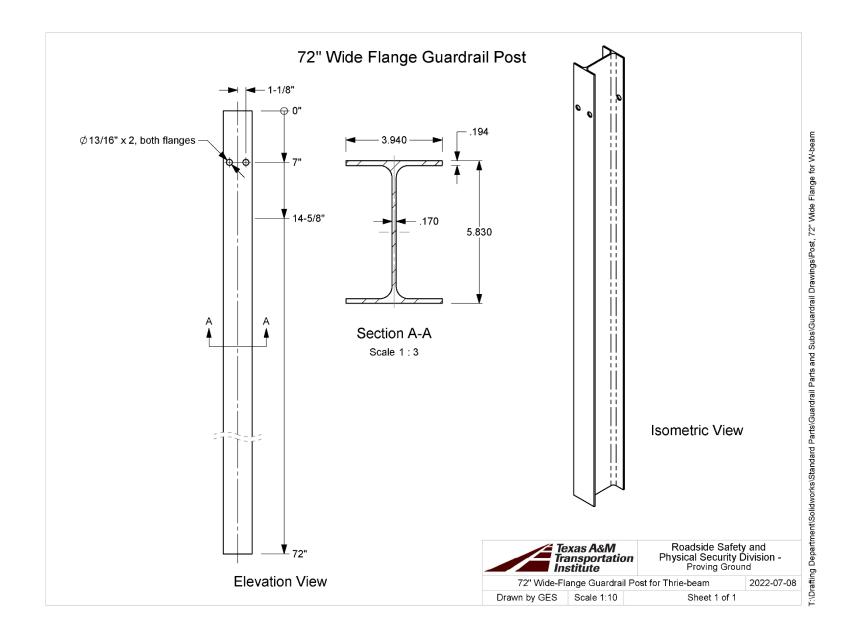




Timber Blockout for W-section Post

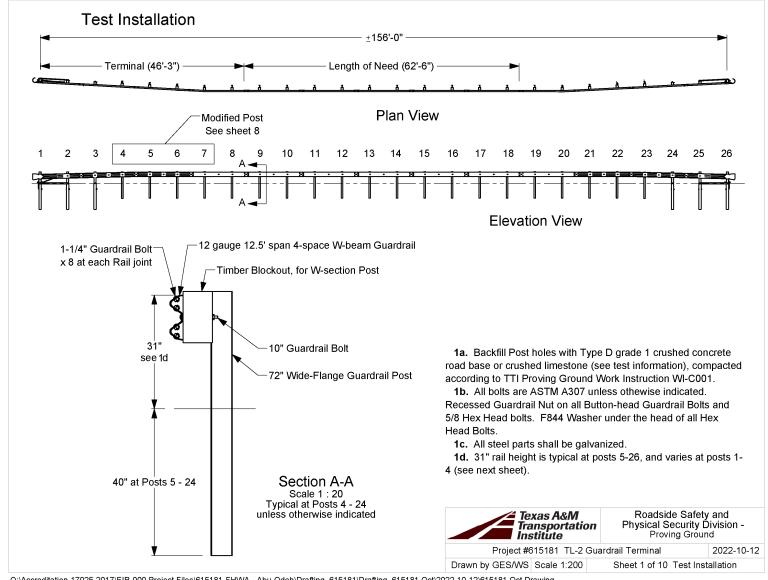
1a. Timber blockouts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

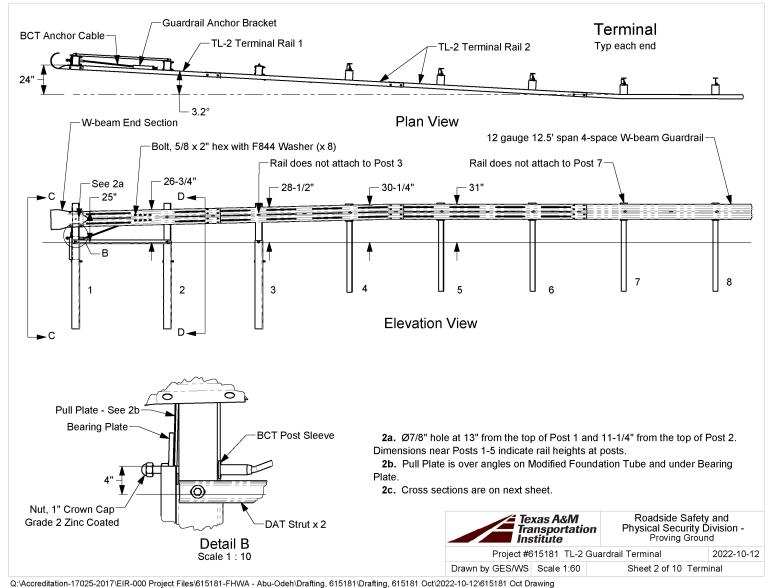
Roadside Safety and Physical Security Division -Proving Ground

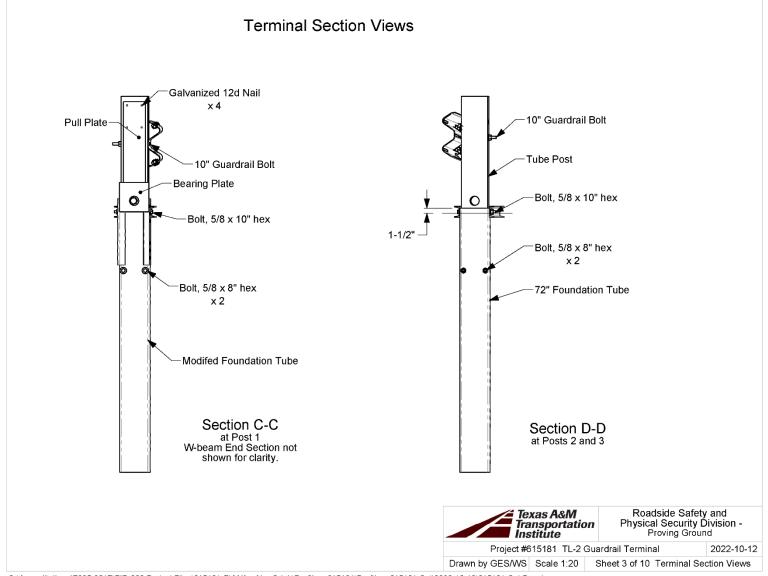

Timber Blockout, for W-section Post

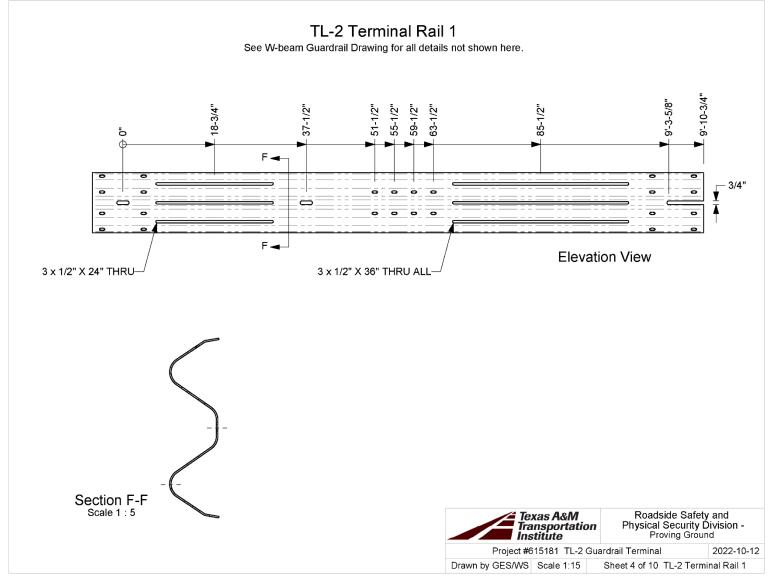
2022-07-08

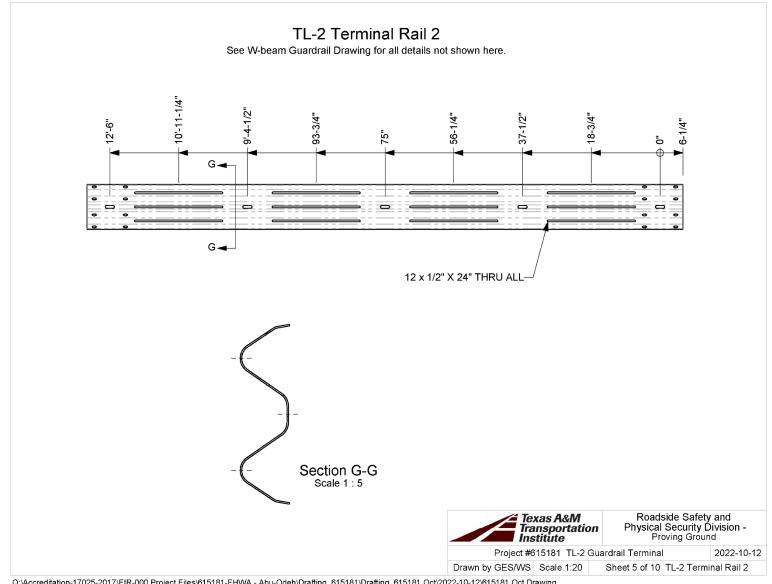
Drawn by GES

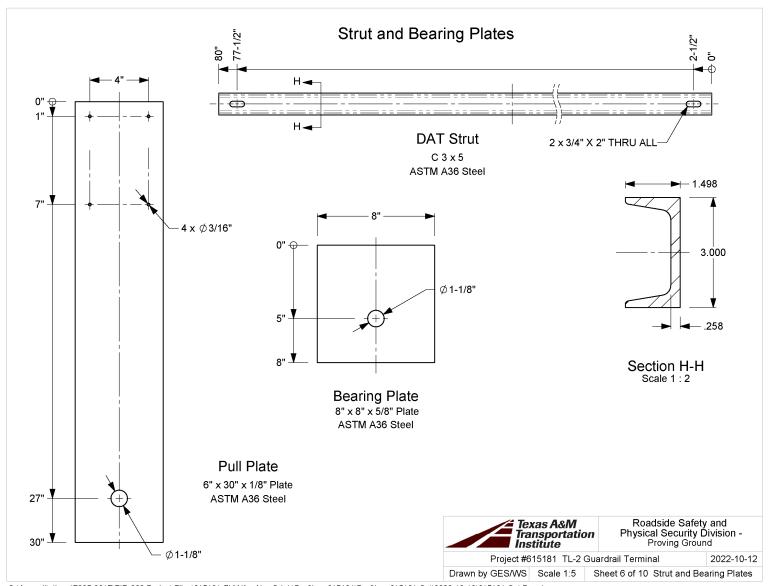

Scale 1:3

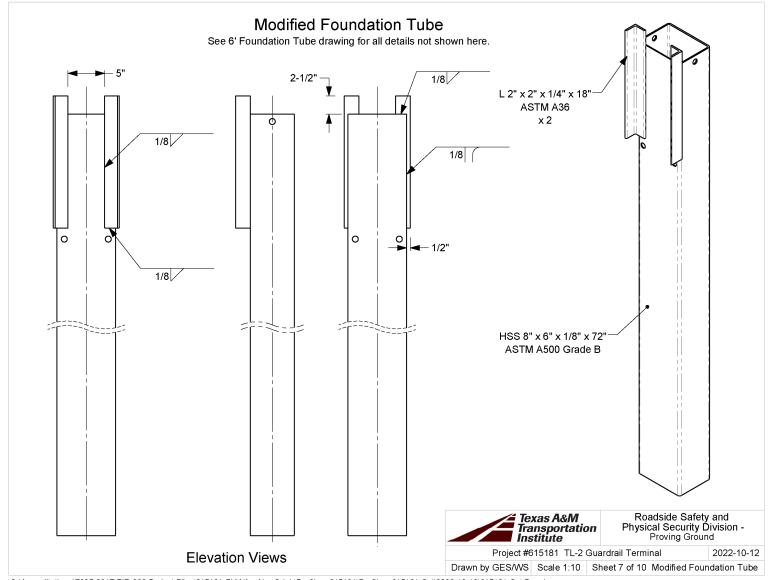

Sheet 1 of 1

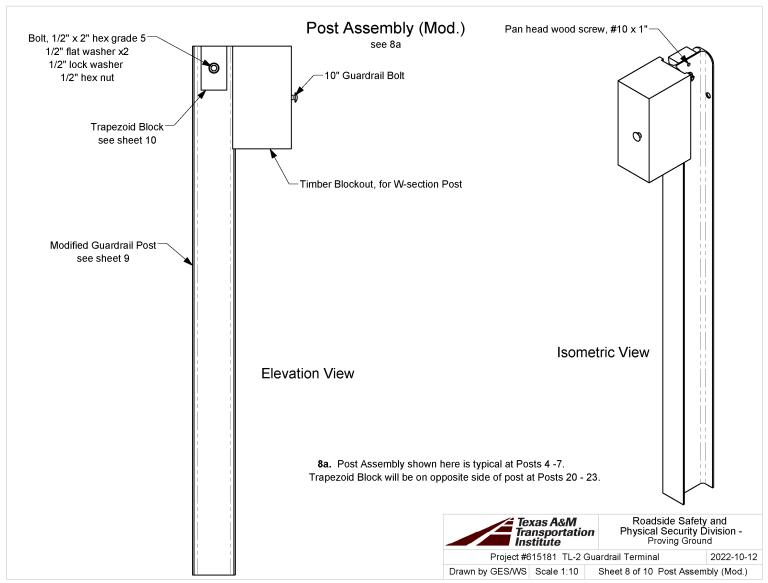


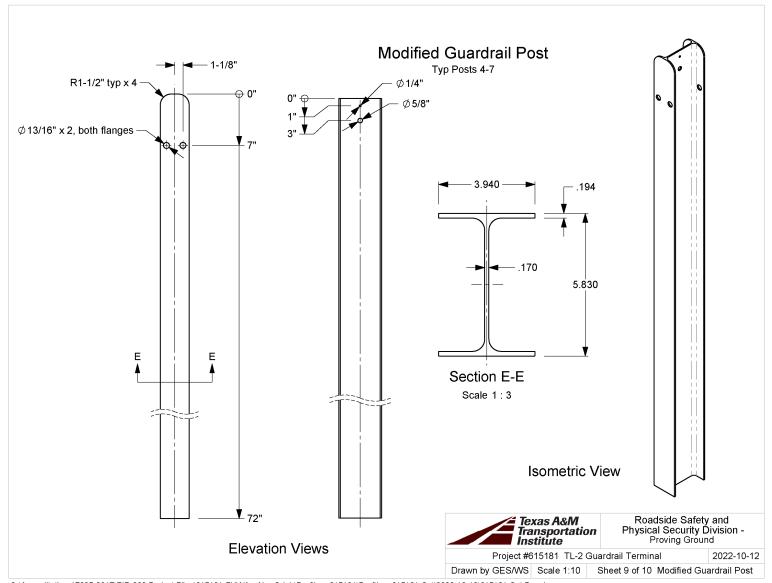


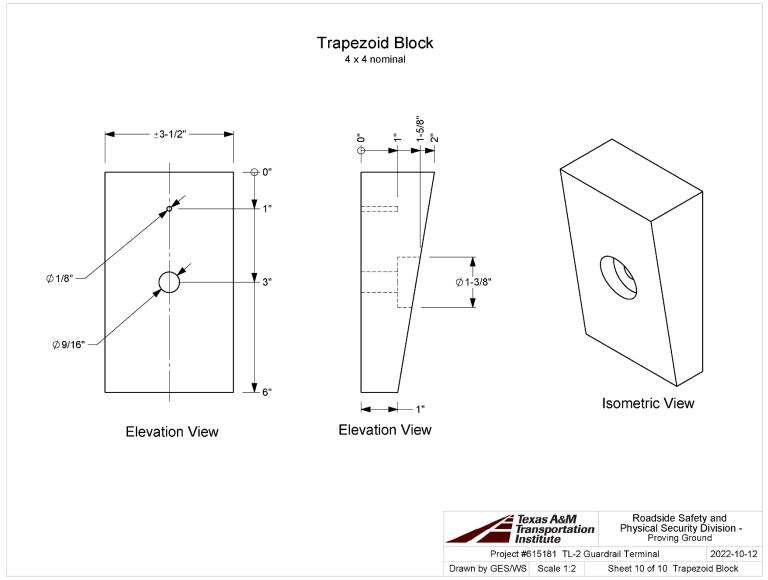

A.3. DRAWINGS FOR CRASH TEST 615181-01-13

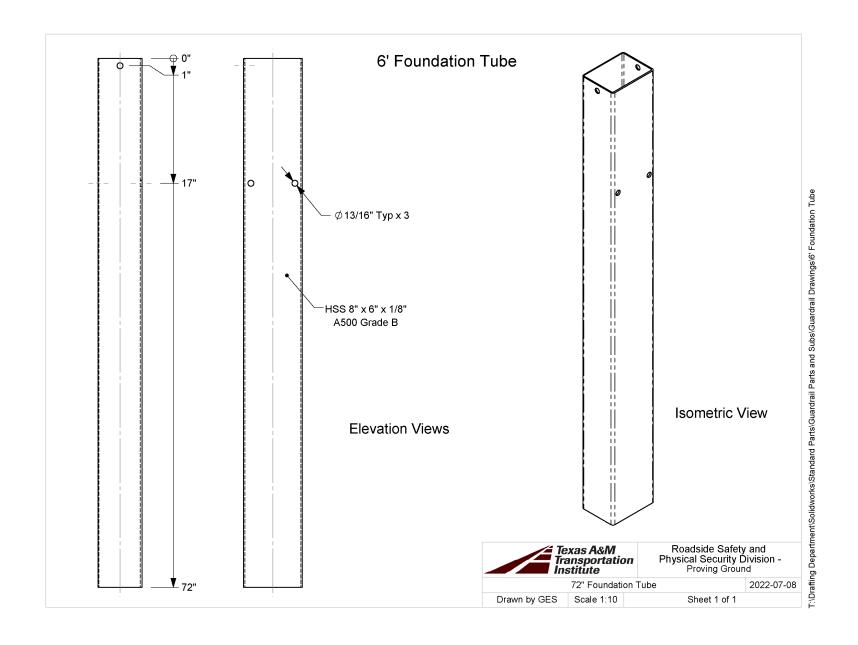


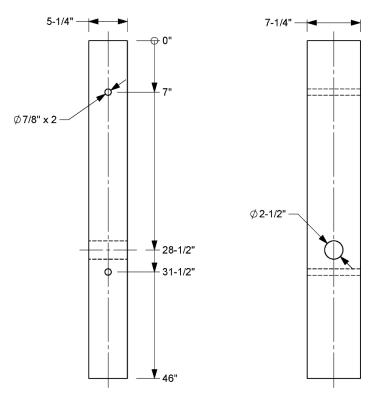









Q:\accreditation-17025-2017\EIR-000 Project Files\615181-FHWA - Abu-Odeh\Drafting, 615181\Drafting, 615181 Oct\2022-10-12\615181 Oct Drawing



Post, Tube

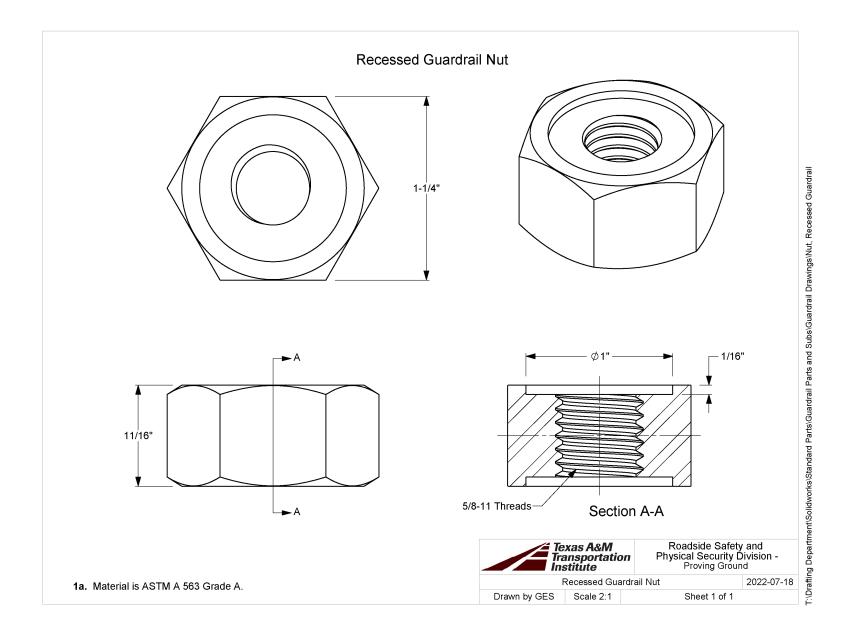
Elevation Views

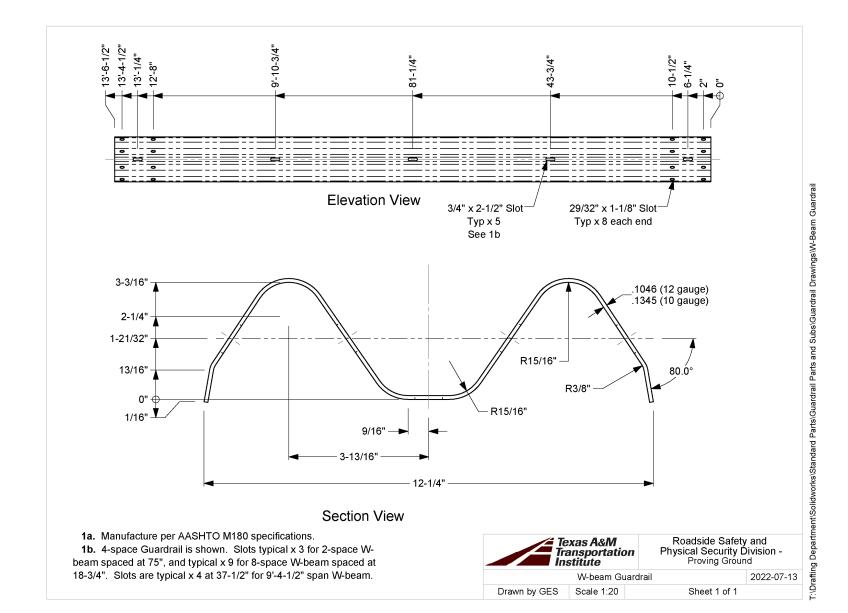
1a. Timber posts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

Roadside Safety and Physical Security Division -Proving Ground

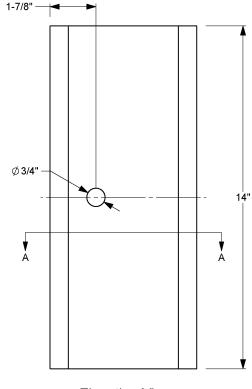
Tube Post

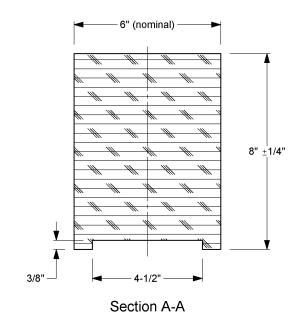
2022-07-08


Drawn by GES


Scale 1:10

Sheet 1 of 1


T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Post, Tube

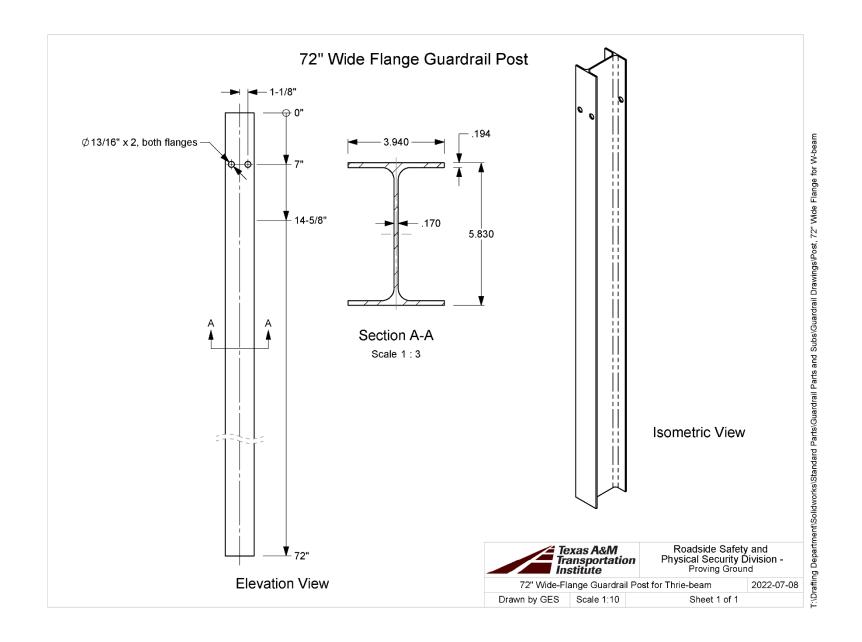


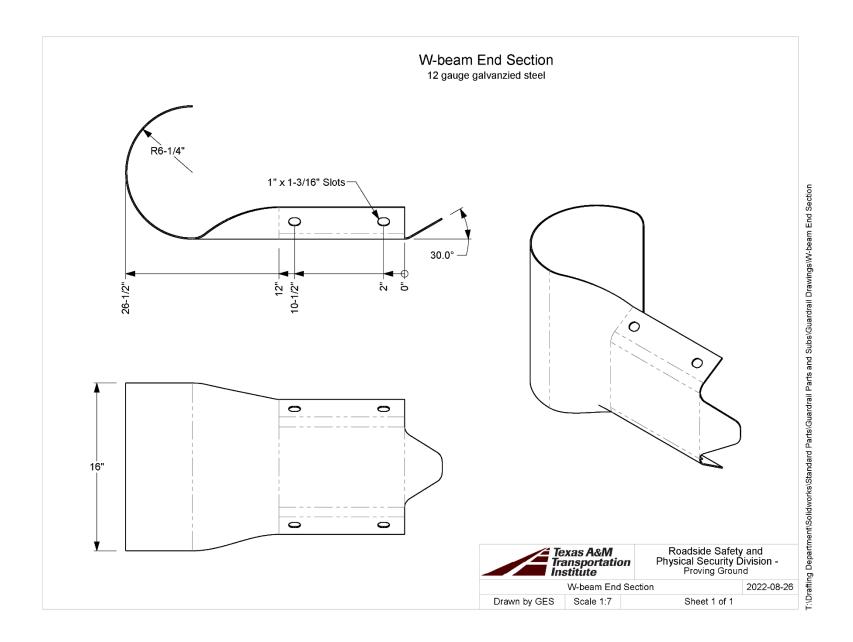
Timber Blockout for W-section Post

Elevation View

1a. Timber blockouts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

Roadside Safety and Physical Security Division -Proving Ground


Timber Blockout, for W-section Post


2022-07-08

Drawn by GES

Scale 1:3

Sheet 1 of 1

APPENDIX B.	SUPPORTING CERTIFICATION DOCUMENTS	

PH 216.676.5600 FX 216.676.6761 www.assemblyspecialty.com

ISO 9001:2008

14700 Brookpark Rd Cleveland, OH 44135-5166 customerservice@assemblyspecialty.com

Certificate of Conformance

Date: September 9, 2021

To: Texas Transportation Institute

Bldg. 7091 1254 Ave. A Bryan, TX 77807

Attn: Gary Gerke 979-825-4661

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, requirements and inspection requirements as required by the purchase order and applicable specifications

PURCHASE ORDER #: 615181

DATE SHIPPED: 09/09/2021 ASPI SALES ORDER #: 138027

MANUFACTURER: ASSEMBLY SPECIALTY PRODUCTS, INC.

QTY CUST P/N ASPI P/N ASPI LOT# DESCRIPTION 20 24-DG07UU-1 113275 Wire Rope Assembly

COMMENTS:

REMARKS:FITTINGS GALVANIZED IN ACCORDANCE WITH ASTM A 153 CLASS C. THREADS ARE CLASS 2A FIT PRIOR TO GALVANIZING. WIRE ROPE MANUFACTURED IN ACCORDANCE WITH AASHTO DESIGNATION: M30-02 and ASTM A741 TYPE 2,

Steel used to manufacture these items was melted & manufactured in the United States of America All manufacturing processes supplied by or performed by Assembly Specialty Products, Inc. took place in the United States of America

Signature:

Certification and Compliance Manager

PH 216.676.5600 FX 216.676.6761 www.assemblyspecialty.com

ISO 9001:2008

14700 Brookpark Rd Cleveland, OH 44135-5166 customerservice@assemblyspecialty.com

Certificate of Conformance

PART #: 24-DG07UU-1 LOT#: 113275

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, requirements and inspection requirements as required by the purchase order and applicable specifications and drawings.

QTY	ASPI P/N	ASPI LOT#	DESCRIPTION
20	24-DG07UU-1	113275	P/N 105310G rev. B, Wire Rope Assembly

LOT: 111034 Galvanized Threaded Stud Assembly

Eaton Steel Heat: 201981 (Hercules, ASI) [swage sleeve]
Eaton Steel Heat: 202036 (Hercules, ASI) [swage sleeve]
ASPM Heat: 212287 (Vulcan, ASI) [threaded rod]

Art Galvanizing Works Galvanizing certificate [swage sleeve & threaded rod assembly]

Ziegler Heat: 8000007905 (Nucor Fastener, Nucor Steel, Indiana Galv.) Lot 452164B Nut

Ziegler Heat: 278164 (Prestige, Marathon, AZZ Galv.) Lot E1368 Washer

Wirerope Works: Certificate#: AA30965 Reel#: 1248062 [ASPI Reel 13120, 13121, 13122, 13123

.054" Heat: OT0021793 Optimus
.040" Heat: OT0021852 Optimus
061" Heat: OT0018856 Optimus
.: Heat: OT0016343 Optimus
.046" Heat: 20701730 Charter

REMARKS:

FITTINGS GALVANIZED IN ACCORDANCE WITH ASTM A-153 CLASS C.
THREADS ARE CLASS 2A FIT PRIOR TO GALVANIZING.
WIRE ROPE MANUFACTURED IN ACCORDANCE WITH AASHTO DESIGNATION: M30-02 and ASTM A741 TYPE 2,
CLASS A.

Steel used to manufacture these items was melted & manufactured in the United States of America All manufacturing processes supplied by or performed by Assembly Specialty Products, Inc. took place in the United States of America

Signature:

Certification and Compliance Manager

ustomer		BOL	Ship Date	Customer PO	Item	Customer Rem	Item Description
SSEMBLY SPECIAL	TY PRODUCTS	280065	09-Jun-2021	44395	1013955 rev 003		1-5/8 CD RD 1035 12ft1in SBQ CF2 FG MT VR
Il bundles listed bele	w were produced using st	eel from I	leat 201981 Issue	d by ALTON STEEL ar	nd were completed	from Eaton Steel Job 877058.	
hemistry	Description			Value	Units		
	Carbon			0.33	PWGT		
n	Menganese			0.83	PWGT		
	Phosphorus			0.023	PWGT		
	Sulfur			0.027	PWGT		
i	Silicon			0.26	PWGT	Assembly Specialt	· Dendusta Inc
i	Nickel			0.09	PWGT		y Floddets, inc.
r	Chromium		-	0.16	PWGT	PO#: 44395	
la .	Molybdenum			0.02	PWGT	REF#: RBC1035C:	1.625RR
1	Aluminum			0.001	PWGT	INSP: QUADE	
u	Copper			0.22	PWGT	DATE: 06/10/2021	
	Vanadium			0.028	PWGT	DATE 00/10/2021	
ь	Niobium				PWGT		
	Nitrogen			0.0118	PWGT		
deanliness	Description			Value	Units		
IACRO ETCH	No piping/voids/crac	ks/poros	ity	Satisfactory	· · ·		
AE J422 SI	SAE J422 Silicate Ra			2.0	NUM		
AE J422 OX	SAE J422 Oxide Ratin	g		1.0	NUM		
eometry	Description			Value	Units		
IAMETER	Diameter			1.6220 - 1.6250	IN		
UNDLE VARIATION	Wean Within Bundle V	ariation	· ·	0 - 2	IN		
ength	Length			145.0000 - 150.00	од и		
F STRAIGHT	Cold Finished Deflec	tion in	10ft.	0.0000 - 0.0625	IN		
EPTH & ANGLE	Chamfer depth & angl	e.		1/16-1/8 x 45			
Cold Working	Description			Value	Units		
SEAM DEPTH	Allowable Seam Depth			0.0000 - 0.0260	IN		
Aill Processing	Description			Value	Units		
MELT COUNTRY	Melted in Country			USA			
ROLLED COUNTRY	Rolled in Country			USA	T - 1		
RED RATIO	Reduction Ratio			21,92	RED		
ASTM Standard	Description			Value	Units		
29-20	Steel Bars, Carbon &			CONFORMS			
108-18	Steel Bars, CF Carbo			CONFORMS			
1576-17	Steel Bars, Carbon,	Hot Roll	SBQ	CONFORMS			
Structure	Description			Value	Units		
UST GRAIN SIZE	Austenitic Grain Siz	е		5 - 10	MUM		
PT GRAIN SIZE	Reported Grain Size			Fine Grain	· .		
Tag Number		City Uni		Length			
19-2805003		4245 LBS		12PT7IN			

CERTIFIED MILL TEST REPORT

Alton Steel Test Lab #5 Cut Street Alton, IL, 62002-9011 (618) 463-4490 Ext 2486 (618) 463-4491 (Fax)

BILL TO

Hercules Drawn 38901 Amrhein Road Livonia, MI 48150 SHIP TO

Hercules Drawn 38901 Amrhein Road Livonia, MI 48150

ASI Or	d No d Line No	1	1/17/202 10685	5	stomer PO					154312 1005437	3	ifications SAE 1035 ASTM A29-	16, ASTM	A576-17				ie.
	escription ar, Hot Rolled	1.6870.	35' 7 "										Strand	Cast, RR =	21.92:1			
Heat #					CHEN		L ANAL	YSIS TI	ST ME	THODS	Yield PS		sile PSI	% Elong	gation	% ROA	Be	nd Test
Heat #	l c	Mn	P	S	Si	Cu	Ni	Cr	Мо	Sn	Al	Nb/Cb	V	В	Ti	N	Pb	Ca
201981	0.33	0.83	0.023	0.027	0.26	0.22	0.086	0.160	0.024	0.010	0.001	0.002	0.028	0.0002	0.0007	0.0118	0.0028	0.0011
			J	OMIN	Y HARD	ENA	BLITY U	SING A	STM A	255 CA	LCULAT	ED FRO	M CHE	MICAL D)I	-		
Meat # 201981	7	DI 1.32						SPECI	AL TES	T RESUI	.TS							100
		AST	TM E-45	Method	A		ASTM E-4	5 Method	SAE	J422	ASTM E	E-381	Cha	гру		Hardnes	S	CE
Nat#	TA 1	тв тс	TD	HA I	нв нс	HD	S	0	S	0	S R	С			RC I	RB BH	IN BHN	2
201981								ADDIT	2 IONAL	1 COMMI	2 4 ENTS	2						
	No mercury, equipment is steel. No we This Steel is	s used or eld or wel	delibera d repairs	tely add were p	ed in the p erformed o	roduc n this	tion of this material.			Alton	ed without Steel Inco	production t written ap rporated. that the ab	proval by	a represen	tative of			_
re repr	Subscribed a county of M	nd sworr	to befo	re me, a	-	blic, in	and for the	е	<u> </u>	in the	records o	f ALTON ST	TEEL INCO					
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	this My commiss	ion expire	Day of	-		_		-			7	and the	lie .					
- A	(Notary Publ	ic)								6	16	1,						_

Customer		BOL	Ship Date	Customer PO	Item	Customer Item	Item Description
SSEMBLY SPECIALT	TV PRODUCTS	280065	09-Jun-2021	44395	1013955 rev 003		1-5/8 CD RD 1035 12ft1in SBQ CF2 FG MT VR
		1		10,000(0)			1-3/0 CD HD 1039 121(1111 3BQ CF2 FG WT VH
		teel from	Heat 201981 issu			om Eaton Steel Job 884165.	
	Description			Value	Units		
	Carbon			0.33	PWGT		
In	Manganese			0.83	PWGT		
	Phosphorus			0.023	PWGT		
3	Sulfur			0.027	PWGT		
3i	Silicon			0.26	PWGT		
Vi	Nickel			0.09	PWGT		
dr .	Chromium			0.16	PWGT		
10	Molybdenum			0.02	PWGT		
\1	Aluminum			0.001	PWGT		
Cu	Copper	-		0.22	PWGT		
	Vanadium			0.028	PWGT		
lb d	Niobium				PWGT		
	Nitrogen			0.0118	PWGT		
Cleanliness	Description			Value	Units		
MACRO ETCH	No piping/voids/crac	cks/porc	sity	Satisfactory			
SAE J422 SI	SAE J422 Silicate Ra	ating		2.0	NUM		
SAE J422 OX	SAE J422 Oxide Ratin			1.0	NUM		
Geometry	Description		-	Value	Units		
DIAMETER	Diameter			1.6220 - 1.6250	IN		
BUNDLE VARIATION	Wean Within Bundle V	Variatio	n	0 - 2	IN		
LENGTH	Length		-	145.0000 - 150.000			
CF STRAIGHT	Cold Finished Deflec	ction in	10ft.	0.0000 - 0.0625	IN		
DEPTH & ANGLE	Chamfer depth & angl			1/16-1/8 x 45	-		
Cold Working	Description			Value	Units		
SEAM DEPTH	Allowable Seam Depth	h		0.0000 - 0.0260	IN		
Mill Processing	Description			Value	Units		
MELT COUNTRY	Melted in Country			USA	Onnia .		
ROLLED COUNTRY	Rolled in Country			USA	1		
RED RATIO	Reduction Ratio			21.92	RED		
ASTM Standard	Description	-	1000	Value	Units		
A29-20	Steel Bars, Carbon 8	E Allow	Hot Wrought	CONFORMS	Units		
A108-18	Steel Bars, CF Carbon			CONFORMS	 		
A576-17	Steel Bars, Carbon,			CONFORMS			
Structure	Description	HOL KOI	T DDV	Value	Units		
AUST GRAIN SIZE	Austenitic Grain Siz	70		5 - 10	NUM		
RPT GRAIN SIZE	Reported Grain Size	ec.		Fine Grain	NON		
	Reported Grain Size	Otal	site		1		
Tag Number 019-2904914		Qty Ur 4244 LB		Length 12FT6IN			
019-2904914				12FT6IN			
		4245 LB					
019-2904935		4245 LE		12FT6IN			
019-2904938		4245 LE		12FT6IN			
019-2904998		4245 LE		12FT6IN			
019-2905012		4245 LE		12FT6IN			
		2196 LE 4072 LE		12ft6in 12FT6IN			
019-2910668 019-2927354							

CERTIFIED MILL TEST REPORT

Alton Steel Test Lab #5 Cut Street Alton, IL, 62002-9011 (618) 463-4490 Ext 2486 (618) 463-4491 (Fax)

BILL TO

Hercules Drawn 38901 Amrhein Road Livonia, MI 48150 SHIP TO

Hercules Drawn 38901 Amrhein Road Livonia, MI 48150

Date ASI Ord N ASI Ord Li		1	1/17/202 10685	20	stomer F					154312 1005437		SAE 1035 ASTM A29-	16, ASTM	A576-17				
item Dese		d, 1.6870	, 35' 7 "										Strand	Cast, RR =	21.92:1			
Heat #			:::::	:::::	CHE	MICA	ANAL	YSIS T	EST ME	THODS	Yield P	E-415 &	E-1019	% Elong	gation	% ROA	Be	nd Test
Heat #	C	Mn	P	S	Si	Cu	Ni	Cr	Мо	Sn	Al	Nb/Cb	V	В	Ti	N	Pb	Ca
201981	0.33	0.83	0.023	0.027	0.26	0.22	0.086	0.160	0.024	0.010	0.001	0.002	0.028	0.0002	0.0007	0.0118	0.0028	0.0011
				IOMIN	Y HAR	DENA	BLITY U	SING A	STM A	255 CA	LCULAT	ED FRO	M CHE	VICAL D	l l			
291981	7	1.32						SPEC	IAL TES		.TS							
		AS	TM E-45	Method	A		ASTM E-4	5 Method	d SAE	J422	ASTM E	E-381	Char	гру		Hardnes	S	CE
H:at#	TA	тв то	TD :	HA H	нв нс	HD	S	0	S	0	S R	С			RC	RB BH	IN BHN	2
201981								ADDIT	2 TIONAL	1 COMMI	2 4 NTS	2						
- eq	o mercury uipment i eel. No w is Steel is S.A. Mate	is used or eld or we 100% Ele	delibera d repair ectric Arc	s were per Furnace	ed in the erformed Melted a	product on this r	ion of this material.			Alton I here	ed without Steel Inco	production t written ap reporated. that the ab	proval by	a represen	tative of			_
со	unty of M	adison, S	itate of II	linois	Notary P	ublic, in	and for the	9	_	Quali	ty Leader:	Josh Levi						
My	commiss	sion expir		-				-			T	and the	lie .					
(N	otary Pub	lic)								6	-6	_						-

Customer		BOL	Ship Date	Customer PO	Item		Custor	ner item	Item Description						
SSEMBLY SPECIALT	TY PRODUCTS	276830	12-Apr-2021	44395 1013956 rev 003 1-5/8 CI						8 CD RD 1035 12H6in SBQ CF2 FG MT VR					
	w were produced using s						ton Cto	al late gomone	1-5/0 02 110 1033						
Chemistry	Description	nous nous	TRUST EDECOOP INGS	Value	Units	Tag Number	1011 318	01 000 000040.	Oty Units		Length				
:	Carbon			0.33	PWGT	019-2868550			4223 LBS		12FF6IN				
in .	Мапдалеве	•		0.85	PWGT	1000			400 J DEB		227.048				
)	Phosphorus			0,020	PWGT	í									
	Sulfur			0.032	PWGT	1									
i	Silicon			D. 26	PWGT	1	Asse	embly Specialty	Products, Inc.	I					
i	Nickel			0.08	PWGT	1		: 44395							
ř	Chromium			0.18	PWGT	1			CAERD						
lo	Molybdenum			0.03	PWGT	1	REF	#: RBC1035C1	.625KK						
1	Aluminum			0.000	PWGT	1	INS	P: QUADE							
iu	Copper			0.25	PWGT	1	Іпат	E: 04/13/2021							
	Vanadium			0.029	PWGT	1	127	L. 0-7, 13,2021							
ъ	Columbium			0.002	PWGT	1	_			•					
ı	Nitrogen			0.0108	PWGT	1									
Cleanliness	Description			Value	Units	1									
ACRO ETCH	No piping/voids/cra	cks/porc	mity	Satisfactory	1										
AE J422 SI	SAE J422 Silicate R			1.0	NUM	t									
AE J422 OX	SAE J422 Oxide Rati:	nq		1.0	NUM	1									
eometry	Description			Value	Units	í									
LAMETER	Diameter			1,6220 - 1,6250		1									
UNDLE VARIATION	Wean Within Bundle	Variatio	n	0 - 2	IN	1									
BNGTH	Length			146.0000 - 154.00		1									
F STRAIGHT	Cold Finished Defle	ction in	10ft.	0.0000 - 0.0625		1									
EPTH & ANGLE	Chamfer depth & and			1/16-1/8 x 45	-										
Cold Working	Description			Value	Units										
EAM DEPTH	Allowable Seam Dept.	h		0.0000 - 0,0260		1									
Mill Processina	Description			Value	Units	1									
MELT COUNTRY	Melted in Country			USA											
ROLLED COUNTRY	Rolled in Country			USA	+	1									
RED RATIO	Reduction Ratio			21,92	RED	1									
ASTM Standard	Description			Value	Units	i									
A29/A29M-12	Steel Bars, Carbon	& Alloy	Hot-Wrought	CONFORMS	٠,										
A108-18	Steel Bars, CP Carb			CONFORMS	+	1									
A575-17	Steel Bars, Carbon,	Hot Ro	1 SBQ	CONFORMS	-	1									
Structure	Description			Value	Units	į .									
AUST GRAIN SIZE	Austenitic Grain Si	ze		5 10	NUM	1									
RFT GRAIN SIZE	Reported Grain Size			Pine Grain		1									
Tag Number	_	Qty U	rits	Length		1									
019-2868260		4226 LI		12FT6IN	•	1									
019-2868261		4226 LI	19	12PT6IN		1									
019-2868263	Γ.	4227 LI	is.	12FT6IN		1					-				
019-2868489		4227 Li	a	12PT6IN		1					RECEIVED				
219-2868492		4228 Li	ss	12FT6IN		1									
019-2068493		4226 LI		12FTGIN		1					1.0 ttp: ges:				
019-2868517		4228 Li		12FT61N		1					1 3 APR 2021				
019-2868559		4228 Li		12FT6IN		1					• •				
	Steel identifiers reference the st				number, pro	duct description and o	quantity.	Material produced in acc	ordance with Eaton St	rel's Quality Manu	QM-00002 Rev 2 dated 10/15/2				
	ertify the above to be in cor		-					-							
Created on 12-Apr-20				M 201		40004				,ma iii iiid pe					
AINCHAIR OILE EACH JUST	121			100 1550		10221	Capital	Avenue, Oak Park,	Mt 48237 USA		Tel: 248-398-3				

CERTIFIED MILL TEST REPORT

Alton Steel Test Lab #5 Cut Street Alton, iL, 62002-9011 (618) 463-4490 Ext 2486 (618) 463-4491 (Fax)

BILL TO

Hercules Drawn 38901 Amrhein Road Livonia, MI 48150 SHIP TO

Hercules Drawn 38901 Amrhein Road Livonia, MI 48150

ASI Ord I		(10772 10772		stomer l	7				55062 05437	S	ifications AE 1035 STM A29-	20, ASTM	A576-17				
Item Des	Act Contract	ed, 1.6870	, 35* 7 "										Strand	Cast, RR =	21.92:1			
Heat #									Salara de la co	Yi	eld PS	I Ter	sile PSI	% Elong	gation	% ROA	Ве	nd Test
	::::::	::::::		:::::	CHE	MICA	I ANAI	YSIS TE	EST METH	IODS AS	STM	F-415 &	F-1019					
Heat #	C	Mn	P	S	Si	Cu	Ni	Cr	Mo	Sn	Al	Nb/Cb	V	В	Ti	N	Pb	Ca
202036	0.33	0.85	0.020	0.032	0.26	0.25	0.078	0.179	0.025	0.010 0	0.000	0.002	0.029	0.0002	0.0009	0.0108	0.0036	0.0018
			J	OMIN	Y HAR	DENA	BLITY U	SING A	STM A-25	5 CALCU	JLAT	ED FRO	M CHE	MICAL D)			
202036	7	1.40						SPECI	AL TEST R	ESULTS								
		AS	TM E-45	Method	A			45 Method	SAE J4	22 AS	STM E	-381	Char	ру		Hardnes	s	CE
Heat #	TA	тв то	TD :	HA F	нв нс	HD	S	0	s	0 S	R	С			RC I	RB BH	N BHN	2
202036								ADDIT	1 IONAL CO	1 1	1 rs	2						
			dium, of a											ort, except		not		
st	eel. No v	veld or we	deliberate de repairs ectric Arc	were pe	erformed	on this				Alton Stee	Incor	porated.		a represen				_
			fies as US			na Kolie	a in the			I hereby co						ned		
			n to before tate of Illi		Notary P	ublic, in	and for the	9		Quality Le	ader:	Josh Levi						
			Day of										1					
thi	5																	
thi		ssion expi	res			_				0	70	and the	we.					

Vulcan Threaded Products 10 Cross Creek Trail Pelham, AL 35124 Tel (205) 620-5100 Fax (205) 620-5150

JOB MATERIAL CERTIFICATION

Job No: 708961 Job Information Certified Date: 4/15/21

Containers: \$18339047 \$18357413

 Customer:
 American Specialty Products and Machine Inc.
 Ship To:
 11937 Hwy 25 Calera, AL 35040

Vulcan Part No: ATR A449 1x12 Customer Part No: ATR A449 1x12

Customer PO No: 3073 Shipped Qty: 400 pcs

Order No: 422892 Line No: 2

Note:

Applicable	Specifications
~bbiiogoic	opcomodomo

Туре		Specification	Rev	Amend	Option
	ASTM A449 Type 1		2014		

Test Results

See following pages for tests

	Certified Chemical Analysis									
	Heat No:	212287		Origin: USA						
С	Mn	Р	S	Si	Cu	Ni	Cr	Мо		
0.47	0.80	0.015	0.028	0.21	0.26	0.10	0.14	0.03		
V	Sn	Nb	Al	Ti	N	В	RR			
0.005	0.014	0.024	0.003	0.001	0.0103	0.0002	66.58:1			

Notes

Processed material is Tempered - Stress Relieved. No weld repair performed on the material. No Mercury used in the production of this material. Melted and Manufactured in the USA.

EAF Melted

Plex 4/15/21 8:33 AM vulc.sano Page 1 of 2

JOB MATERIAL CERTIFICATION

THREADED	PRODUC	TS, INC.	Fax (205) 620-	5150							
	Jol	b No : 708	961		Job	Infor	n ation	Cert	tified Date:	4/15/21	
	Contai	ners: S18	339047 \$18	357413							
Test Results											
Part No: BAR	. A449	913x288									
Test No: 6486	6 Test:	: Quench & T	emper Informa	tion (Lbs)							
De	s criptio	n	Austenitiz	ing Temp F)	Tem	pering (F)	Temp	Run Speed (Ft/min)	Quench	Water Temp (F)	Note
Quench & T	Temper Ir Results	nformation	1,	613		1,316		40		90	
Test No: 6486	7 Test:	: A449 Requi	rements								
Description ¹	Fensile (ksi)	Yield 0.2% (ks i)	Elongation (%)	Elongation Length (ROA (%)	Midradius Hardness	Surface Hardness	Center Hardness	Hardness Test Type	Note
	138	124	17	4D		47	29	30	28	HRC	
	136	121	17	4D		46	28	30	28	HRC	
	136	121	18	4D		46	28	30	28	HRC	
	136	121	18	4D		48	28	30	28	HRC	
	137	122	17	4D		47	28	30	28	HRC	
The reported to taken from the Material was m product standa Management S Vulcan Steel Prand Rockwell Material was to see the second standard standard was to see the second standard taken to second standard taken t	est result production nanufacturd and in System re roducts k nardness ested in a	s are the act on lot. ured, tested, n accordance gistered Jun ab is ISO 170 s, Charpy imp accordance v	ual values me: and inspected with Vulcans e 30th, 2017. 125:2017 accri act, and carb/	asured on the s as required by ISO 9001:2016 edited for tensi decarb testing	sample: y the 5 Qualit le , Brine	ty ell					
F606, and F232 This test report shall it be mod Steel Products.	shall no ified in a	t be reprodu					S	allie N	owood	l	4/15/21
Document is in		ince with EN	10204 - 3.1B	of 2004 (3.1).			Norv	vood, Sallie - Ce	rtification Engi	neer	Date

Plex 4/15/21 8:33 AM vulc.sano Page 2 of 2

BILL TO

Vulcan Threaded Products Inc.

P.O. Box 509

Day of

My commission expires_

(Notary Public)

CERTIFIED MILL TEST REPORT

SHIP TO

Vulcan Threaded Products Inc.(cust truck

Building #10

Last feix

Alton Steel Test Lab #5 Cut Street Alton, IL, 62002-9011 (618) 463-4490 Ext 2486 (618) 463-4491 (Fax)

#10 Crosscreek Trail #10 Crosscreek Trail Pelham, AL 35124 Pelham, AL 35124 Date 03/17/2021 Customer PO P281217 Specifications ASI Ord No 109781 RMB 1045 .9688x534 SAE 1045 Customer PT ASI Ord Line No ASTM A29-20 Item Description Strand Cast, RR = 66.58:1 Steel Bar, Hot Rolled, 0.9680, 44' 6" Yield PSI Tensile PSI % Elongation % ROA Bend Test Heat # CHEMICAL ANALYSIS TEST METHODS ASTM E-415 & E-1019 Ni Cr Nb/Cb Heat # Mn Мο Sn ΑI Ti Ca 0.015 0.21 0.26 0.097 0.140 0.031 0.014 0.003 0.024 0.005 0.0002 0.0006 0.0103 0.0022 212287 0.47 0.80 0.028 JOMINY HARDENABLITY USING ASTM A-255 CALCULATED FROM CHEMICAL DI GS DI 212287 7 1.00 SPECIAL TEST RESULTS ADDITIONAL COMMENTS No mercury, lead, radium, of alpha containing material or Alteration or reproduction of this report, except in full, is not equipment is used or deliberately added in the production of this allowed without written approval by a representative of steel. No weld or weld repairs were performed on this material. This Steel is 100% Electric Arc Furnace Melted and Rolled in the Alton Steel Incorporated. I hereby certify that the above tests are correct as contained U.S.A. Material qualifies as USMCA origination. in the records of ALTON STEEL INCORPORATED Subscribed and sworn to before me, a Notary Public, in and for the county of Madison, State of Illinois Quality Leader: Josh Levi

CERTS

Assembly Specialty Products, Inc. PO#: 45214 REF#: C-1208-A449 BATCH 111034 INSP: QUADE DATE: 07/15/2021

						DATE: 07/15,		
DATE:	7/15/2021	,5					:	
	THE A	ART (GALV	ANIZII	NG W	⟨S., II	VC.	
	3935 VALLE	EY ROAD-C	CLEVELAN	D,OHIO 4410	9 PHONE 2	16-749-002	20	
	DACK	ING S	I IP/CI	ERTIFI	CATIO	NS		
	IACI	11400		_	CAIIOI	40		
						- 400		
TO:	ASSEMBLY	SPECIAL	TY PRODU	CTS		PO#	45214	
NOTE:							ASTM A 153/F	2329 OF
		,		,			. A COPY OF	
					NTEGRAL P		-US -VANIZED IN T	не не л
C1208-A449				EATTACH	ED. ALL PRO	DUCTGAL	VANIZED IN I	HE USA.
LOT#111034		ND OLLL V	LIKOD					
C1680 SLEE	VE HT#2019	81/202036	C1681					
THRD ROD I								
GALV WEIG		12218#	GALV WE			GALV WE		
INCHES	OZ/SQ FT		INCHES	OZ/SQ FT			OZ/SQ FT	
0.0026	1.53 2.00			0.00		0	0.00	
0.0034			ļ	0.00		0	0.00	
0.0022				0.00		0	0.00	
0.0038				0.00		0	0.00	
AVG	1.84		AVG	0.00		AVG	0.00	
			4					
GALV WEIGH	⊣T		GALV WE	IGHT		GALV WE	IGHT	
INCHES	OZ/SQ FT		INCHES	OZ/SQ FT			OZ/SQ FT	
0	0.00		0	0.00		0	0.00	
0	0.00 0.00		0	0.00		0	0.00	
0	0.00		0	0.00		0	0.00	
0	0.00		0	0.00		0	0.00	
AVG	0.00		AVG	0.00		AVG	0.00	
GALV WEIGH	-iT		GALV WE	IGHT		GALV WE	GHT	
INCHES	OZ/SQ FT		INCHES	OZ/SQ FT			OZ/SQ FT	
0	0.00		0	0.00		0	0.00	
0	0.00		0	0.00		0	0.00	
0	0.00		0	0.00		0	0.00	
0	0.00		0	0.00		0	0.00	
0	0.00		0	0.00		0	0.00	
AVG	0.00		AVG	0.00		AVG	0.00	
			<u>.</u>					

Page 1

ZIEGLER BOLT AND NUT HOUSE

DELPHOS: 610 SEVENTH ST E DELPHOS OH 45833 PH: 419-695-9005 FAX: 419-695-2020

WWW.ZIEGLERBOLT.COM

ISO 9002:2008 CERTIFICATION #00.129.2 CERTIFICATE OF COMPLIANCE

Assembly Specialty Products, Inc. PO#: 45003 REF: NUT-HXH32CG

				DATE: 07/23/2021
To:		Y SPECIALTY	_	INSP: Quade
	14700 BR	OOKPARK ROAD	_	
	CLEVELA	ND, OH 44135-5166	_	
that requi	all items rements an	t our system and procedures furnished on the order wil nd inspection requirements specification and drawings	l meet ap as requir	plicable tests, process
P.O. #	45003-2		-	
Job#		7/02/0004	-	
Date Ship	•	7/23/2021 ZIEGLER DELIVERY	-	
Shipped V		1580406	-	
Internal O	raer#	1580406	-	
	LOT	6. 1-8 HEAVY HEX NUT DOMEST # 452164B HEAT# 8000007905		
	ZBN;	# 100CNHHGH/DOM-9244 PAF	RT# NUT-H	XH32CG
		·		
				·
	MELT	TED & MANUFACTURED IN THE	USA	
		•		
18		\	Signature	Bridget Hartong
		LISA F. GOODING Notary Public, State of Chio	-	
		My Commission Expires 03-31-2023	Title:	CERTIFICATION CLERK .
ELO.	New York	Shi IM		
•	OF OF CHAIR	1 gran 1 Second	Date:	JULY 21, 2021

LOT NO.

Post Office Box 6100 Saint Joe, Indiana 46785 Telephone 260/337-1600

FASTENER DIVISION

CUSTOMER P.O. # 16203162

MATERIAL GRADE -1045L -CHEMISTRY MATERIAL HEAT NUMBER NUMBER HEAT **CHEMISTRY COMPOSITION (WT% HEAT ANALYSIS) BY MATERIAL SUPPLIER

NUMBER C MN P S SI NUCOR STEEL - SOUTH CAROL

8000007905 .44 .68 .008 .015 .17 NUMBER RM034641

MECHANIC	AL PROPERTIES	IN ACCORDANCE WITH	ASTM A563-1	5
SURFACE	CORE	PROOF LOAD	TEN	SILE STRENGTH
HARDNESS	HARDNESS	90900 LBS		DEG-WEDGE
(R30N)	(RC)		(LBS)	STRESS (PSI)
N/A	31.8	PASS	N/A	N/A
N/A	33.9	PASS	N/A	N/A
N/A	29.9	PASS	N/A	N/A
N/A	33.1	PASS	N/A	N/A
N/A	30.6	PASS	N/A	N/A
AUCDAGE NA	LUCK EDOM TEC	re		

PRODUCTION LOT SIZE 85900 PCS

--VISUAL INSPECTION IN ACCORDANCE WITH ASTM A563-15 80 PCS. SAMPLED LOT PASSED

-- COATING - HOT DIP GALVANIZED TO ASTM F2329-15 - GALVANIZING PERFORMED IN THE U.S.A.
 1.
 0.00261
 2.
 0.00312
 3.
 0.00350
 4.
 0.00409
 5.
 0.00290
 6.
 0.00240
 7.
 0.00339

 8.
 0.00395
 9.
 0.00300
 10.
 0.00442
 11.
 0.00378
 12.
 0.00480
 13.
 0.00374
 14.
 0.00349

AVERAGE THICKNESS FROM 15 TESTS .00358

--HEAT TREATMENT - AUSTENITIZED, OIL QUENCHED & TEMPERED (MIN 800 DEG F)

--DIMENSIONS PER ASME B18.2.6-2010 CHARACTERISTIC #SAMPLES TESTED Width Across Corners 8 Thickness 32 1.838 1.85 0.961 MINIMUM

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED COMPORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISMUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT.

THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DFARS 252.225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL. CERTIFICATION FORMAT MEETS EN10204 3.1

MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/21

NUCOR FASTENER A DIVISION OF NUCOR COMPORATION

BOB HAYWOOD QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

PO BOX 6100 SAINT JOE, IN 46785 US

NUCOR FASTENER INDIANA

Sold To:

Mill Certification

01/12/2021

Lot #:800000790520 300 STEEL MILL RD DARLINGTON, SC 29540 US 843 395-5841 Fax: 843 395-8701

Ship To: NUCOR FASTENER 6730 CR 60 SAINT JOE, IN 46785 US

Customer PO	211259	Sales Order #	80002937 - 4.2
Product Group	Hot Roll - Engineered Bar	Product #	3009846
Grade	1045L	Lot #	800000790520
Size	1.2813"	Heat #	8000007905
BOL#	BOL-664946	Load #	589255
Description	Hot Roll - Engineered Bar Round 1.2813" (1 9/32") 1045L 40' 0" [480"] 8001-12000 lbs	Customer Part #	025016
Production Date	01/02/2021	Qty Shipped LBS	173760
Product Country Of Origin	United States	Qty Shipped EA	990
Original Item Description		Original Item Number	

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed above and that it satisfies those require

flelt Country of Origin: United States								M	elting Date	: 12/30/202	20
C (%)	Mn (%)	P (%)	S (%)	Si (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	Ti (%)	V (%)	B (%)
0.44 Nb (%)	0.68 Sn (%)	0.008 Al (%)	0.015 Pb (%)	0.173 Ca (%)	0.07	0.12	0.01	0.19	0.001	0.002	0.0003
0.002	0.008	0.002	0.001	0.002							

Cu + Ni + Mo (%): 0.27

Reduction Ratio 37.93:1

Other Test Results Yield (PSI): 59700

Macroetch E381 Surface : 2

Tensile (PSI): 99200

Macroetch E381 Mid Radius : 2

Elongation in 8" (%): 20.0

Macroetch E381 Center: 2

Comments:

- 1. Welding or weld repair was not performed on this material.
- Melted and Manufactured in the U.S.A
 Mercury, radium, or alpha source materials in any form have not been used in the production of this material.

N Aun-

James H Blew, Division Metallurgist

Page 1 of 1

INDIANA GALVANIZING, LLC

Hot-Dip Galvanizing 51702 Lovejoy Dr. Middlebury IN, 46540 Phone: 574-822-9102 Fax: 574-822-9106

Customer NUCOR FASTENER	PO:	213356
6730 CR 60	DATE:	3/23/2021
Saint Joe, IN 46785		
Hot-Dip Galvanizing Certification		

Indiana Galvanizing certifies that samples representing listed lot(s) have been tested and inspected as required by applicable specifications. The results of this inspection and testing demonstrates that the requirements for ASTM F2329, including the requirements ASTM A153, Class C that are referenced within the specification, have been met and have been galvanized in Middlebury, Indiana of the United States of America. Indiana Galvanizing is RoHS Compliant.

Kettle Temperature (Must be between 815 and 850 Degrees Fahrenheit) <u>840</u>

Mil Readings

Nucor Lot Number	High	Low	Average	Number Pcs	Bin Tag Verification
452164B	4.00	2.05	3.10	79,946	Х
451657A	4.15	2.10	3.05	17,264	Х

Amy Kirkenall

Quality Manager or Assignee

Revised 3/1/2018

ZIEGLER BOLT AND NUT HOUSE

MAILING ADDRESS: MAIN WAREHOUSE: MIDDLETOWN: DOVER:

PO BOX 80369 STA.. C CANTON 0H:44706 MIDDLETOWN 0H:45044 DOVER 0H:4622

FED. ID. 34-0968850 PH: 800-362-0628 PH: 513-727-1953 PH: 330-343-3336

FAX: 330-478-2031 FAX: 513-727-4733 FAX:330-343-3336

DELPHOS: 610 SEVENTH ST E DELPHOS OH:45833 PH: 419-695-9005 FAX: 419-695-2020

'n

WWW.ZIEGLERBOLT.COM

ISO 9002:2008
CERTIFICATION #00.129.2
CERTIFICATE OF COMPLIANCE

	То:		LY SPECIALTY ROOKPARK ROAD		_	Assembly Specialty Products, Inc. PO#: 45131 REF: WSH-FL32G DATE: 08/06/2021	
		CLEVELA	AND, OH 44135-5166		- - -	INSP: Quade	
	that regu	all items irements a	furnished on the	order wil irements	l meet a as requi	control of quality assures pplicable tests, process red by the purchase order.	
	P.O. #	45131-1			_		
	Job#		0/0/0004		-		• '.
	Date Shi		8/9/2021 ZIEGLER DELIVERY		-		;
	Shipped Internal (1583960		-		
	momark	order #	100000		_		
			S. 1" (F844) USS FLAT		DOMEST	IC HD GALVANIZED	
			# E1368 HEAT# 278		T# MOLL	El 220	
		ZBN	# 100NWUL0H/DOM-9	244 PAF	RT# WSH-	FL32G	
					-		
		MEL	TED & MANUFACTURI	ED IN THE	USA		,
િકો							:
	/	STATE OF THE PARTY			Signatur	Bridget Huiton	
	*		LISA F. GOODING Notary Public, State of Ohio My Commission Expires 03-31-2023		Title:	CERTIFICATION CLERK	
	Į,	OF OF S	Jun 7		Date:	AUG. 6, 2021	
				()			

PRODUCT CERTIFICATION **CERTIFICATION NUMBER**

230112

THIS IS TO CERTIFY THE PRODUCT STATED BELOW WAS FABRICATED AND PROCESSED TO THE ORDER AS INDICATED AND CONFORMS TO THE APPLICABLE SPECIFICATIONS AND STANDARDS

Customer: ZIEGLER BOLT & NUT HOUSE 4848 CORPORATE ST. SW

CANTON, OH 44706

Customer Part: 1"USS H/DIP Steel Supplier: MARATHON METALS, LLC

Prestige Part: F2523MP300
Part Name: 1"USS LOW CARBON H/DIP
Purchase Order: 16203953
Shipment BOL: B233915 Grade: CSECONDARY STEEL
Lot: E1368
Heat: 278164
Carbon: .85
Manganese: .80 Shipment ID: A0256760

Quantity: 11742
Manufacturers Marking: "P" Phosphorous: .01 Sulfur: .002 Silicon: .223

SPECIFICATIONS TEST RESULTS

PLATING: 0.0017" - 0.0025" PLATING: TEST METHOD: ASTM B499 HOT DIP GLAV ASTM F-2329 AND ASTM 153 CLASS C

USS/SAE LC Washers are manufactured to the requirements of ASTM F844 specifications Chemistry is as reported from raw material certification and does not fall under Prestige Stamping's accreditation. This product was produced under an IATF 16949 Quality Assurance System.

IATF 16949 Certification No: 800334.

Material was melted and manufactured in the U.S.A.

This product was manufactured in Warren, Michigan U.S.A.

This product conforms to all requirements for washers as produced according to ANSI/ASMI B18.22.1.

Mechanical properties and test methods for hardness conform to ASTM F436 Sampling Plan per P.S.I W.I. # 5.4.18.015.

The test results only apply to the items tested.

This test report must not be reproduced except in full without prior written approval.

Materials used to manufacture these products are mercury, asbestos and radio activity free.

Product is RoHS compliant. No weld repairs made to material.

All certified product is AIS compliant

Econ Information System

07/13/21

16:27

AHRS

PAGE 1 of 1

FRANK SCHUBERT

Quality Assurance Manager

Page: 1.... Last

14Nay21 10: 9 TEST CERTIFICATE No: MNP 10383

MARATHON METALS/MNP CORP P/O No 36135-01

6440 MACK Rel

DETROIT, MI 48207 S/O No MNP 63326-001

Tel: 313-571-9544 Fax: 313-571-6449 B/L No MNP 76104-001 Shp 17May21

Inv No

WARREN MI 48090

Tel: 586 773-2700 Fax: 586 773-2298

CERTIFICATE of ANALYSIS and TESTS Cert. No: MAP 10383

Part No F2523MP00

P&D CO: SECONDARY REF# 2N2700138 Pcs Wgt .138/.148 X 2.7000" 22 26,110

DOMESTIC MILL CERTS & CERTS MUST SAY "MELTED & MFS IN USA"

ROCKWELL 95

Tag No 836158 Heat Number Wgt 278164 4,670 278164 S36159 3 3,385 278164 S36160 3,355 536161 278164 4, 995 278164 \$36162 3,650 278164 936163 3,650 278164 536204 1,160 278164 536205 1,245

Heat Number

*** Chemical Analysis ***

278164 C=0.8500 Mn=0.8000 P=3.0100 S=0.0020 Al=0.0280 Si=0.2230

Nb=0.0010 N=0.0080 V=0.0020 Ti=0.0030 Cu=0.034C Sn=0.005C

Ni=0.0453 Cr=0.0640 Mo=0.0173

Λ.

E13le8

July 8, 2021

Prestige Stamping 23513 Groesbeck Highway Warren, MI 48089

To Whom It May Concern:

This certifies that the following product that we have galvanized for your company meets the specifications of ASTM A153, Class C and the hot dip galvanizing requirements of ASTM F2329.

QTY OUT	PART#	DESCRIPTION	SHIPPER	SO#	LOT#	HOPPER	AVG	HIGH	LOW
7,921	F2523MP300	1" USS FLAT WASHER	P415761	SZ00424	E1368	H194	6.8	12.7	3.5

The hot dip galvanizing is RoHS compliant. The galvanizing process was conducted in a temperature range of 830F to 850F.

This certification in no way implies anything other than the quality of our hot dip galvanizing as it pertains to your order.

This product was galvanized in Rockford, IL USA

Yours very truly,

AZZ Galvanizing Rockford, IL

Peggy Doering

Office Manager

PD:ts

Wirerope Works, Inc. 100 Maynard St Williamsport, PA 17701 Manufacturer of Bethlehem Wire Rope [©] "Our Quality Management Systems are registered to ISO 9001: 2015 and API-Q1"

CERTIFICATE OF COMPLIANCE

Assembly Specialty Products, Inc.

PO#: 44134

REF#: W-24-DG INSP: QUADE

DATE: 08/11/2021

ASPI REEL(S): 13120, 13121, 13122, 13123

CUSTOMER: ASSEMBLY SPECIALTY PRODUCTS

ORD#TR 54

CUST. PO# 44134PT

WW FILE NAME: 248062

REEL# 1248062

DESCRIPTION: 3/4" 0619 W GA IPS RR SAC TYPE II (a) GALVANIZED WIRE ROPE

SPECIFICATION: AASHTO DESIGNATION M30-15 ASTM A741-11

ACTUAL TEST RESULTS

ACTUAL BREAKING STRENGTH: 60,272 LBS REQUIRED BREAKING STRENGTH: 42,800 LBS

MINIMUM MASS OF COATING:

WIRE DIAMETER MAINWIRES

.054" MINIMUM CLASS A COATING .40- ACTUAL RANGE .65/.74 oz/fi2 .040" MINIMUM CLASS A COATING .40- ACTUAL RANGE .45/.51 oz/fi2

STEEL CERTIFICATES FOR ROD MANUFACTURER ARE ATTACHED
The following are heat numbers and wire diameters as shown on the Steel Certificates

.054" HEAT # OT0021793 .040" HEAT # OT0021852

.061" HEAT # OT0018856 OT0016343

.046" HEAT # 20701730

ALL MATERIALS " MELTED AND MANUFACTURED IN THE USA"

DATE: 08/05/2021 CERTIFICATE# AA30965

PATTI WATKINS, Inv. Control/QA Customer Coordinator

Per the authority of, ROGER GILLILAND, DIRECTOR OF ENGINEERING

100	9			CERTIFIED MA	TERIAL TES	TREPORT		WRERCPE WORKS	ING				
OPTIN) aus		CUSTOMER SHIP TO CUSTOMER BILL TO WIREROPE WORKS INC 100000167 WIREROPE WORKS INC 100 MAYNARD ST 100 MAYNARD ST		OPE WORKS INC		GRADE 1056M1	THE					
STER S-ML-BEAL	EL UMONT		WILLIAMSPORT, USA			MSPORT, PA. 17781-5	903	WEIGHT HEA 47.189.00		EAT / BATCH OTGOZI793			
00 OLD HIG IDOR, TX 7 ISA	SHWAY 90 WEST 17662		SALES DROER 998318675			ISTOMER MATERIAL I	lo	SPECIFICATION / DATE OR REVISION					
CUSTOVER PU	RCHASE ORDER NUMB	ER		BILL OF LADING 53,200		DATE 2/6	8/21						
CHEMICAL CO	MPOSITION												
C % 0.53	Mn 96 0.66	% 0.009	\$ % 0.012	% 0.25	% 0.12	N/ % 0.06	Cr % 0.06	Mo % 0.02	Sn % 0.006	V % 0.003	A) % 0.004	N % 0,607	
MECHAN CALF	PROPERTIES	-											
Tensile ps) 128653				Sid dev psi 2092				ROA % 57.3				Tensile Mpa 887	
AEA.		.m and el	pha source malerials in	neg/bret have not been le						andifica al ref ass	e by		
	s are certified chemical an tilhose data are correc			ned in the permanent rece pecified requirements.			was melted a	and manufactured in	The USA.				
						ncluding the billets		and manufactured in		_fa	LEONARI	O RADICO	

0	0		70.00	CERTIFIED MA				WIREROPE WORKS				
OPTIN	NIS.		CUSTOMER SHIP TO CUSTOMER BILL TO WIREROPE WORKS INC 100 MAYNARD ST 100 MAYNARD ST				GRADE 1675M1	1000000	SHAPE / SIZE WIRE ROC / 7/82			
STEI JS-ML-BEAL	JMONT		WILLIAMSPORT, USA		909	WEIGHT HEAT / 47,079,00			7 / BATCH OTED21852	PATCH OT0021852		
00 OLD HIG /IDOR, TX 7 JSA	90 WES 7662	ST	SALES GROER 996318676		chi	TOMER MATERIAL N	10	SPECIFICATION /	DATE OR REVISI	ON		
	RCHASE ORDER NU	MBER		BILL OF LAGING		DATE 2/1	0/21					
PO109162-M.				69,352		1		<u> </u>				
CHEMICAL COL	2.77									4.5		
C %	Mr.	P %	S %	SI %	Cu 96	NI 16	Cr 96	Mo %	Sn %	V 96	Al %	9
0.74	0.66	0.006	0.014	0.21	0.11	0.05	0.05	0.01	0.005	0.003	0,003	0.0
MECHAN CAL F	ROPERTIES											
Tensile				Sid day				ROA %				Tensile Mpa
ps i 158940				2086				17.8				1095
COMMENTS IN No Weld repairs IAEA.	preformed , Marcury, s	al and physics	if lest records as conta	n any low have not been u indicate the permanent reco pecified requirements.	ds of company CM	IR comples with GN cluding the billets	19204-3 1 was melled as	nd manufactured in	the USA.			
								- Roder	4.5.4	La	LEONARD	O RADIO
						000	- arrow	2.5	~			A Unicel
					الدور	409-789-1096					LITY ASSU	

		WIREROPE WORKS INC 100096167 100 MAYNARD ST			MER BILL TO OPE WORKS INC YNARD ST	•	GRADE 1055M1		/ SIZE ROD / 7/32	•	·
OPTIMUS STEEL S-ML-BEAUMONT		WILLIAMSPORT, PA. 17701-5809 WILLIAMSPORT, PA. 17701-				809	9 WEIGHT HE 17,188,00			OT0018856	
00 OLD HIGHWAY 90 WEST DOR, TX 77662 SA	SALES 0			CUS 600	STOMER MATERIAL N	lo	SPECIFICATION /	DATE OR REVISI	ON		
CUSTOMER PURCHASE ORDER NUMBER			BILL OF LADING 42,220	10	DATE 7/1	3/20					w.Ą
CHEMICAL COMPOSITION											Total state of the state of
C Mn % % 0,55 0,61 0	P % 0.013 (S % 0.012	Si % 0.24	Cu % 0.18	Ni % 0.06	Cr % 0.09	Mo % 0.02	Sn % 0.007	V % 0.002	AI % 0,003	N % 0.0073
MECHANICAL PROPERTIES			- mare			200 200					The state of the s
Tensile psi 131828			Std dev psi 1367		1 2 m		ROA % 58.9				Tensile Mpa 909
COMMENTS / NOTES To Violat agains performed. Mercury, radium AND	physical test record	rds as contain	ed in the permanent record	ds of company. CM This material, in	ITR complies with EN counting the billets	10204 3.1 , was metted a	(12) AND 2 No N	the USA.	La	LEONARI	DO RADICCH JRANCE MGF

	9			CERTIFIED MA				WIREROPE WORKS		- 127			
OPTIN	/US		CUSTOMER SHI WREROPE WO 100 MAYNARD 8	RKS INC 100098167	WRER	MER BILL TO CPE WORKS INC VNARD ST		1055M1	SHAPE / SIZE WIRE ROD/ 7/02				
STEI JS-ML-BEAL	EL		WILLIAMSPORT, PA 17701-SICE VALLIAM USA USA			VSPORT, PA. 17701-5	5806	WEIGHT 47.416.00		HEA	HEAT / BATCH OT0016343		
IDOR, TX 7	HWAY 90 W 7662	EST	SALES CRIDER		CUSTOMER MATERIAL No.		SPECIFICATION / DATE OR REVISION						
JSA			993319388		600	210		_					
CUSTOMER PURCHASE CROSE NUMBER 107127-F				BILL OF LADING 25,061		DATE 3/2	27/20						
CHEMICAL CO	ировлюм	-											
¢ % 0.62	Mn % 0.66	P % 0.012	\$ % 0,012	% 0.24	Cu % 0.13	Ni % 0.06	Cr % 0.08	% 0.02	Sr. % 0.007	V % 0,002	A) % 0,003	N % 0.006	
	- 1		- 114										
MECHANICAL F	ROPERTIES												
Tensile				Std day				ROA				Tensile	
psi 129065				psi 1331				58.5				Mpa 890	
USE CARDBOA	NRVENT PERFOR RD SEPARATORS	sloal and physics	OT EXPOSED TO ME If lost receiving as center In the USA. CMTR. core	wind is 0.e permanentreco roptes with EN 80204.3.1	eds of company. We	persity that these date	s are correct and i	in compliance with space	lied tequivernects.	.This majorist.			
						6.0	narole	Kadica	1.5.2	-la	LEONAR	DO RADICO	
										QUA	LITY ASSI	JRANCE M	
						e: 409-769-1086 chi@apii mus-steelu	-W3VX-						

EMAIL

1658 Cold Springs Road Saukville, Wisconsin 53080 [262] 268-2400 1-800-437-8789 Fax (262) 268-2570

Melted in USA Manufactured in USA

CHARTER STEEL TEST REPORT

Wirerope Works, Inc.	
100 Maynard St.	
Williamsport,PA-17701	
Kind Attn : Roger Gilliland	

109724-4	Cust P.O.
600325	Customer Part #
70101008	Charter Sales Order
20701730	Heat #
2197787	Ship Lot #
1075 M SK CG HRQ 7/32 RNDCOIL	Grade
HR	Process
7/32	Finish Size
25-JAN-21	Ship date

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of false, lictitious and fraudulent statements or entries on this document may be punishable as a felony under federal statute

				Test re	sults of Hea	t Lot # 2070	1730				
Lab Code: 125544 CHEM %Wt	C .76	MN .73	P .005	S .010	SI .210	NI .04	CR .06	MO .01	CU ,08	SN .005	.002
	AL .004	.0060	.0001	.001	NB .002						

		Test results of	Rolling Lot # 2197787		
	# of Tests	Min Value	Max Value	Mean Value	
TENSILE (KSI)	3	164.9	167.8	166.0	TENSILE LAB = 0358-0
REDUCTION OF AREA (%)	3	42	48	46	RA LAB = 0358-04
ROD SIZE (Inch)	22	.216	.223	.220	
ROD OUT OF ROUND (Inch)	8	.004	.007	.006	

REDUCTION RATIO=1301:1

Specifications:

Manufactured per Charter Steel Quality Manual Rev Date 05/12/17
Charter Steel certifies this product is indistinguishable from background radiation levels by having process radiation detectors in place to measure for the presence of radiation within our process & products.

Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents:

Customer Document = 8000 Revision = 10 Dated = 10-MAR-17

Melted and Manufactured in the United States of America

Additional Comments:

Melt Source: Charter Steel Cuyahoga Heights, OH, USA This MTR supersedes all previously dated MTRs for this order

Trip: 1476420

Page 1 of 2

Douglas Jones Division Mgr. of Quality Assurance jonesdo@chartersteel.com Printed Date: 01/25/2021

The following statements are applicable to the material described on the front of this Test Report:

- Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFARS
 compliance, LEEDS compliance, REACH compliance, ROHS-WEEE compliance, and Conflict Materials Restrictions.
- Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during processing.
- 3. Unless directed by the customer, there are no welds in any of the coils produced for this order.
- 4. The laboratory that generated the analytical or test results can be identified by the following key:

Certificate Number	Lab Code	Labora	tory	Address
0358-01	7388	CSSM	Charter Steel Melting Division	1658 Cold Springs Road, Saukville, WI 53080
0358-02	8171	CSSR	Charter Steel Rolling	1658 Cold Springs Road, Saukville, WI 53080
0358-07	8171	CSSP	Charter Steel Processing Division	1658 Cold Springs Road, Saukville, WI 53080
0358-03	123633	CSFP	Charter Steel Onio Processing Division	6255 US Highway 23, Rising Sun, OH 43457
0358-04	125544	CSCM/ CSCR	Charter Steel Cleveland	4300 E. 49th St., Cuyahoga Heights, OH 44125-1004
•	*	**	Subcontracted test performed by laborate	ory not in Charter Steel System

5. When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specifications	CSSM	CSSR/ CSSP	CSFP	CSCM/ CSCR
Chemistry Analysis	ASTM E415; ASTM E1019	х	3.361.1.3,65	April 1 h	X
Macroetch	ASTM E381	х			X
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	X			Х
Grain Size	ASTM E112	X	Х	Х	X
Tensile Test	ASTM E8; ASTM A370	1	Х	Х	X
Rockwelli Hardness	ASTM E18; ASTM A370	X	Х	х	Х
Microstructure (spheroidization)	ASTM A892	14 2 2 2 2 2 2	Х	х	
Inclusion Content (Methods A, E)	ASTM E45		Х		Х
Decarburization	ASTM E1077	1	Х	X	Х

Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 01/31/21. All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

- The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.
- 7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:
 - · It may be distributed only to their customers
 - . Both sides of all pages must be reproduced in full
- This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.
- Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Page 2 of 2

07-11-2022 00:02

Load - 4113094

BL - 3919803

65/01-01

blr466

Custom Fabricators Cust. PO - 02671

Order - 21559520

Heat - 2220804

AM/NS Calvert LLC 1 AM/NS Way

Calvert, Al., AL 36513 USA

AM/NS

CUSTOMER ORIGINAL Mill Certificate Certificate Number Delivery No Ship Date Page 240142-50 1195485140 83260986-10 06/07/2022 1 of 1 Cust PO: HTX-7733165 Customer No: 10213 Customer Part No: Customer Sold to: Customer Ship to: Contact - Stan Bevans Kloeckner Metals Corp. - Tulsa Kloeckner Metals Corp. AM/NS Calvert LLC Kloeckner Metals Corp 7400 Mesa Dr. 1 AM/NS Way HOUSTON TX 77028 3123 E. Apache CALVERT AL 36513 TULSA OK 74110 USA USA USA Email: Stanley.Bevans@ArcelorMittal.com Ph : 1-251-289-3000 Steel Grade / Customer Specification Hot Roll Black Coil Conv to A36 / 0.2400 " X 60.0000 " ACCORDING TO A1018 (Hvy 0.230"(6)-1"(25.4)}-Hot Roll Base Type of Product/Surface Hot Roll Black Dry Unexposed GENERAL STOCK, CTL SHEET TEST METHOD Melted in Mexico Manufactured in USA ASTM MATERIAL DESCRIPTION Weight Weight Heat Coil Net Gross ORDERED No. (mm) 6.096 2220804 1195485140 46,186.000 46,186.000 0.2400 CHEMICAL COMPOSITION OF THE LADLE * С Cu Мо Ν 2220804 0.1970 0.02 0.83 0.003 0.040 0.01 0.010 0.001 0.0021 Ça 0.002 0.001 0.002 0.0001 0.001 0.0006 TENSILE TEST Test Yield Tensile % Total Direction Strength Strength Elong. 47 ksi 68 ksi

AM/NS Calvert LLC certify that the material herein described has been manufactured, sampled, tested and inspected in accordance with the contract requirements and is fully in compliance.

* - This test is not covered by our current A2LA accreditation

Yasunori Iwasa Quality Management Director AM/NS Calvert

Rev.

Certified Analysis

15601 Dallas Pkwy	Customer: SAMPLES, TESTING MATERIALS	Ft Worth (THP), TX 76111 Phn:(817) 665-1499	2548 N.E. 28th St.	Trinity Highway Products LLC
-------------------	--------------------------------------	---	--------------------	------------------------------

Suite 525

ADDISON, TX 75001 FHWA 615181

> Order Number: 1342195 Prod Ln Grp: 3-Guardrail (Dom)

BOL Number: 85051 Customer PO: FHWA 615181

Document #: 1 Shipped To: TX Use State: TX

																			_				
					-			2	2					ţ	ર				10 20	20 3	20		10
						2	_	2076						2070	202020				20207G	3910G	אטטענ		3000G
					•	C.		20207G											12/9'4.5/8-HOLE ANCH/S	1* HEX NUT A563	F ROUND WASHER 1844	is normally grant to the	CBL 3/4X6%/DBL SWG/NOHWD
M-180	M-180	M-180	M-180	M-180	M-180	M-180	M-180	RHC	M-180	M-180	M-180	M-180	M-180	NIC.	M-180	M-180	M-180	M-180		A563-3910	F844-3900		HRIM CIV
>	×	>	A	>	>	В	B		>	۶	Α	>	>	,	, >	>	>	>		9910	900		Ř
2	2	2	2	2	2	2	2	2	2	2	2	2	2		, 2	2	2	. 2	2				
231189	231188	231187	231186	230050	230046	229086	228145	L13818	238627	238625	238624	238623	738622	F1201A	2214155	2214154	2113956	2113955	F13321	P39590 R75013	P39757 R75233	5000-00747	LYLUU-8005
59,500	59,830	55,080	57,040	62,160	62,830	62,200	56,880		61,630	61,150	61,390	63,640	61,950		59,700	56,300	60,400	55,900					
81,190	82,260	78,060	77,590	80,260	81,430	79,510	76,080		80,850	79,980	80,200	81,270	81,070		84,200	83,300	86,300	82,400					
23.6 0.190	22.6 0.190	25.3 0.180	26.9 0.180	26.9 0.190	27.2 0.200	28.2 0.190	28.9 0.190		25.5 0.190	26.5 0.200	26.1 0.190	26.4 0.190	23.2 0.180		27.0 0.230	27.0 0.240	21.0 0.230	25.0 0.230					
	0 0.740	0 0.720	0 0.720	0 0.720									- 1										l
0.0		20 0.0	20 0.0		0.750 0.0	0.730 0.0	0.730 0.0		20 0.0).0 OE	730 0.0	730 0.0	0.720 0.0		.0 08¢	990 0.0	970 0.	970 0.					
14 0.00	0.010 0.002	14 0.00	10 0.00	0.014 0.004	09 0.00	12 0.00	13 0.00		30.0	0.730 0.011 0.004	113 0.00	113 0.00	0.011 0.004		0.980 0.010 0.002	0.990 0.013 0.002	0.970 0.011 0.001	0.970 0.010 0.001					ľ
4 0.01	2 0.02	0.014 0.004 0.010 0.110	0.010 0.004 0.020 0.110	4 0.01	0.009 0.002 0.020 0.140	0.012 0.004 0.020 0.100	0.013 0.004 0.020		0.720 0.011 0.004 0.020 0.130		0.730 0.013 0.002 0.020 0.160	0.730 0.013 0.003 0.020 0.130	0		0	0	0.0						ľ
0.700 0.014 0.004 0.010 0.110	0.020 0.120	11.0	0 0.11	0.010 0.120	0 0.14	0 0.10	0.120		0 0.13	0.020 0.130	0 0.1e	10 0.13	020 0.140		20 0.1	030 0.120	0.030 0.120	030 0.110					
													- 1		0.0								
0.06	0.000 0.050 0.002	0.000 0.070	0.000 0.060	0.000 0.070	0.000 0.050	0.000 0.070	0.000 0.060		0.000 0.070 0.001	0.000 0.080 0.001	0.000 0.070 0.002	0.000 0.080 0.001	0.000 0.070		020 0.120 0.002 0.060 0.004	0.002 0.080 0.005	0.002 0.050	0.002 0.050 0.004					l
0.000 0.060 0.002	0.00	0.008	0 0.002	0.001	0.002	0.000	0.008		0 0.00	00.00	0.06	0.00	70 0.002		0.00	30 0.0	50 0.004	50 0.0					!
2	2 4	4	2 4	4	2	4	∞ 4-	4	4	=	ಸ 4	ĭ 4	22 4	4	¥ 4)5 4	4	4		4	4	4	1

Certified Analysis

Ft Worth (THP), TX 76111 Phn:(817) 665-1499	2548 N.E. 28th St.	Tilling righway Froducts LLC
Phn:(817) 665-1499		THE

Customer: SAMPLES, TESTING MATERIALS 15601 Dallas Pkwy Suite 525

ADDISON, TX 75001 FHWA 615181

Project:

Qty

Part #

Description

15 110036G 12/12'6/3' 1.5/S 36'RCX

M-180

F13321

C87743

60,600 64,500 Yield

83,000 86,000 TS

Elg

Mn

S Cu

С

Ç

Vn ACW

0.001 0.060 0.001 4 0.001 0.050 0.001

22.1 0.200 0.680 0.008 0.003 0.030 0.060 19.7 0.200 0.720 0.015 0.002 0.030 0.050

A89864

M-180

CL TY Heat Code/ Heat

110036G

Order Number: 1342195 Prod Ln Grp: 3-Guardrail (Dom)

Customer PO: FHWA 615181

BOL Number: 85051

Document #: 1 Shipped To: TX Use State: TX

Ship Date:

As of: 8/24/21

M-180 L12921 L12821 263872 2214154 2113956 2113955 263875 2214155 263876 264923 264921 263876 263872 263871 264920 264221 264221 263875 263873 57,757 56,140 62,484 65,628 64,873 60,113 56,140 62,484 65,628 63,778 64,873 63,962 59,700 56,300 60,400 55,900 76,950 75,433 83,665 80,825 83,233 75,433 80,825 81,794 86,300 83,665 83,233 81,744 84,200 83,300 78,971 82,400 25.7 0.190
 22.4
 0.190
 0.720
 0.013
 0.002
 0.020
 0.130

 22.5
 0.190
 0.720
 0.012
 0.002
 0.030
 0.120
 25.7 0.190 22.5 0.190 0.720 0.012 0.002 0.030 0.120 22.4 0.190 24.4 0.190 27.0 0.230 21.0 0.230 25.0 0.230 0.970 0.010 0.001 0.030 0.110 0.730 0.008 0.002 0.020 0.100 0.730 0.012 0.004 0.020 0.130 0.720 0.010 0.003 0.010 0.100 0.720 0.008 0.004 0.010 0.100 0.730 0.007 0.001 0.020 0.120 0.730 0.010 0.002 0.010 0.100 0.720 0.010 0.003 0.010 0.100 0.730 0.007 0.001 0.020 0.120 0.730 0.012 0.004 0.720 0.012 0.002 0.020 0.110 0.720 0.013 0.002 0.020 0.130 0.730 0.014 0.003 0.010 0.120 0.980 0.010 0.002 0.020 0.120 0.970 0.011 0.001 0.030 0.120 0.990 0.013 0.002 0.030 0.120 0.020 0.130 0.000 0.060 0.000 0.050 0.002 0.000 0.070 0.001 0.000 0.060 0.000 0.070 0.002 0.000 0.060 0.000 0.060 0.000 0.000 0.060 0.000 0.000 0.060 0.002 0.060 0.000 0.070 0.000 0.050 0.002 0.000 0.070 0.001 0.000 0.070 0.002 0.080 0.005 0.002 0.050 0.000

110036G

2 of 3

Certified Analysis

2548 N.E. 28th St. Trinity Highway Products LLC

Ft Worth (THP), TX 76111 Phn:(817) 665-1499

Customer: SAMPLES, TESTING MATERIALS

15601 Dallas Pkwy

ADDISON, TX 7500

FHWA 615181

Order Number: 1342195

Customer PO: FHWA 615181 Prod Ln Grp: 3-Guardrail (Dom)

BOL Number: 85051

Document #: 1

As of: 8/24/21

Shipped To: TX Use State: TX

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410 ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS) ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

WASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTMF-2329, UNLESS NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED

3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH - 46000 LB

State of Texas, County of Tarrant. Sworn and subscribed before me this 24th day of August, 2021

Comm. Expires 01-14-2023 Notary ID 130076852

Notary Public, State of Texas

ARACELI REY

Commission Expires: Notary Public:

Table B.1. Test Day Static Soil Strength Documentation for Test No. 615181-01-5.

Date	2022-09-09			
	TTI Proving Ground			
Test Facility and Site Location	3100 SH 47			
	Bryan, TX 77807			
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines			
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO M147-17 Grading D			
Fill Material Description (ASTM D2467) and sieve analysis	Crushed Concrete Road Base			
Description of Fill Placement Procedure	12-inch lifts tamped with a			
Description of the Flacement Procedure	pneumatic compactor for 20 s			

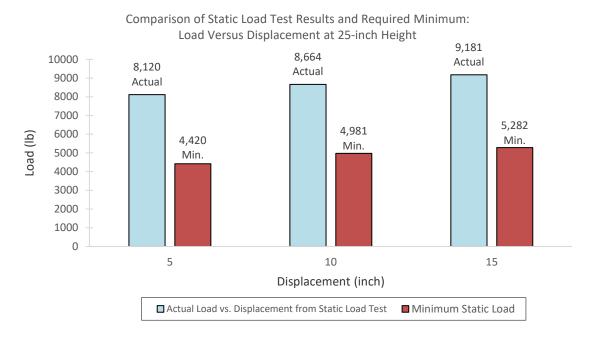


Figure B.1. Test Day Static Soil Strength Documentation for Test No. 615181-01-5.

Table B.2. Test Day Static Soil Strength Documentation for Test No. 615181-01-11.

Date	2022-10-06			
	TTI Proving Ground			
Test Facility and Site Location	3100 SH 47			
	Bryan, TX 77807			
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines			
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO M147-17 Grading D			
Thi Material Description (ASTM D2487) and sieve analysis	Crushed Concrete Road Base			
Description of Fill Placement Procedure	12-inch lifts tamped with a			
Description of the Flacement Procedure	pneumatic compactor for 20 s			

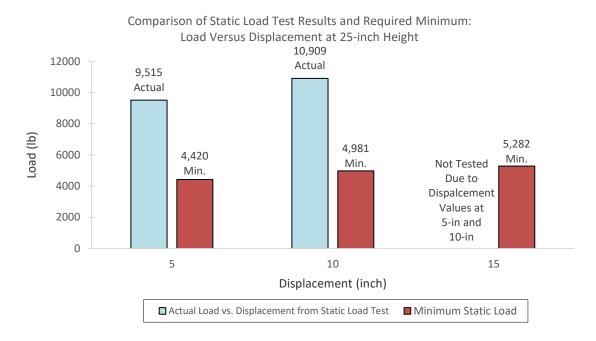


Figure B.2. Test Day Static Soil Strength Documentation for Test No. 615181-01-11.

Table B.3. Test Day Static Soil Strength Documentation for Test No. 615181-01-12.

Date	2022-10-11			
	TTI Proving Ground			
Test Facility and Site Location	3100 SH 47			
	Bryan, TX 77807			
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines			
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO M147-17 Grading D			
Fill Material Description (ASTM D2487) and sieve analysis	Crushed Concrete Road Base			
Description of Fill Placement Procedure	12-inch lifts tamped with a			
Description of Fill Placement Procedure	pneumatic compactor for 20 s			

Comparison of Static Load Test Results and Required Minimum: Load Versus Displacement at 25-inch Height



Figure B.3. Test Day Static Soil Strength Documentation for Test No. 615181-01-12.

Table B.4. Test Day Static Soil Strength Documentation for Test No. 615181-01-13.

Date	2022-10-20			
	TTI Proving Ground			
Test Facility and Site Location	3100 SH 47			
	Bryan, TX 77807			
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines			
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO M147-17 Grading D			
Fill Material Description (ASTM D2467) and sieve analysis	Crushed Concrete Road Base			
Description of Fill Placement Procedure	12-inch lifts tamped with a			
Description of Fill Placement Procedure	pneumatic compactor for 20 s			



Figure B.4. Test Day Static Soil Strength Documentation for Test No. 615181-01-13.

APPENDIX C.	MASH TEST 2-35 (CRASH TEST NO. 615181-01-5)

C.1. VEHICLE PROPERTIES AND INFORMATION

Year: 2016 Make: RAM Model: 1500 Tire Size: 265/70 R 17 Tire Inflation Pressure: 35 psi Tread Type: Highway Odometer: 161115 Note any damage to the vehicle prior to test: None • Denotes accelerometer location. NOTES: None Engine Type: V-8 Figure Type: Figure Type: Engine CID: 5.7 liter Manual FWD Auto or RWD Auto or RWD Dummy Data: Type: NONE Mass: NONE Mass: Seat Position: V-8 30.00 Q 30.50 V 30.25 Geometry: inches A 78.50 F 40.00 K 20.00 P 3.00 U 26.75 B 74.00 G 28.50 L 30.00 Q 30.50 V 30.25 C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00	Date:20)22-09-09	Test No.:	615181-	01-5	_ VIN No.	: 1C6RF	R6GT5GS	164351
Note any damage to the vehicle prior to test: None	Year:	2016	Make:	RAM	1	Model	l:	1500	
Note any damage to the vehicle prior to test: None Denotes accelerometer location. NOTES: None Engine Type: V-8 Engine CID: 5.7 liter Transmission Type: Auto or	Tire Size:	265/70 R 17			Tire I	nflation Pr	essure:	35	osi
● Denotes accelerometer location. NOTES: None Engine Type: V-8 Engine CID: 5.7 liter Transmission Type:	Tread Type:	Highway				Ode	ometer: <u>161</u>	115	
• Denotes accelerometer location. NOTES: None Engine Type: V-8 Engine CID: 5.7 liter Transmission Type:	Note any dam	age to the ve	hicle prior to t	est: None					
Engine Type: V-8 Engine CID: 5.7 liter Transmission Type: Auto or Manual FWD Awb Awb Awb FWD Awb Front FWD FWD Awb FWD Awb FWD Awb Fwb FWD FWD Awb FWD Awb FWD Awb Fwb FWD Awb FWD Awb Fwb FWD Awb Fwb FWD Awb FWD Awb Fwb FWD Awb Awb	 Denotes ac 	celerometer la	ocation.		Ī	-	-		
Engine Type: V-8 Engine CID: 5.7 liter Transmission Type: Auto or Manual FWD Awb Awb Awb FWD Awb Front FWD FWD Awb FWD Awb FWD Awb Fwb FWD FWD Awb FWD Awb FWD Awb Fwb FWD Awb FWD Awb Fwb FWD Awb Fwb FWD Awb FWD Awb Fwb FWD Awb Awb	NOTES: Nor	ne		1	*	711			A •
Engine Type: V-8 Engine CID: 5.7 liter Transmission Type:									
Optional Equipment: Manual AWD Dummy Data: Type: Type: NONE Mass: Seat Position: Geometry: inches A 78.50 F 40.00 K 20.00 P 3.00 U 26.75 B 74.00 G 28.50 L 30.00 Q 30.50 V 30.25 C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00 I 11.75 N 68.00 S 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 Wheel Center Height Front Wheel Well Height Front Wheel Well Center Height Rear 14.75 Clearance (Front) Wheel Well 9.25 Bottom Frame Height Rear 12.50 RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G => 28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M*N)/2=67 ±1.5 inches GWWR Ratings: Mass: Ib Curb Test Incrtial Sex Static Sex				A M -					WHEEL
Optional Equipment: None Dummy Data: Type: NONE Mass: Seat Position: Seat Position: Geometry: inches A 78.50 F 40.00 K 20.00 P 3.00 U 26.75 B 74.00 G 28.50 L 30.00 Q 30.50 V 30.25 C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00 I 11.75 N 68.00 S 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 Wheel Center Height Front Wheel Well Height - Front Height - Front South - Sou		- ' '		3			TE	ST INERTIAL C. M.	
Optional Equipment: None Dummy Data: Type: NONE Mass: Seat Position: Geometry: inches A 78.50 F 40.00 K 20.00 P 3.00 U 26.75 B 74.00 G 28.50 L 30.00 Q 30.50 V 30.25 C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00 I 11.75 N 68.00 S 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 Wheel Center Height Front Wheel Well Height Front Wheel Well Height Rear 14.75 Clearance (Front) Bottom Frame Height - Front Pheight Rear Height - Front Subtom Frame Height Rear Su					R — Q				
None			_ 	$\mathbf{P} \longrightarrow$					= 1
Type: Mass: Seat Position: NONE U J J J J J J J J J J J J J J J J J J J						T.			₿ B
Mass: Seat Position: F H G G P M G G P M G G D M M M FRONT F M G G D M G G 28.50 L 30.00 Q 30.50 V 30.25 C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00 J 11.75 N 68.00 S 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 E Moteom Frame Height Front Wheel Well Well Well Well Well Well Wel		NONE]] [I =				(A)	K L
Carance Cara		NONE			← F →			→ D-	•
Geometry: inches REAR A 78.50 F 40.00 K 20.00 P 3.00 U 26.75 B 74.00 G 28.50 L 30.00 Q 30.50 V 30.25 C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00 I 11.75 N 68.00 s 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 Total 12.50 Wheel Center Height Front Wheel Well Height Rear 14.75 Wheel Well Well Clearance (Front) Wheel Well Well Clearance (Rear) 9.25 Bottom Frame Height - Front Bottom Frame Height - Rear 22.50 RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G = > 28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M+N)/2=67 ±1.5 inches GVWR Ratings: Mass: Ib Curb Test Inertial Gross Static Front 3700 Mrear	Seat Position	າ:		•		M	— Е —	▼ M	
B 74.00 G 28.50 L 30.00 Q 30.50 V 30.25 C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00 I 11.75 N 68.00 S 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 77.00 12.50 Wheel Center Height Front Height Front Height Rear 14.75 Clearance (Front) Wheel Well Clearance (Rear) 9.25 Bottom Frame Height - Rear Height - Rear 22.50 RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G=>28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M+N)/2=67 ±1.5 inches GVWR Ratings: Mass: Ib Curb Test Inertial Gross Static Front 3700 Mfront 2880 2855 2855 Back 3900 Mrear 2200 2199 2199 Total 6700 M _{Total} 5080 5054 5054	Geometry:	inches			- I		— c ———		•
C 227.50 H 61.13 M 68.50 R 18.00 W 61.10 D 44.00 I 11.75 N 68.00 S 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 T/7.00 12.50 Wheel Center Height Front Wheel Center Height Rear 14.75 Wheel Well Well Clearance (Front) Wheel Well Clearance (Rear) 9.25 Bottom Frame Height - Front Bottom Frame Height - Rear 22.50 RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G => 28 inches; G => 28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M+N)/2=67 ±1.5 inches GVWR Ratings: Mass: Ib Curb Test Inertial Gross Static Front 3700 M _{front} 2880 2855 2855 Back 3900 M _{rear} 2200 2199 2199 Total 6700 M _{Total} 5080 5054 5054	• • • • • • • • • • • • • • • • • • • •			K		. P.		_ U _	
D 44.00 I 11.75 N 68.00 S 13.00 X 79.00 E 140.50 J 27.00 O 46.00 T 77.00 77.00 Wheel Center Height Front Wheel Center Height Rear 14.75 Clearance (Front) Wheel Well Clearance (Rear) 9.25 Bottom Frame Height - Front Bottom Frame Height - Rear 22.50 RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G => 28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M+N)/2=67 ±1.5 inches GVWR Ratings: Mass: Ib Curb Test Inertial Gross Static Front 3700 Mfront 2880 2855 2855 Back 3900 Mrear 2200 2199 2199 Total 6700 M _{Total} 5080 5054 5054						-		- · · -	
E									
Wheel Center Height Front Wheel Center Height Rear 14.75 Wheel Well Clearance (Front) Wheel Well Clearance (Rear) 6.00 Bottom Frame Height - Front Bottom Frame Height - Rear 12.50 RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G => 28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M+N)/2=67 ±1.5 inches Gross Static Front 3700 Mfront 2880 2855 2855 Back 3900 Mrear 2200 2199 2199 Total 6700 MTotal 5080 5054 5054 (Allowable Range for TIM and GSM = 5000 lb ±110 lb) 10.00 10.00 10.00				N				_ X	/9.00
Height Front Wheel Center Height Rear 14.75 Clearance (Front) Wheel Well Clearance (Rear) 9.25 Bottom Frame Height - Rear 22.50			27.00		46.00	_ T _			
Height Rear 14.75 Clearance (Rear) 9.25 Height - Rear 22.50 RANGE LIMIT: A=78±2 inches; C=237±13 inches; E=148±12 inches; F=39±3 inches; G => 28 inches; H = 63±4 inches; O=43±4 inches; (M+N)/2=67±1.5 inches GVWR Ratings: Mass: Ib Curb Test Inertial Gross Static Front 3700 Mfront 2880 2855 2855 Back 3900 Mrear 2200 2199 2199 Total 6700 M _{Total} 5080 5054 5054 (Allowable Range for TIM and GSM = 5000 lb ±110 lb)	Height Fro	ont	14.75 Cle	arance (Front)		6.00	Height - Fi	ront	12.50
RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G = > 28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M+N)/2=67 ±1.5 inches GVWR Ratings: Mass: Ib Curb Test Inertial Gross Static Front 3700 M _{front} 2880 2855 2855 Back 3900 M _{rear} 2200 2199 2199 Total 6700 M _{Total} 5080 5054 5054 (Allowable Range for TIM and GSM = 5000 lb ±110 lb)			14.75 Cle			9.25			22.50
Front 3700 M _{front} 2880 2855 2855 Back 3900 M _{rear} 2200 2199 2199 Total 6700 M _{Total} 5080 5054 5054 (Allowable Range for TIM and GSM = 5000 lb ±110 lb)	=				nes; G = > 28 ir	nches; H = 63 ±4	=		t ±1.5 inches
Back 3900 Mrear 2200 2199 2199 Total 6700 M _{Total} 5080 5054 5054 (Allowable Range for TIM and GSM = 5000 lb ±110 lb)	-		Mass: Ib		-	<u>Test</u>	<u>Inertial</u>	Gros	ss Static
Total 6700 M _{Total} 5080 5054 5054 5054			M_{front}						
(Allowable Range for TIM and GSM = 5000 lb ±110 lb)	Back3	900	M_{rear}	-			2199		2199
	Total 6	700	M_{Total}	5		Dongs for TIM		0.163	5054
lb LF: 1480 RF: 1375 LR: 1094 RR: 1105			1480	RF:					1105

Figure C.1. Vehicle Properties for Test No. 615181-01-5.

Date:	2022-09-09	Test No.:		VIN No.: _	1C6RR6G15GS164351	
Year:	2016	Make:	RAM	Model: _	1500	
	7	VEHICLE CR	USH MEASUR	EMENT SHEE	Γ^1	
		Со	mplete When App	licable		
	End Da	ımage		Side	Damage	
	Undeformed	d end width		Bowing: B1 _	X1	l

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	
≥ 4 inches	

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

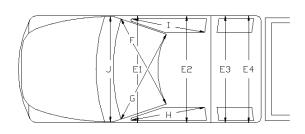
g:g-		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	AT FT RBUMP	14	10	36							-18
2	SAME	14	8	48							70
	Measurements recorded										
	√ inches or □ mm										

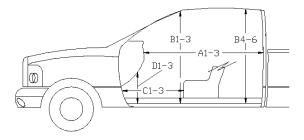
¹Table taken from National Accident Sampling System (NASS).

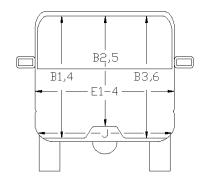
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test No. 615181-01-5.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.

 Date:
 2022-09-09
 Test No.:
 615181-01-5
 VIN No.:
 1C6RR6GT5GS164351

 Year:
 2016
 Make:
 RAM
 Model:
 1500

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEI ORMATION MEAGOREMENT			
	Before	After	Differ.
		(inches)	
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	58.50	0.00
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
1	37.50	37.50	0.00
J*	25.00	25.00	0.00
		_	

Figure C.3. Occupant Compartment Measurements for Test No. 615181-01-5.

C.2. SEQUENTIAL PHOTOGRAPHS

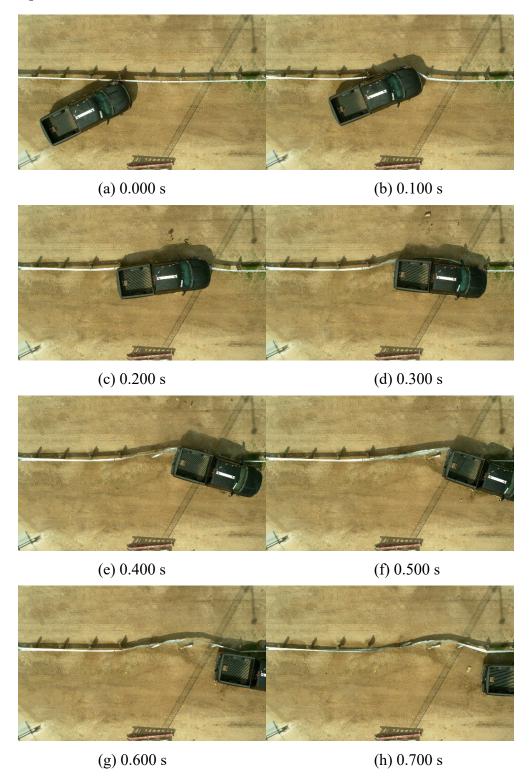


Figure C.4. Sequential Photographs for Test No. 615181-01-5 (Overhead Views).

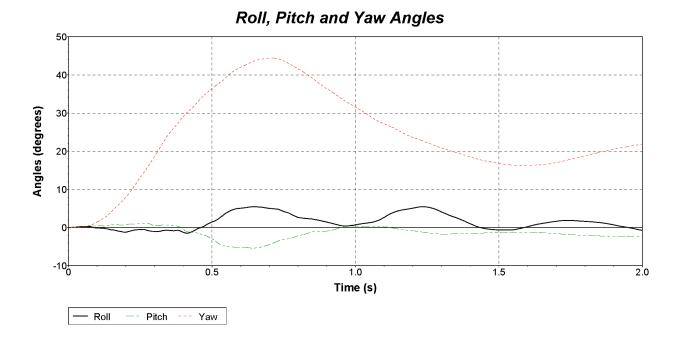
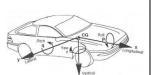


Figure C.5. Sequential Photographs for Test No. 615181-01-5 (Frontal Views).


Figure C.6. Sequential Photographs for Test No. 615181-01-5 (Rear Views).

C.3. VEHICLE ANGULAR DISPLACEMENTS

Axes are vehicle-fixed. Sequence for determining orientation:

- 1. Yaw.
- 2. Pitch.
- Roll.

Test Number: 615181-01-5

Test Standard Test Number: *MASH* Test 2-35 Test Article: TL-2 W-beam End Terminal

Test Vehicle: 1L-2 W-beam End Term Test Vehicle: 2016 RAM 1500

Inertial Mass: 5054 lbs Gross Mass: 5054 lbs Impact Speed: 45.9 mi/h

Impact Angle: 25°

Figure C.7. Vehicle Angular Displacements for Test No. 615181-01-5.

C.4. VEHICLE ACCELERATIONS

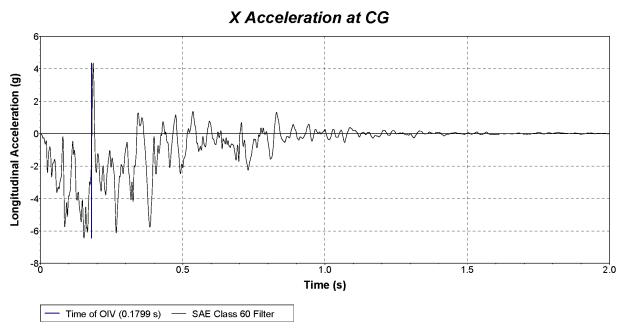


Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-5 (Accelerometer Located at Center of Gravity).

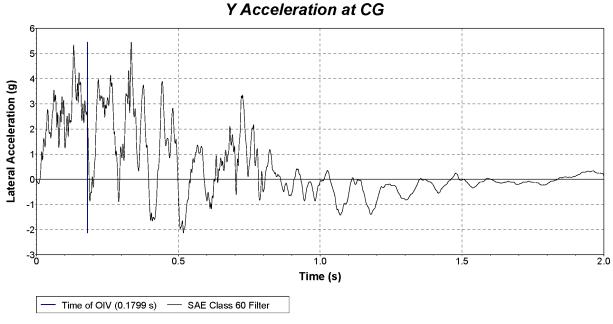


Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-5 (Accelerometer Located at Center of Gravity).

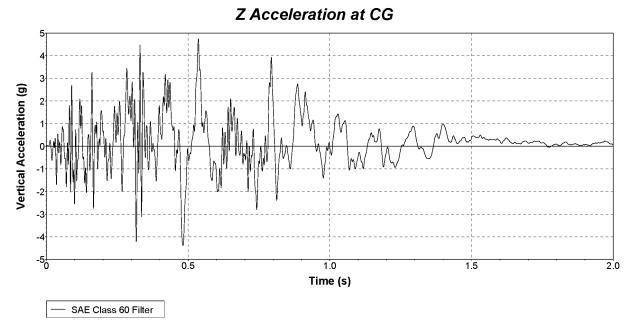


Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-5 (Accelerometer Located at Center of Gravity).

APPENDIX D.	MASHTEST 2-30 (CRASH TEST NO. 615181-01-11)	

D.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2022-10-06	Test No.:	615181-1-11	VIN No.:	3N1C7AP6HL902768
Year:	2017	Make:	Nissan	Model:	Versa
Tire Inf	lation Pressure:	36 PSI	Odometer: 1362	245	Tire Size: <u>P185/65R15</u>
Describ	oe any damage	to the vehicle pri	or to test: None		
• Dend	otes accelerome	eter location.	1		
NOTES	S: <u>None</u>		_		• • · · · · · · · · · · · · · · · · · ·
			_		
Engine		-	_		
Engine	CID: <u>1.6 L</u> nission Type:		_		
	Auto or	☐ Manual		← Q →	
		WD 4WD	P →		
	al Equipment:		1		
None	1		-		
			-		
Dummy	/ Data:			≜ s	G K
Type:		Percentile Male	_	W-	►
Mass:		SITE IMPACT	_	E	D -
Seati	OSILION. OFFC	OSITE IIVIPACT		-	-x
Geome	etry: inches				_
A <u>66.7</u>	<u>0 F</u>	32.50	K <u>12.50</u>	P <u>4.50</u>	U <u>15.50</u>
B <u>59.6</u>	<u>0</u> C		L 26.00	Q <u>24.0</u>	0 V <u>21.25</u>
C <u>175</u> .	40 H	41.38	M 58.30	R <u>16.2</u>	5 W <u>41.25</u>
D <u>40.5</u>	0	7.00	N <u>58.50</u>	S <u>7.50</u>	X <u>79.75</u>
E 102.	40	J <u>22.50</u>	O 30.50	T <u>64.5</u>	0
Whe	eel Center Ht Fr	ont <u>11.50</u>	Wheel Cente	er Ht Rear <u>11.5</u> 0	О W-H <u>-0.13</u>
RA	NGE LIMIT: A = 65 ±3 in	ches; C = 169 ±8 inches; E (M+N)/2 = 59 ±2	= 98 \pm 5 inches; F = 35 \pm 4 inches; w-H < 2 inches or use	nes; H = 39 ±4 inches; O MASH Paragraph A4.3.2	(Top of Radiator Support) = 28 ±4 inches
GVWR	Ratings:	Mass: lb	<u>Curb</u>	<u>Test I</u>	nertial Gross Static
Front	1750	M _{front}	1419	1442	<u>1527</u>
Back	1687	M _{rear}	928	978	1058
Total	3389	M _{Total}	2347	2420	2585
N/1 P	Ni=4=ih4i =		Allowable TI	M = 2420 lb ±55 lb Allow	rable GSM = 2585 lb ± 55 lb
lviass L	Distribution:	LF: <u>757</u>	RF: <u>685</u>	LR: <u>505</u>	RR: <u>473</u>

Figure D.1. Vehicle Properties for Test No. 615181-01-11.

Date:	2022-10-06 Te	est No.:	615181-1-1	1	\	/IN No	.: <u> </u>	3N10	CN7AF	P6HL9	02768
Year:	2017 M	ake:	Nissan			Model:	Ve	ersa			
	VEH		RUSH ME			NT SE	IEET ¹				
			Complete Wl	nen Appl	icable						
	End Damage						Side L	amage			
	Undeformed end	width			Вс	wing:]	ві	X1		_	
	Corner shi	ft: A1]	B2	X2	2	_	
		A2									
	End shift at frame (C	DC)			Bowin	g const	ant				
	(check one)			X1+X2							
	< 4 i	inches		$\frac{X1+X2}{2} = \underline{\hspace{1cm}}$							
		inches									
Note: Me	asure C ₁ to C ₆ from Drive	r to Passei	nger Side in i	Front or	Rear Ir	npacts	– Rear	to Fron	nt in Sie	de Impa	acts.
			t Damage								
Specific Impact Number	Plane* of C-Measurements	Width**	Max*** Crush	Field L**	C ₁	C ₂	C ₃	C ₄	C5	C ₆	±D
1	AT FT BUMPER	10	13	40							0
	Measurements recorded										
	inches or mm										

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 615181-01-11.

¹Table taken from National Accident Sampling System (NASS).

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

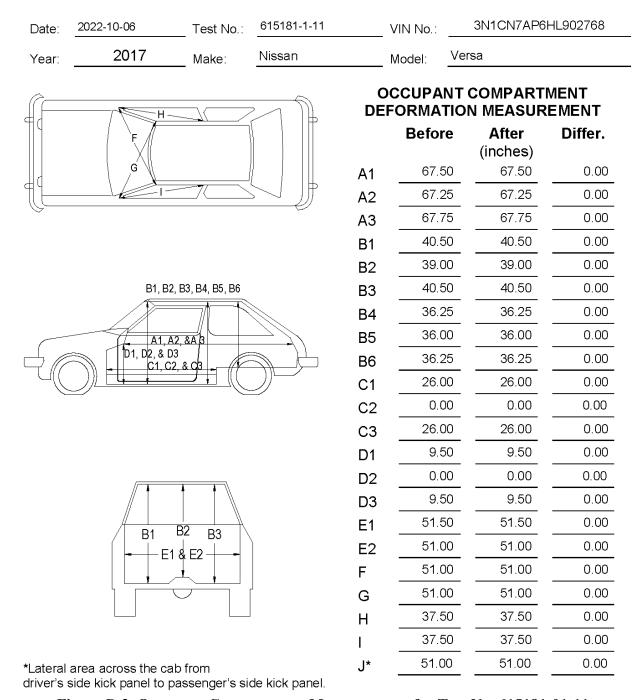


Figure D.3. Occupant Compartment Measurements for Test No. 615181-01-11.

D.2. SEQUENTIAL PHOTOGRAPHS

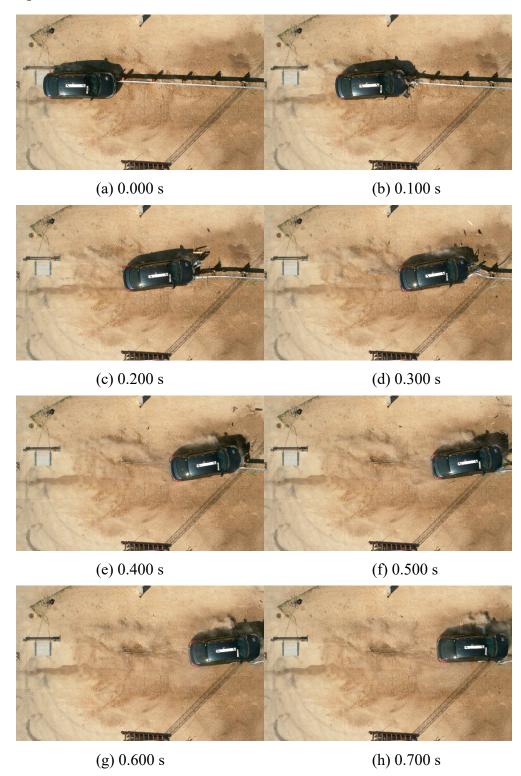


Figure D.4. Sequential Photographs for Test No. 615181-01-11 (Overhead Views).

Figure D.5. Sequential Photographs for Test No. 615181-01-11 (Frontal Views).

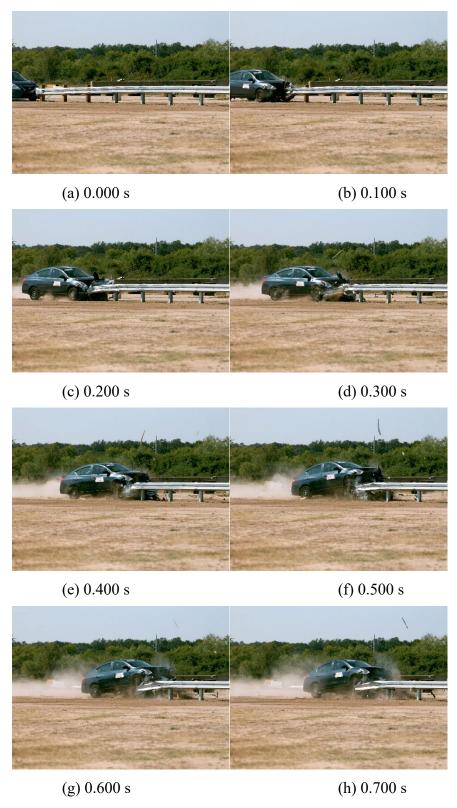
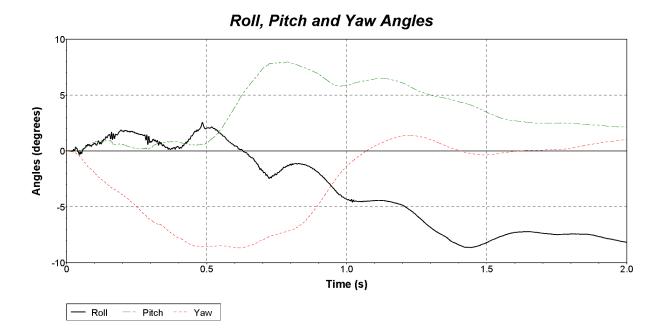



Figure D.6. Sequential Photographs for Test No. 615181-01-11 (Oblique Views).

D.3. VEHICLE ANGULAR DISPLACEMENTS

Axes are vehicle-fixed. Sequence for determining orientation:

- 4. Yaw.
- 5. Pitch.
- 6. Roll.

Test Number: 615181-01-11

Test Standard Test Number: *MASH* Test 2-30 Test Article: TL-2 W-beam End Terminal

Test Vehicle: 2017 Nissan Versa

Inertial Mass: 2420 lbs Gross Mass: 2585 lbs Impact Speed: 45.6 mi/h

Impact Angle: 0°

Figure D.7. Vehicle Angular Displacements for Test No. 615181-01-11.

D.4. VEHICLE ACCELERATIONS

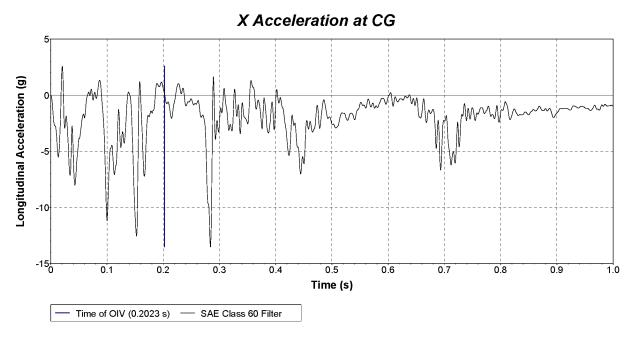


Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-11 (Accelerometer Located at Center of Gravity).

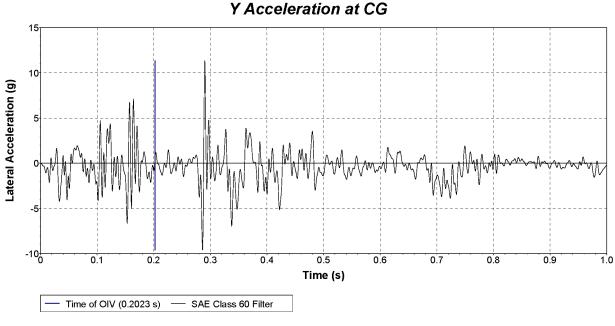


Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-11 (Accelerometer Located at Center of Gravity).

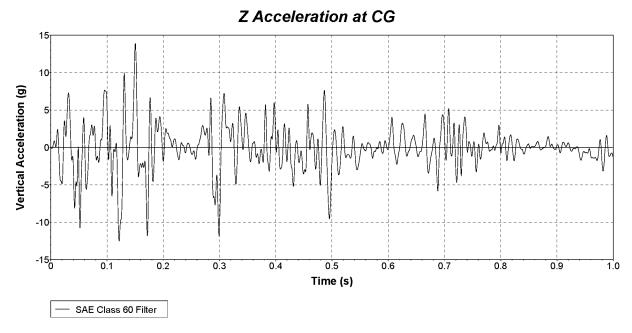


Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-11 (Accelerometer Located at Center of Gravity).

APPENDIX E.	MASHTEST 2-31 (CRASH TEST NO. 615181-01-12)

E.1. VEHICLE PROPERTIES AND INFORMATION

Date: _	2022-10-1	1 Test N	o.: 6151	181-01-12	VIN No.:	1C6RR6	FT8HS	542679
Year: _	2017	Mał	(e:	RAM	_ Model:		1500	
Tire Size:	265/70	R 17		Tire	Inflation Pre	essure:	35 p	osi
Tread Ty	pe: <u>Highwa</u>	у			Odo	meter: <u>10275</u>	50	
Note any	damage to th	ne vehicle prior	to test: N	lone				
• Denote	es accelerom	eter location.				-		
NOTES:	None		— ↑ ↑		7/		<u> </u>	
Engine Ty Engine C		ter	A M	WHEEL TRACK				N T
✓ Ai	sion Type: uto or WD _ R	Manual		R -	!*	TEST II	NERTIAL C. M.	•
Optional I None	Equipment:		_	P		I	<u> </u>	
Dummy	NON	E		I F	н	L V LS	- D-	-K L
Geometr	y: inches			4	M FRONT		▼ M REAR	
A	78.50	F 40.0	0 K	20.00	Р	3.00	U	26.75
В	74.00	G 28.4	10 L	30.00	Q	30.50	V	30.25
C2	227.50	Н 59.9	97 M	68.50	R	18.00	W	60.00
D	44.00	11.7	5 N	68.00	_ s _	13.00	Χ_	79.00
	140.50	J 27.0		46.00	_ T_	77.00	_	
Heig	Center	14.75	Wheel \	ont)	6.00	Bottom Frame Height - From	nt	12.50
Heig	l Center ght Rear	14.75	Wheel \ Clearance (R	ear)	9.25	Bottom Frame Height - Rea	ar	22.50
GVWR R		C=237 ±13 inches; E=148 Mass:				nones; 0=43 ±4 inones; I nertial		
Front	3700	iviass. M _{front}	יטו עו	<u>Curb</u> 2967	1681	2907	GIUS	ss Static 2907
Back	3900	. IVITTOTIL Mrear		2087		2165		2165
Total	6700	. M _{Total}		5054		5072		5072
	stribution:				Range for TIM and	GSM = 5000 lb ±110 lb	D)	
lb	SUIDUUON:	LF:1443	RF:	1464	LR:	1126	RR:	1039

Figure E.1. Vehicle Properties for Test No. 615181-01-12.

Date: _	2022-10-11	_ Test No.:	615181-01-12	_ VIN No.: _	1C6RR6FT8HS542679			
Year: _	2017	_ Make:	RAM	_ Model: _	1500			
VEHICLE CRUSH MEASUREMENT SHEET ¹								
Complete When Applicable								

Complete When Applicable								
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2 _							
< 4 inches								
≥ 4 inches								

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

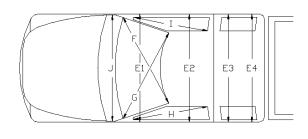
g :c		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L***	C ₁	C_2	C ₃	C ₄	C5	C ₆	±D
1	AT FT BUMPER	14	14	72							0
	Measurements recorded										
	√inches or ☐ mm										

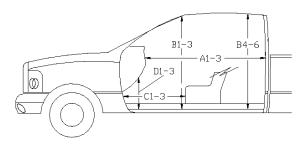
¹Table taken from National Accident Sampling System (NASS).

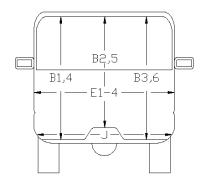
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure E.2. Exterior Crush Measurements for Test No. 615181-01-12.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.

 Date:
 2022-10-11
 Test No.:
 615181-01-12
 VIN No.:
 1C6RR6FT8HS542679

 Year:
 2017
 Make:
 RAM
 Model:
 1500

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEF	JKIVIA HOI	N INICASURI	
	Before	After	Differ.
		(inches)	
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	58.50	0.00
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
1	37.50	37.50	0.00
J*	25.00	25.00	0.00

Figure E.3. Occupant Compartment Measurements for Test No. 615181-01-12.

E.2. SEQUENTIAL PHOTOGRAPHS

Figure E.4. Sequential Photographs for Test No. 615181-01-12 (Overhead Views).

Figure E.5. Sequential Photographs for Test No. 615181-01-12 (Frontal Views).



Figure E.6. Sequential Photographs for Test No. 615181-01-12 (Oblique Views).

E.3. VEHICLE ANGULAR DISPLACEMENTS

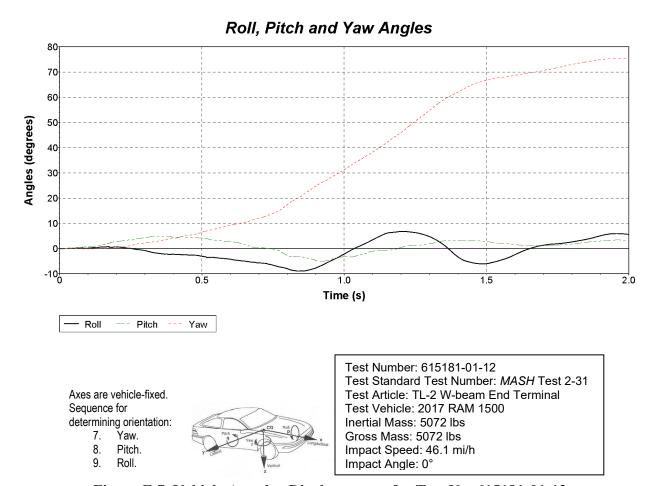


Figure E.7. Vehicle Angular Displacements for Test No. 615181-01-12.

E.4. VEHICLE ACCELERATIONS

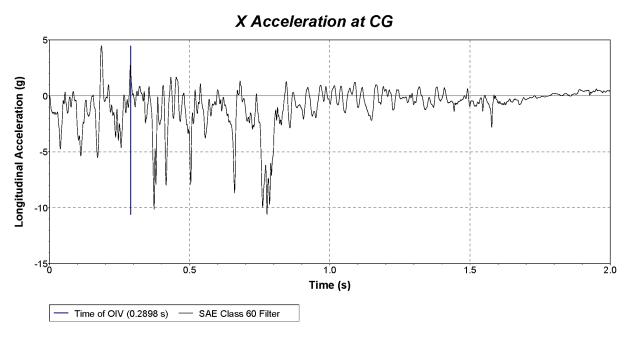


Figure E.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-12 (Accelerometer Located at Center of Gravity).

Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-12 (Accelerometer Located at Center of Gravity).

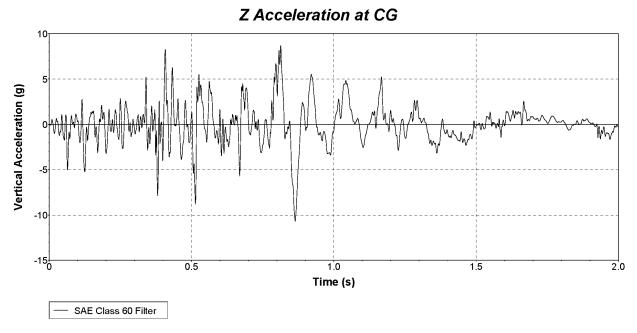


Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-12 (Accelerometer Located at Center of Gravity).

APPENDIX F.	MASH TEST 2-37B (CRASH TEST NO. 615181-01-13)

F.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2022-10-20	Test No.:	615181-1-13	_ VIN No.:	3N1CN7AP4HL8O4614
Year:	2017	_ Make:	Nissan	_ Model:	Versa
Tire Inf	lation Pressure: 36	PSI	Odometer: <u>59805</u>		Tire Size: <u>P185/65R15</u>
Describ	be any damage to the	e vehicle prid	or to test: None		
• Dend	otes accelerometer l	ocation.			
NOTES	S: None		- A M		••- N T
			_		
Engine Engine			_ •		, , , , , , , , , , , , , , , , , , ,
Transm	nission Type: Auto or	<u>M</u> anual	_ - -Q-3 >	1	
	FWD RWD al Equipment:	4WD	P	4	•
None	!				
Dummy Type:	/ Data: 50th Perce	ntile Male		<u>н</u> в	G K
Mass:			- - 4	——	0-
Geome			_		c————
A 66.7	-	50	K 12.50	P 4.50	U 15.50
B 59.6			L 26.00	Q 24.0	
C 175.		71	M 58.30	R 16.2	
D 40.5			N 58.50	S 7.50	
E 102.			O 30.50	T 64.5	
	eel Center Ht Front		Wheel Center Ht		
	-	= 169 ±8 inches; E		= 39 ±4 inches; O	(Top of Radiator Support) = 28 ±4 inches
GVWR	Ratings:	Mass: lb	<u>Curb</u>	Test I	nertial Gross Static
Front	1750	M_{front}	1443	1452	<u>1537</u>
Back	1687	M_{rear}	903	998	1078
Total	3389	M _{Total}	2346	2450	<u>2615</u>
			Allowable TIM = 24	20 lb ±55 lb Allow	rable GSM = 2585 lb ± 55 lb
Mass E	Distribution: LF:	742	RF: <u>710</u>	LR: <u>487</u>	7 RR: <u>511</u>

Figure F.1. Vehicle Properties for Test No. 615181-01-13.

Date:	2022-10-20	Test No.:	615181-1-13	VIN No.:	3N1CN7AP4HL804614
Year:	2017	Make:	Nissan	Model:	Versa

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable							
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2 _						
< 4 inches	=						
≥ 4 inches							

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G:6		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	AT FT BUMPER	14	6	28							-14
2	ABOVE FT BUMPER	14	6	50							60
	Measurements recorded										
	inches or mm										

¹Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure F.2. Exterior Crush Measurements for Test No. 615181-01-13.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

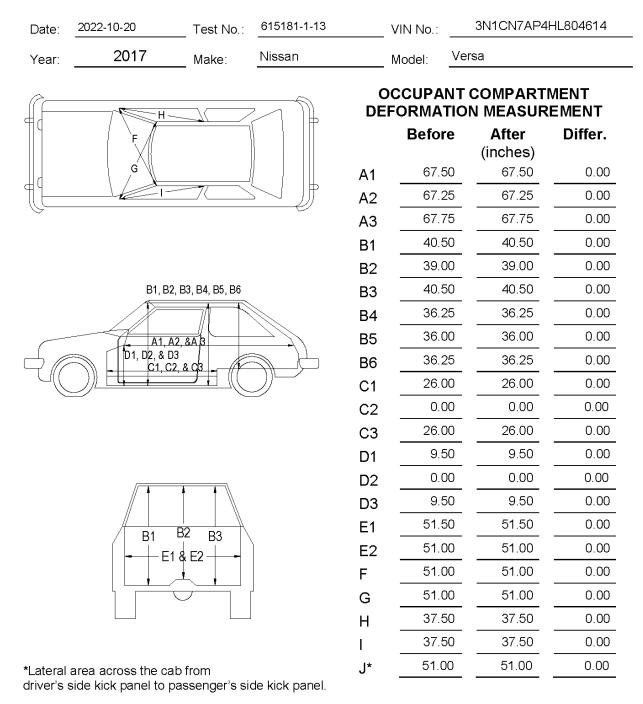


Figure F.3. Occupant Compartment Measurements for Test No. 615181-01-13.

F.2. SEQUENTIAL PHOTOGRAPHS

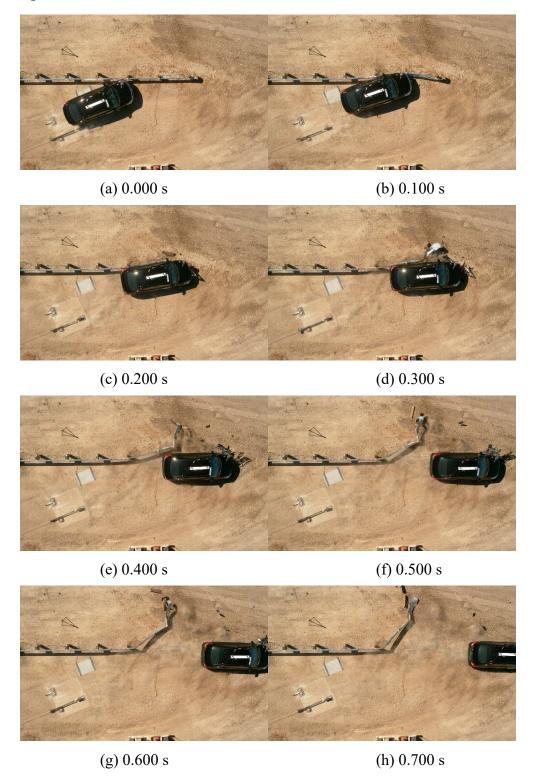


Figure F.4. Sequential Photographs for Test No. 615181-01-13 (Overhead Views).

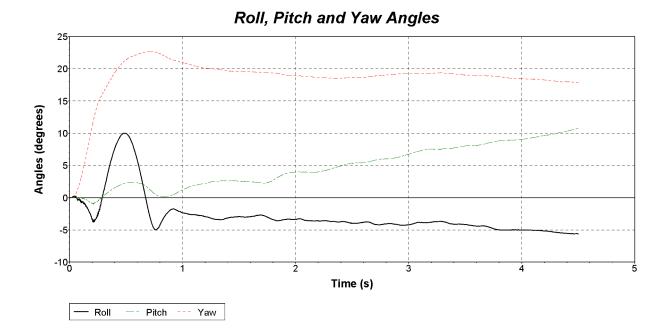


Figure F.5. Sequential Photographs for Test No. 615181-01-13 (Frontal Views).

Figure F.6. Sequential Photographs for Test No. 615181-01-13 (Rear Views).

F.3. VEHICLE ANGULAR DISPLACEMENTS

Axes are vehicle-fixed. Sequence for determining orientation:
10. Yaw.
11. Pitch.

12. Roll.

Test Number: 615181-01-13

Test Standard Test Number: MASH Test 2-37b Test Article: TL-2 W-beam End Terminal

Test Vehicle: 2017 Nissan Versa

Inertial Mass: 2450 lbs Gross Mass: 2615 lbs Impact Speed: 45.3 mi/h Impact Angle: 24.5°

Figure F.7. Vehicle Angular Displacements for Test No. 615181-01-13.

F.4. VEHICLE ACCELERATIONS

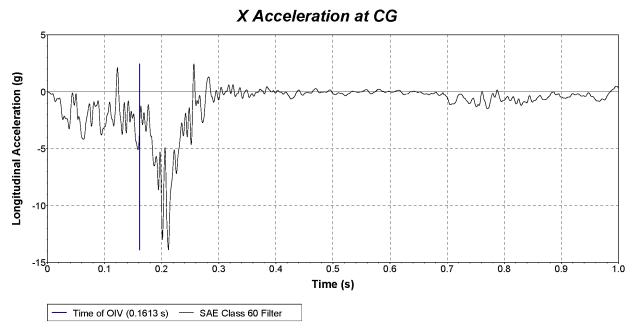


Figure F.8. Vehicle Longitudinal Accelerometer Trace for Test No. 615181-01-13 (Accelerometer Located at Center of Gravity).

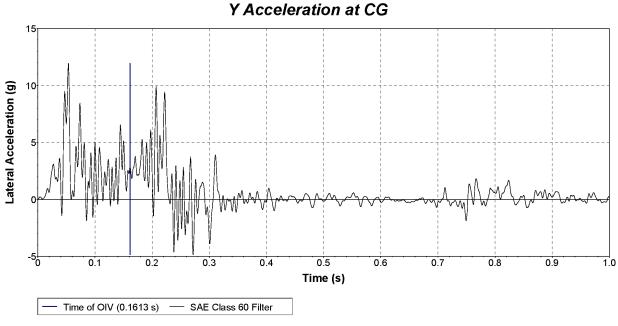


Figure F.9. Vehicle Lateral Accelerometer Trace for Test No. 615181-01-13 (Accelerometer Located at Center of Gravity).

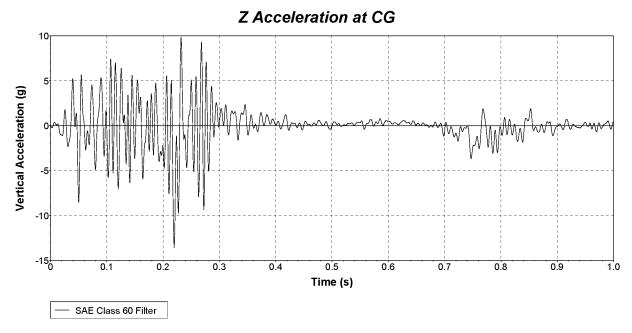


Figure F.10. Vehicle Vertical Accelerometer Trace for Test No. 615181-01-13 (Accelerometer Located at Center of Gravity).

