Appendix B – Wetlands Technical Reports

WETLAND AND STREAM DELINEATION FOR THE TANANA RIVER RECREATION ACCESS IMPROVEMENTS PROJECT, FAIRBANKS, ALASKA, 2020: AK FNSB TANANA(1)

Prepared for:

PND Engineers Inc. 1506 W. 36th Ave Anchorage, Alaska 99503

and

Federal Highway Administration Western Federal Lands Highway Division 610 E. 5th Street Vancouver, Washington 98661

Prepared by:

ABR, Inc.—Environmental Research & Services P.O. Box 240268 Anchorage, AK 99518

October 2020

INTRODUCTION1
PROJECT LOCATION1
STUDY AREA1
METHODS
FIELD SURVEY4
WETLAND CLASSIFICATION AND MAPPING
WETLAND FUNCTIONAL ASSESSMENT
Wetland Functions7
PROPOSED JURISDICTIONAL STATUS
RESULTS AND DISCUSSION
FIELD SURVEY AND HYDROLOGICAL CONDITIONS9
WETLAND CLASSIFICATION AND MAPPING11
Wetlands 11
Streams and Waters of the U.S
Uplands 17
WETLAND FUNCTIONAL ASSESSMENT17
PROPOSED JURISDICTIONAL STATUS
LITERATURE CITED

TABLE OF CONTENTS

LIST OF FIGURES

Figure 1.	Wetland mapping study area for the proposed improvements, Tanana River	
	Recreation Access Improvements Project, Alaska, 2020	2
Figure 2.	Wetlands and Waters of the proposed Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020	10

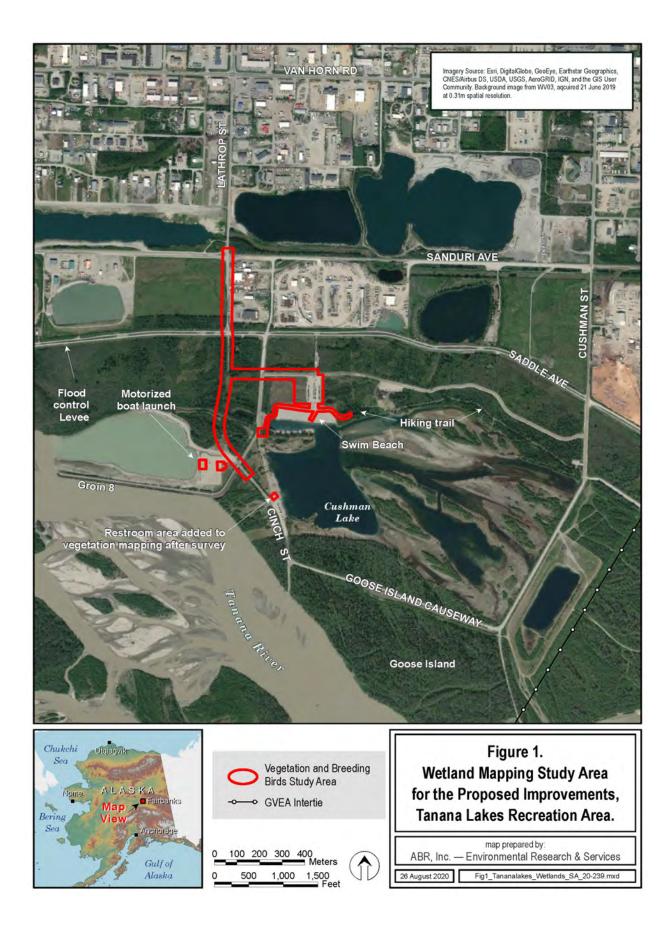
LIST OF TABLES

Table 1.	Monthly mean and long-term normal values for air temperature and total monthly precipitation at two meteorological stations within 5 miles of the study area	11
	study area	11
Table 2.	Acreages of wetlands, waters by wetland type and name, and acreages of	
	uplands within the mapping area for planned improvements, Tanana River	
	Recreation Access Improvements Project, Fairbanks, AK, 2020.	12
Table 3.	Functional Capacity Index scores for wetlands and waters functional classes	
	within the mapping area for planned improvements, Tanana River Recreation	
	Access Improvements Project, Fairbanks, AK, 2020	18
Table 4.	Connectivity characteristics and proposed jurisdictional classification for each	
	mapped wetland within the mapping area for planned improvements, Tanana	
	River Recreation Access Improvements Project, Fairbanks, AK, 2020	21

LIST OF APPENDICES

Appendix A. Wetland Determination Plot Forms	25
Appendix B. Map Verification Plot Information and Photos	85
Appendix C. Wetland Functional Assessment Worksheets	91

INTRODUCTION


The Tanana River Recreation Access Improvements Project is managed by the Federal Highway Administration, Western Federal Lands Highway Division (WFLHD). The project is intended to improve access to the Tanana Lakes Recreation Area (TLRA; managed by Fairbanks North Star Borough) and NEPA documentation is required. PND Engineers Inc. (PND) is the engineering and environmental contractor to WFLHD for the project and ABR, Inc.— Environmental Research & Services (ABR) is the subcontractor providing wetland information. A Clean Water Act (CWA) Section 404 wetland permit will be required for the project if there are direct impacts to wetlands (gravel fill) within the project area. To assist in the assessment of impacts to wetlands and possible design alterations for avoidance and minimization in the project area, this report presents the results of the field wetland determinations, the mapping of wetlands in the proposed development area, a proposed jurisdictional determination for the wetland types identified, and an assessment of functional values for the wetland types occurring in the project area.

PROJECT LOCATION

The project area is located immediately south of the city of Fairbanks within the Fairbanks North Star Borough (Figure 1). The coordinates for the center point of the main portion of the project are: 64.800963°,-147.741609° and the legal land description is: Sections 21-22, and 27-28, Township 1South, Range 1West, Fairbanks Meridian, Alaska.

STUDY AREA

The TLRA is located on the south (river) side of the Tanana Flood Control levee in south Fairbanks, and the majority of the proposed access improvements would occur within the TLRA. The portion of the study area north of the levee is outside of the TLRA boundary. The recreation area has been established around Cushman Lake, which was formed by the impounded waters of an active slough of the Tanana River (Figure 1). The Goose Island Causeway (a groin extension of South Cushman Street) and Groin 8 (an extension of Cinch Street) were constructed to create the freshwater Cushman Lake, which is suitable for recreation activities and habitat conservation. Groin 8 also protects the motorized boat launch area. The area was developed after 2012 to

include a swimming beach on Cushman Lake, hiking trails, the motorized boat launch that connects with the active channel of the Tanana River, and the non-motorized boat launch on the shore of Cushman Lake (FNSB 2007).

The wetland study area encompasses a total of 23 acres, and includes the areas for the proposed extension of South Lathrop Street, a spur road from South Lathrop Street to access the existing swim beach, as well as the areas of proposed improvements to the motorized boat launch facilities on the Tanana River, the non-motorized boat launch facilities on the southwest side of Cushman Lake, and the facilities at the swim beach on the north side of Cushman Lake. With the exception of a short section of South Lathrop Street north of the Tanana Flood Control levee, the majority of the study area is on the Tanana River side of the levee, and occurs on both the east and west sides of Groin 8. The wetland study area was defined in the FHWA Statement of Work as specific buffer zones surrounding areas of proposed infrastructure improvements. This included a buffer of 75 feet of either side of the proposed road centerlines, a buffer of 25 feet on either side of the proposed trail centerlines, a buffer of 25 feet around the proposed parking areas, and a buffer of 50 feet around the proposed restroom locations (Figure 1).

The entire TLRA area is located within the active floodplain of the large, braided Tanana River, but the hydrology has been substantially altered by the construction of the levee system and the creation of Cushman Lake. Surface water levels in the area are driven by water levels in the Tanana River and rainfall, but frequent flood events typical of undisturbed floodplains are moderated in the TLRA by the groins. Waters in the area have been formed by the impoundment of active sloughs of the Tanana River, the filling of gravel excavation depressions, and there is one flowing slough crossing the study area north of the motorized boat launch area. Overall, the terrain is characterized by flat, riverine-influenced lowlands, with small variations in elevation along the edges of abandoned river channels and depressions. North of the levee along South Lathrop Street, the study area is composed of a fallow field and an industrial park. According to the 2007 TLRA Master Plan, historically the area was composed of over 80% jurisdictional wetlands prior to any facility development (FNSB 2007). Surficial deposits are composed of alluvial sands and silts, with shallow organic layers developing in wetland areas. The geomorphology of the area consists of fluvial landscape features. As is much of Interior Alaska, the TLRA is located in a discontinuous permafrost zone. A variety of wetland types are present

in the study area, including forested wetlands, low and tall shrub wetlands, semipermanently flooded emergent wetlands, and both lotic (active sloughs) and lentic (impoundments) waters. Upland portions of the study area support both needleleaf and mixed needleleaf-broadleaf forests.

METHODS

FIELD SURVEY

The field wetland determination survey was conducted from 7–8 July 2020 by Julie Parrett and Wendy Davis of ABR. Routine wetland determinations were performed at 19 plots, using the U.S. Army Corp of Engineers (USACE) three-parameter approach (USACE 2007). Field plot locations were selected within uniquely identifiable photo-signatures, with replication, to adequately describe characteristics of naturally occurring wetlands and uplands in the study area. In cases in which photo-signatures were ambiguous or the wetland boundary was not identifiable by delineating the plant community boundary, additional plots were added to confirm the wetland boundary. Boundaries confirmed by wetland determination plots were delineated in the field using a global positioning system (GPS) tracking feature in ArcGIS Collector. Identified boundaries were confirmed directly in the field by comparison with the imagery used for the wetland mapping and were used as a preliminary mapping layer for further editing in the office (see Wetland Classification and Mapping below).

To be classified as a wetland, this approach requires that wetlands be dominated by hydrophytic plants, have hydric soils, and show evidence of a wetland hydrologic regime. In addition to full wetland determination plots, field verification plots were sampled at 10 locations. Field verification plots involve rapid assessments to document photo-signatures and improve mapping accuracy (see below).

At each wetland determination plot the following variables were recorded: National Wetland (NWI) type, physiographic type, hydrogeomorphic (HGM) type, and Level IV vegetation class (Viereck et al. (1992), as well as the required USACE data on plant cover by vegetation strata, wetland hydrology, and hydric soils. Observations of wildlife use (e.g., browse, scat) or human activity (e.g., foot trails) were also recorded to support the wetland mapping and functional assessment. GPS coordinates were recorded at each plot along with photos of site characteristics,

vegetation, and soils. Wetland plant taxonomy and indicator status were recorded per the 2018 *National Wetland Plant List: Alaska* (Lichvar et al. 2018). At verification plots, a subset of the data collected at wetland determination plots was collected, including GPS coordinates, NWI type, plant cover data (for dominant species only), and site photographs.

Navigation in the study area was accomplished using ESRI's *ArcGIS Online Collector* program, running on Android tablet computers. *ArcGIS Collector* allows point-location data to be recorded using a geographically referenced image background (in this case the same imagery that was used in the wetland mapping process, see Wetland Classification and Mapping below). Wetland data were recorded electronically in the field using an Android tablet app developed by ABR specifically for collecting USACE-required wetlands data. The supplementary field data collected for the wetland functional assessment were recorded using a separate ABR-developed Android app. In addition to storing data in a relational database, these apps will produce USACE standard data forms (USACE 2007) in a PDF format for each wetland determination plot (see Appendix A). Verification plot information and documentary photographs are presented in Appendix B.

Wetland determination plots were named according to the wetland number assigned to each wetland within the final mapping as follows: W(wetland number)-SP(soil pit number within the wetland). Examples plot names are W1-SP1, W1-SP2, W2-SP1, W2-SP2, etc. Upland polygons were not numbered and naming conventions for wetland determination plots within those polygons were named sequentially (TL-01, TL-02, etc.). Wetland determination plots describing lotic waters were named sequentially (STREAM-1, STREAM-2, etc.) and Ordinary High Water Mark boundaries were labeled (OHWM 1-1, OHWM 1-2, etc.) depending on the stream number and the number of edges delineated along each stream.

WETLAND CLASSIFICATION AND MAPPING

The wetland mapping strategy is based on a combination of aerial photo interpretation and ground-truth data. Field data are collected for identifiable photo signatures where the wetland boundaries coincide with the plant community boundaries or topographic features visible in aerial imagery. The U.S. Fish and Wildlife Services NWI program methodology for remotely mapping wetland boundaries is described in Dahl et al (2015). In cases where boundaries were

not visible in the imagery additional field plot data within the same photo signature were used to define the boundaries. This combined approach of photo interpretation and detailed field collection is well suited to Alaska where wetlands often extend widely, mapping areas are often very large with relatively little previous disturbance.

As noted above, wetland boundaries were identified in the field and recorded with GPS coordinates and were then delineated on-screen for the wetland map using ArcGIS software. Boundaries were identified using the field ground-reference data collected for this project (see above) in combination with existing wetland mapping data and interpretation of aerial photosignatures. Wetland types were mapped at a scale of 1:1,000 and each mapped polygon was assigned a wetland class using NWI notation (FGDC 2013; Dahl et al. 2015). High-resolution, digital, ortho-corrected photography and satellite imagery for the study area were obtained through ESRI's "World Imagery" database. The best data layer was selected as the basemap for this study (WorldView-3 satellite imagery acquired 21 June 2019, with 0.31 m pixel resolution). Additional data sources used during the mapping phase included existing NWI mapping (USFWS 2020), existing wetland mapping and field data (USKH 2007, HDR 2013), a vegetation mapping layer prepared for the biological resources survey report for this project (ABR 2020), soil survey data (NRCS 2020), fish presence or absence data (ADF&G 2020), Alaska Department of Natural Resources (ADNR) navigable waters web map (ADNR 2020), weather data (NOAA 2020), and the Tanana River hydrograph (USGS 2020).

WETLAND FUNCTIONAL ASSESSMENT

Under the current USACE procedures for Alaska, a site-specific assessment of wetland function is used with the wetland debit-credit calculation protocol (USACE 2016) to establish debits for a proposed project and to determine the extent of mitigation that may be necessary. Mitigation is not required for all projects. For the Tanana River Recreation Access Improvements Project, ABR used a rapid wetland functional assessment method that the company has developed over the past 8 years specifically for use in Alaska. This approach has been successfully used for wetland permitting in several recent highway improvement projects in Interior Alaska, because it provides numerical functional capacity index scores required to calculate project debits and credits.

The rapid functional assessment method involves a flexible scoring system that relies on available site-specific literature and quantitative data (when available) to determine the presence or absence of specific wetland function indicators. The functional indicators are developed specifically to address the wetland functions known or expected to occur in a given region in Alaska. For this study, site-specific field data, satellite imagery interpretation, and review of the scientific literature on wetland functions were used to evaluate the presence or absence of wetland function indicators.

WETLAND FUNCTIONS

To reduce duplication and complexity, prior to the ranking of wetland functions, the NWI wetland types mapped in the study area that share the same wetland functions were aggregated into a smaller set of wetland functional classes. This reduces the number of wetland classes to be assessed. For each wetland functional class, the functional indicators applicable to each wetland function were ranked as present (1) or absent (0). The Functional Capacity Index (FCI) score for each wetland function for each wetland functional class was then calculated as a proportion of the total possible score (e.g., 3 of 4 possible functional indicators present results in an FCI score of 0.75). This protocol satisfies the requirement of the current USACE wetland mitigation methods (USACE 2016) that wetland functions be numerically scored between 0 and 1. For the proposed project, 8 wetland functions were evaluated as described below. Details on the scoring of wetland functions for the wetland functional classes present in the study area are provided in Appendix C.

Flood flow regulation (storage) is the capacity of a wetland to control surface-water flow and subsequently moderate downstream flooding. Waters below ordinary high water and wetlands that do not flood at least seasonally were not considered to perform this function. Indicators of flood flow regulation function include a high degree of surface roughness, a depressional HGM class conducive to storage, visible signs of variable water level (and thus storage), and the likelihood that flooding will occur.

Sediment, nutrient, and toxicant removal is the capacity of a wetland to retain suspended sediment and nutrients and/or toxicants adsorbed to inorganic sediments. The indicators of floodwater storage, as described above, are important indicators of this function as well.

Erosion control and shoreline stabilization is the degree to which a wetland reduces erosion at the edges of relatively permanent flowing waters. There are no flowing waters in the project footprint; therefore this function was not assessed.

Organic matter production and export is the capacity of a wetland to make organic matter contributions to the ecosystem through primary production. Field data for the project footprint were used to assess production of organic matter through the occurrence of herbaceous or deciduous woody vegetation, and the potential export of organic matter contributions was assessed by evaluating surface-water connections and flooding.

Threatened and endangered species (TES) support is the capacity of a wetland or water to support federal or state listed threatened or endangered species. No threatened or endangered species are known to occur in the study area, and their occurrence is extremely unlikely given the known ranges of TES species in Alaska. For these reasons, this function was not assessed for any wetland type and is not included in the analyses presented in Appendix C.

Avian/mammal habitat suitability is the capacity of a wetland to support a diversity of wildlife species. This function was assessed from a local-scale understanding of the habitat characteristics of the wetlands, waters, and landscape features in the project footprint. This is a general habitat suitability assessment and does not account for actual or expected species richness within a given functional class or species-specific habitat preferences. The functional indicators considered important for a wide variety of avian and mammal species include level of human disturbance at the site, recorded use of the wetland type by wildlife, interspersion of open water and vegetation, and stratification (complexity) of vegetation.

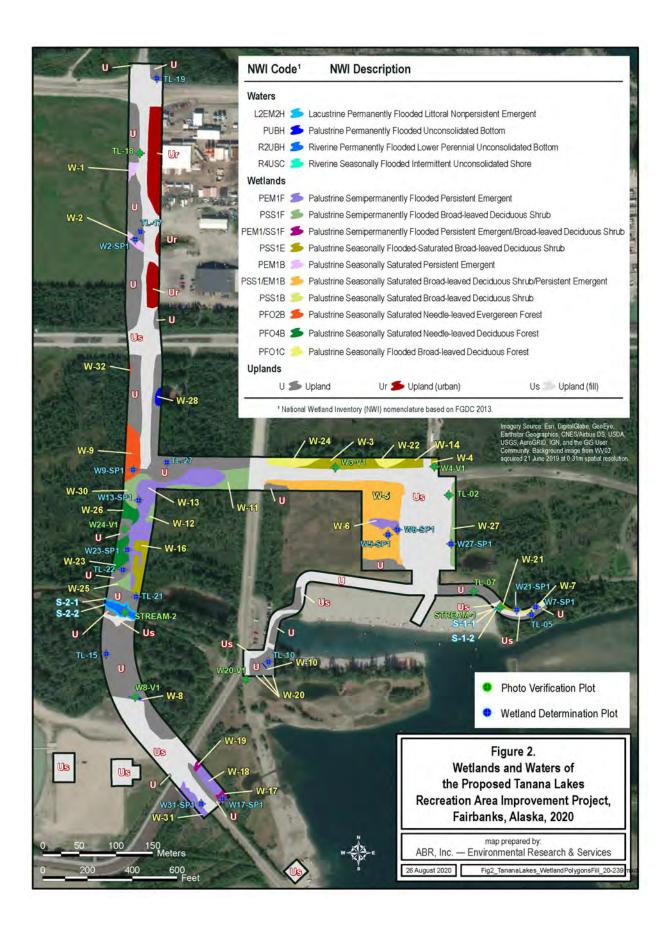
Fish habitat suitability was evaluated by assessing the degree to which a wetland or water directly supports fish. Only those wetlands and waters with at least a seasonal, intermittent connection to known or likely fish-bearing waters have the potential to perform this function.

Educational, scientific, recreational, or subsistence use reflects the degree to which a wetland provides direct support of hunting and gathering activities, local travel, and/or education. The criteria used to determine if the study area is important for educational or scientific use include whether long term research sites or permanent sample plots are present and

could be directly affected by the proposed project. Established trails visible on aerial photos or documented in field data are considered indicative of local travel.

PROPOSED JURISDICTIONAL STATUS

Wetlands and waters within the study area were assessed to determine if they met the definition of a water of the U.S., subject to jurisdiction under Section 404 of the CWA, and/or a navigable water of the U.S., subject to jurisdiction under Section 10 of the Rivers and Harbors Act. The Navigable Waters Protection Rule (NWPR, Clean Water Act 33 CFR Part 328), which recently came into effect, clarifies the scope of jurisdictional waters of the U.S. in light of three U.S. Supreme Court cases: *U.S. v. Riverside Bayview Homes* (*Bayview*), *Solid Waste Agency of Northern Cook County v. U.S.* (*SWANCC*), and *Rapanos v. U.S.* (*Rapanos*).


Under the new NWPR, jurisdiction is applied to four categories of waters of the U.S.: (1) the territorial seas and traditional navigable waters (TNW)s; (2) perennial and intermittent tributaries to those waters; (3) certain lakes, ponds, and impoundments; and (4) adjacent wetlands as defined by 33 CFR Parts 328 and 120—Definition of Waters of the United States. To classify wetlands and waters within the study area into jurisdictional categories and to establish connectivity to TNWs, the EPA Training and Implementation Materials were also consulted (EPA 2020). TNWs are defined as "all waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide" [33 C.F.R. Section 328 3(a)]. For the purposes of this survey the USACE navigable waters list was used to determine navigability (USACE 2020).

RESULTS AND DISCUSSION

FIELD SURVEY AND HYDROLOGICAL CONDITIONS

Standard USACE three-parameter wetland determinations were completed at 19 field plots; 11 were classified as wetlands or waters and 8 as uplands (Figure 2, Appendix A). In addition, field verification plots were completed at 10 locations (Appendix B).

Two meteorological stations are in operation near the study area: the Fairbanks Airport located 4.9 miles west of the study area, and Aurora located 4.0 miles north of the study area. Compared to long-term averages for National Climatic Data Center normal mean air

temperatures and total monthly precipitation, May 2020 was slightly warmer and drier than normal, while April and June 2020 were characterized by normal air temperatures but two to three times the normal precipitation (Table 1). Heavy precipitation in June 2020 was apparent in local rivers and streams. Although flows were close to the daily median in early July, the Tanana River gage at Fairbanks (15485500) recorded an approximate 25-year flow event in late June (USGS 2020).

Table 1.Monthly mean and long-term normal values for air temperature (°C) and total
monthly precipitation (mm) at two meteorological stations within 5 miles of the study
area.

		A	urora			Fairban	ks Airport	
	Temperatu	ure (°C)	Precipitatio	on (mm)	Temperatu	ure (°C)	Precipitati	on (mm)
Month	1981-2010	2020	1981-2010	2020	1981-2010	2020	1981-2010	2020
April	0.3	0	8.1	28.1	0.3	-0.8	7.9	32.3
May	9.6	11.6	19.8	10.8	9.7	11.8	15.2	13.2
June	15.6	15	42.4	110.3	15.8	15.4	34.8	79.7

The higher than average precipitation for the months preceding the field survey in July 2020 and the high water table, which is assumed to be associated with high water in the Tanana River, likely accounted for the higher water line in Cushman Lake and flooding of saturated wetlands upslope of the existing site access roads. In this situation, surface runoff from precipitation is essentially perched on a high groundwater level causing flooding in wetland communities that are typically only saturated during the growing season.

WETLAND CLASSIFICATION AND MAPPING

WETLANDS

Ten wetland classes were mapped within the study area, including forested, shrub, and emergent wetlands, with hydrology ranging from seasonally saturated to semipermanently flooded. Their combined total area encompassed approximately 6.09 acres, or 26 percent of the study area (Table 2).

NWI_Code ^a	NWI Description ^a	Wetland Name	Acres ^b	Percent of Study Area
Waters		Total	0.22	0.96
PUBH	Palustrine Permanently Flooded Unconsolidated Bottom	Subtotal	0.07	0.30
		W-10	0.01	0.04
		W-28	0.04	0.17
		W-8	0.01	0.04
R2UBH	Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom	Stream-2	0.14	0.61
R4USC	Riverine Seasonally Flooded Intermittent Unconsolidated Shore	Stream-1	0.01	0.04
L2EM2H	Lacustrine Permanently Flooded Littoral Nonpersistent	W-20	0.01	0.04
Wetlands		Total	6.09	26.47
PEM1F	Palustrine Semipermanently Flooded Persistent Emergent	Subtotal	1.43	6.21
		W-13	0.99	4.30
		W-18	0.14	0.61
		W-31	0.18	0.78
		W-6	0.13	0.56
PEM1/SS1F	Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub	Subtotal	0.07	0.30
		W-17	0.04	0.17
		W-19	0.02	0.09
PSS1F	Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub	Subtotal	0.85	3.69
		W-11	0.37	1.61
		W-12	0.04	0.17
		W-25	0.08	0.35
		W-27	0.16	0.70
		W-30	0.20	0.87
PSS1E	Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub	Subtotal	0.78	3.39
		W-14	0.12	0.52
		W-16	0.24	1.04
		W-21	0.03	0.13
		W-3	0.35	1.52
		W-4	0.04	0.17
PEM1B	Palustrine Seasonally Saturated Persistent Emergent	Subtotal	0.16	0.70
		W-1	0.07	0.30
		W-2	0.09	0.39

Table 2.	Acreages of wetlands, waters by wetland type and name, and acreages of uplands
	within the mapping area for planned improvements, Tanana River Recreation Access
	Improvements Project, Fairbanks, AK, 2020.

NWI_Code ^a	NWI Description ^a	Wetland Name	Acres ^b	Percent of Study Area
Wetlands (con	t.)			
PSS1/EM1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent	W-5	1.71	7.43
PSS1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub	W-7	0.05	0.22
PFO2B	Palustrine Seasonally Saturated Needle-leaved Deciduous Forest	Subtotal	0.40	1.74
		W-9	0.21	0.91
		W-32	0.02	0.09
PFO4B	Palustrine Seasonally Saturated Needle-leaved Evergreen Forest	Subtotal	0.34	1.48
PFO1C	Palustrine Seasonally Flooded Broad-leaved Deciduous Forest	Subtotal	0.32	1.39
		W-22	0.11	0.48
		W-24	0.21	0.91
Uplands		Total	16.70	72.58
Û	Uplands	n/a	6.38	27.73
Ur	Uplands (urban)	n/a	0.86	3.74
Us	Uplands (fill)	n/a	9.46	41.11

Table 2. Continued.

^a National Wetland Inventory (NWI) annotation based on FGDC (2013) classification system.

^b All values rounded to the nearest 0.01 acre.

Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent (PSS1/EM1B) is the wetland type with the greatest mapped extent (1.71 acres) within the study area (Table 2). The dominant shrub species include *Betula nana* (dwarf birch), *Salix pulchra* (diamondleaf willow), *Myrica gale* (sweetgale), and *Chamaedaphne calyculata* (leatherleaf). The herb layer is dominated by *Equisetum arvense* (field horsetail) and *Calamagrostis canadensis* (bluejoint). Soils met the histic epipedon hydric criteria and were saturated to the surface at the time of sampling. This wetland type is located in a cleared area surrounded by roads and berms, to the west of the swim beach parking lot (see plot W5-SP1 in Appendix A and Figure 2). Hydrology in this type may be affected by the surrounding roadways, but vegetation and soils clearly indicate that wetland conditions were present prior to disturbance.

Palustrine Semipermanently Flooded Persistent Emergent (PEM1F) wetlands are nearly as abundant in the study area as PSS1/EM1B wetlands (above), with a total mapped area of 1.43 acres (Table 2). This wetland type occurs in wet sedge meadows along the proposed new road alignment (see plot W13-SP1 in Appendix A), near the non-motorized boat launch (see plot W31-SP1 in Appendix A), and in an inundated swale within the shrubby area adjacent to the swim beach parking lot (see plot W6-SP1 in Appendix A and Figure 2). Dominant species include *Carex aquatilis* (water sedge), *C. utriculata* (Northwest Territory sedge), *Calamagrostis canadensis, Comarum palustre* (marsh cinquefoil), and *Equisetum fluviatile* (water horsetail). All plots of this type were inundated at the time of sampling and hence no soil pits were dug. Deep surface water (>12 inches in depth) was present in some areas.

Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub (PSS1F) encompasses a total of 0.85 acre within the study area (Table 2). This wetland type occurs mainly at locations where water has been impounded, for example in the area adjacent to the swim beach parking lot (see plot W27-SP1 in Appendix A). The dominant shrub species is *M. gale*. These wetlands were flooded at the time of sampling and soil pits were not dug. Based on the prevalence of obligate wetland species, it is assumed that soils are hydric.

Palustrine Seasonally Saturated Needle-leaved Deciduous Forest (PFO2B) was mapped at 2 locations, with a total area of 0.40 acre (Table 2). The dominant tree species is *Larix laricina* (tamarack), with a shrub understory consisting primarily of *Rhododendron groenlandicum* (bog Labrador tea), *Betula glandulosa* (resin birch), and *Chamaedaphne calyculata*. Soils were histic epipedons, saturated to the surface.

Palustrine Seasonally Saturated Needle-leaved Evergreen Forest (PFO4B) occupies 0.34 acre within the study area (Table 2). This forested wetland type is part of the undisturbed riverine wetland complex along the proposed new road alignment and is dominated by *P. mariana* with an understory of *Ledum groenlandicum*. Soils were saturated histic epipedons with seasonal frost reached at 17 inches (see plot W23-SP1 in Appendix A).

Palustrine Seasonally Flooded Broad-leaved Deciduous Shrub (PSS1E) was mapped at several locations, with a total area of 0.78 acre (Table 2). This wetland type appears to occur within the study area mainly as a result of recent flooding; the areas do not appear inundated in

2019 imagery. In the area described at plot W21-SP1 (Appendix A), the vegetation was dominated by the non-native, invasive *Prunus padus* (European bird cherry), the remaining codominant shrub types did not constitute hydrophytic vegetation but the bare soil surface indicates flooding has been present long enough to modify the original plant community, with non-native species recolonizing. The verification plots W3-V1 and W4-V1 describe a similar situation with vegetation dominated by *Salix alaxensis* (feltleaf willow), *Populus balsamifera* (balsam poplar), *B. glandulosa, Alnus incana* (gray alder), *Rosa acicularis* (prickly rose), and *Chamaedaphne calyculata*. All sites were inundated at the time of sampling so no pits were dug. The flooding appears to be extensive and is at least frequent enough to impact the emergent plant stratum. For the purposes of the current field investigation may be required to determine the cause and frequency of the flooding.

Palustrine Seasonally Flooded Broad-leaved Deciduous Forest (PFO1C) was mapped at 2 locations along the road near the swim beach parking lot, with a combined area of 0.32 acres in the study area (Table 2). These areas are birch forests that are apparently usually uplands, but were flooded during the field survey and thus no soil pits were dug. This wetland type was classified on the basis of extensive flooding present at the time of the field survey. Additional data may be required to determine how often this site is inundated and if the hydrology of the area is altered permanently.

Palustrine Seasonally Saturated Persistent Emergent (PEM1B) wetlands in the study area (0.16 acre; Table 2) consisted of small drainage features in a fallow field along the west side of South Lathrop Avenue (see plot W2-SP1 in Appendix A). The presence of non-native plant species and vehicle tracks, as well as altered drainage due to the road, indicates that vegetation, soils, and hydrology are significantly disturbed. The vegetation is dominated by *Calamagrostis canadensis* and *E. arvense*. Non-native species recorded included *Sonchus arvensis* (sow thistle), *Hordeum jubatum* (foxtail barley), *Trifolium hybridum* (Alsike clover), and *Plantago major* (broadleaf plantain). The site has a thick organic layer underlain by a silt loam mineral layer with Alaska Redox hydric soil characteristics. At the time of sampling. the soil pit lacked primary hydrology indicators but met wetland criteria with secondary characteristics.

Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub (PEM1/SS1F) occupies 0.07 acre in the study area (Table 2). This wetland type consists of a wet sedge meadow with interspersed sparse tall shrubs; it occurs adjacent to the Cushman Lake shoreline and along the edge of a PEM1F wetland (see plot W17-SP1 in Appendix A and Figure 2). Co-dominant shrub species are *Salix lasiandra* (Pacific willow), *S. interior* (sandbar willow), and *S. alaxensis*. Important herbaceous species include *Equisetum palustre* (marsh horsetail) and *Calamagrostis canadensis*. The site was inundated at the time of sampling with approximately 5 inches of surface water.

Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub (PSS1B) encompasses 0.05 acre in the study area, at a single site adjacent to a recently constructed walking trail. The water table at the site was much higher than would be indicated by the vegetation composition. Water may be originating from flooded wetlands upslope, possibly impounded by the trail. High water levels in the Tanana River may also have been a contributing factor at the time of the field survey. The dominant shrub species is *Rosa acicularis*, with lower cover of *S. alaxensis*, *A. incana*, and *Ribes hudsonianum* (northern black currant). Sparse tree cover consisting of *Populus balsamifera* and *Picea glauca* is also present. The understory consists primarily of *E. arvense* and *Cornus canadensis* (dwarf dogwood).

STREAMS AND WATERS OF THE U.S.

Four water classes were mapped in the study area, including 2 riverine, 1 lacustrine, and 1 palustrine. Their combined total area was approximately 0.22 acres, or 0.96 percent of the study area.

Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom (R2UBH) occupies 0.14 acre within the study area (Table 2). This actively flowing slough drains Cushman Lake to the west via a culvert under the boat launch access road. Water depth was approximatley 6 inches at the time of the field survey. Emergent vegetation includes *Hippuris vulgaris* (common mare's-tail), *Schoenoplectus pungens* (common threesquare), and *E. palustre*.

Palustrine Permanently Flooded Unconsolidated Bottom (PUBH) encompasses 0.07 acre in the study area (Table 2). This class includes a ditch that is likely flooded throughout the growing season in most years, and supports obligate wetland plants such as *Schoenoplectus*

tabernaemontani (softstem bulrush), *E. palustre*, and *Juncus alpinoarticulatus* (northern green rush). Several small isolated depressional features within upland forest types were also classified as PUBH. They lack inflow or outflow, have poor littoral development, and are unvegetated.

Riverine Seasonally Flooded Intermittent Unconsolidated Shore (R4USC) occupies 0.01 acre in the study area (Table 2). This small channel was constructed with landscaping fabric within the sand of the swim beach to drain the upslope wetland across the beach to Cushman Lake. At the time of the field survey, the landscaping fabric was torn and degraded. No flow was occurring, but stagnant water was present.

Lacustrine Permanently Flooded Littoral Nonpersistent Emergent (L2EM2H) encompasses 0.01 acre in the study area (Table 2) along the shoreline of Cushman Lake. This is a very well developed littoral area with both persistent emergent vegetation and rooted aquatic plants. The shoreline at the time of the field survey was much higher than in the June 2019 aerial photograph used for mapping the site. However, the presence of obligate wetland plant species such as *S. tabernaemontani* and *Typha latifolia* indicate that the area is typically flooded.

UPLANDS

Uplands occupied a total of 16.7 acres, or 73% of the study area (Table 2). Uplands (fill; Us) constituted the largest portion of the acreage (approximately 9.5 acres). Natural Uplands (U) included mature black spruce, poplar, birch, and mixed forests, as well as fallow fields and dry roadsides; these areas combined occupy approximately 6.4 acres. The industrial area along South Lathrop Avenue north of the levee was classified as Uplands (urban; Ur) and occupies approximately 0.9 acre in the study area.

WETLAND FUNCTIONAL ASSESSMENT

The 14 mapped NWI wetlands and waters types were aggregated into 8 wetland functional classes for analysis (Table 3, Appendix C). Of the 8 wetland functional classes, 4 are waters and 4 are wetlands. NWI wetland types with similar functions were grouped first according to HGM class, then NWI classification system and subsystem breaks, and finally by water regime (see Table 3 for NWI groupings within wetland functional classes).

Wetland Functional Class	Flood Flow Regulation	Sediment/ Nutrient/ Toxicant Removal	Erosion Control & Shoreline Stabilization	Organic Matter Production and Export	Avian and Mammal Habitat Suitability	Fish Habitat Suitability	Education/ Science/ Rec/ Subsist Use
Waters							
Lower Perennial Stream R2UBH	0.25	1.00	0.33	1.00	0.33	0.80	1.00
Intermittent Stream R4USC	0.25	0.75	0.00	0.50	0.00	0.00	1.00
Lacustrine Lentic Waters L2EM2H	0.75	1.00	0.00	1.00	0.33	1.00	1.00
Palustrine Lentic Waters PUBH	0.50	0.50	N/A	0.00	0.00	0.20	1.00
Wetlands							
Semipermanently Flooded Wetlands PEM1F, PEM1/SS1F, PSS1F	0.75	0.66	N/A	1.00	0.75	N/A	1.00
Seasonally Flooded Wetlands PSS1E, PFO1C	0.75	0.66	N/A	1.00	0.50	N/A	1.00
Seasonally Saturated Emergent and Shrub Scrub PEM1B, PSS1/EM1B, PSS1B	0.50	0.50	N/A	0.00	0.50	N/A	1.00
Seasonally Saturated Needle-leaved Forest PFO2B, PFO4B	0.50	0.50	N/A	0.66	0.50	N/A	1.00

Table 3.Functional Capacity Index (FCI) scores for wetlands and waters functional classes
within the mapping area for planned improvements, Tanana River Recreation Access
Improvements Project, Fairbanks, AK, 2020.

The TLRA is in public use and provides numerous educational, recreational, and subsistence uses since the area has been improved to include swim beaches, playgrounds, boat rentals, and boat launches. All wetland functional classes were rated with an FCI value of 1 for this function.

Fish habitat suitability and erosion control and shoreline stabilization were not assessed for any wetlands because they are not directly bordering any waterbodies, The waters present in the study area were assessed (Table 3). Flood flow regulation was ranked under 0.50 FCI for all waters except Lacustrine Lentic Waters and >0.50 for all wetlands. Most waters in the study area are inherently poor in regulating floodwaters except where storage is available in depressional features or where dense shoreline vegetation persists as for Lacustrine Lentic Waters. Semipermanently Flooded and Seasonally Flooded wetlands scored high on the basis of thick emergent vegetation and the capacity for emergent vegetation to attenuate floodwaters through sheet flow.

Rankings for sediment/nutrient and toxicant removal were >0.50 for waters and >0.50 and <0.66 for wetlands. Lower Perennial Stream and Lacustrine Lentic Waters have dense emergent vegetation bordering a waterbody with the capacity to filter pollutants that may result from roadway runoff. Wetlands also had dense vegetation and thick organic mats to filter runoff but did not have extensive interspersion of vegetation and water and did not show evidence of repeat flooding events.

Erosion control and shoreline stabilization was rated <0.33 for all waters and not assessed for wetlands because the wetlands in the study area do not directly abut any waterbodies. Most of the substrates in the area are composed of highly erodible sands and silts, and review of historical imagery indicates that shorelines are changing rapidly in the area due to increased flooding and changes in channel morphology.

Organic matter production and export ranked >0.66 to 1.00 for all wetlands and waters in the study area. Lower Perennial Stream, Lacustrine Lentic Waters, Semipermanently Flooded, and Seasonally Flooded wetlands all had FCI values of 1.00, on the basis of dense vegetation, frequent flood events, and availability of organic materials.

Avian and mammal habitat suitability was rated between 0.33 and 0.50 FCI for most functional classes, though Semipermanently Flooded Wetlands (marsh habitats) had an FCI score of 0.75. Breeding bird species were observed in June 2020 (ABR 2020) in habitats in all four wetland functional classes but not in any of the four waters classes. The waters classes in the study area are represented by small, isolated waterbodies and are relatively unattractive to breeding birds. They will also be sparingly used by foraging shorebirds and waterbirds. Suitable habitat structure (vegetation strata) for use by bird and mammal species was present throughout the study area.

The Lacustrine Lentic Waters were mapped at the edge of Cushman Lake in an area that appears to be seasonally flooded based on analysis of historical imagery. Based on the well-developed vascular aquatic and emergent aquatic plant community on the shoreline the area is very likely to be connected to Cushman Lake for significant periods throughout the growing season. Lacustrine Lentic Waters ranked high for Fish Habitat Suitability with an FCI score of 1.00. It was assumed that Cushman Lake was deep enough to provide overwintering habitat, connectivity to the fish bearing Tanana River (ADF&G 2020) indicated that fish are present and suitable rearing and spawning habitat is available. The Lower Perennial Stream also ranked high with an FCI of 0.80, lacking only the capacity to provide overwintering habitat based on the shallow channel depth.

PROPOSED JURISDICTIONAL STATUS

The nearest TNW to the study area is the Tanana River (USACE 2020; Figure 1). Cushman Lake is a permanently flooded waterbody created through the impoundment of river water. It is immediately abutting the active channel (the edge of the lake is only separated by a natural levee with a surface water connection to the main channel) of the Tanana River and also connected via surface water flowing in a side slough (STREAM-2). STREAM-2 was considered a jurisdictional tributary on the basis that it connects directly to the Tanana River (Figures 1 and 2). STREAM-1 is intermittent lotic water that conveys water intermittently from upslope wetlands into Cushman Lake on the east side of the swim beach (Figure 2). STREAM-1 was considered a tributary on the basis of downstream connectivity to the Tanana River via Cushman Lake (Table 4).

The majority of the wetlands identified in the study area were considered to be adjacent wetlands on the basis that they abut Cushman Lake, STREAM-2, are drained by STREAM-1, or are part of the naturally occurring riverine wetland complex that directly abuts the Tanana River. PUBH waters mapped as W-8, W-10, and W-28 are proposed as non-jurisdictional on the basis that they are formed in depressions likely resulting from prior gravel mining or construction in the area; they are completely surrounded by uplands and no surface water inlets or outlets were observed during the field survey (Figure 2 and Table 4).

Table 4.	Connectivity characteristics and planned improvements, Tanana	y characte rovement		proposed jurisdictional classification for each mapped wetland within the mapping area for River Recreation Access Improvements Project, Fairbanks, AK, 2020.
Wetland Name	NWI Code	Area (acres)	Jurisdictional class	Characteristics
Stream-1	R4USC	0.01	tributary	Constructed ditch contributing intermittent flow from upstream wetlands to Cushman lake, to STREAM-2, and then to the Tanana River
Stream-2	R2UBH	0.14	tributary	Active riparian slough with perennial flow connecting directly to the Tanana River
W-1	PEM1B	0.07	review required	Possibly non-jurisdictional as an exemption for prior converted cropland with no direct surface
W-2	PEM1B	0.09	review required	water connection Possibly non-jurisdictional as an exemption for prior converted cropland with no direct surface water connection
W-3	PSS1E	0.35	review required	Impounded wetlands with no direct surface water connection
W-4	PSS1E	0.04	review required	Impounded wetlands with no direct surface water connection
W-5	PSS1/EM1B	1.71	adjacent wetlands	Wetland abuts Cushman Lake, connected directly to the Tanana River through STREAM-2
M-6	PEM1F	0.13	adjacent wetlands	Wetland abuts W-5
W-7	PSS1B	0.05	adjacent wetlands	Wetland abuts W-21
W-8	PUBH	0.01	non-jurisdictional	Constructed ditch within surrounding uplands, flooding likely to be solely from precipitation
6-M	PFO2B	0.38	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-10	PUBH	0.01	non-jurisdictional	Depression possibly from prior gravel mining operations, flooding likely to be solely from
W-11	PSSIF	0 37	adiacent wetlands	precipitation Wetland is nart of the undisturbed riverine wetland commlex directly abutting the Tanana River
W-12	PSS1F	0.04	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-13	PEM1F	0.99	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-14	PSS1E	0.21	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-16	PSS1E	0.24	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-17	PEM1/SS1F	0.04	adjacent wetlands	Wetland directly abuts Cushman Lake
W-18	PEM1F	0.14	adjacent wetlands	Wetland directly abuts Cushman Lake
W-19	PEM1/SS1F	0.02	adjacent wetlands	Wetland directly abuts Cushman Lake
W-20	L2EM2H	0.01	adjacent wetlands	Wetland directly abuts Cushman Lake
W-21	PSS1F	0.03	adjacent wetlands	Wetland connects to Cushman Lake via STREAM-1

Table 4. (Table 4. Continued.			
Wetland Name	NWI Code	Area (acres)	Jurisdictional class	Characteristics
W-22	PF01C	0.11	review required	Impounded wetlands with no surface water connection
W-23	PFO4B	0.12	review required	Impounded wetlands with no surface water connection
W-24	PF01C	0.21	review required	Impounded wetlands with no surface water connection
W-25	PSS1F	0.08	adjacent wetlands	Wetland directly abuts STREAM-2
W-26	PFO4B	0.13	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-27	PSS1F	0.16	adjacent wetlands	Wetland drains to Cushman Lake through STREAM-1
W-28	PUBH	0.04	non-jurisdictional	Flooded depression, possibly from prior gravel mining, surrounded by uplands, no surface water inlets or outlets observed during field survey
W-30	PSS1F	0.20	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-31	PEM1F	0.18	adjacent wetlands	Wetland directly abuts the Tanana River
W-32	PFO2B	0.02	adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River

Based on the new NWPR, seven wetlands are potentially in a non-jurisdictional category but further review should be provided by the USACE. Wetlands W-3, W-4, W-22, W-23, and W-24 are all located on the river side of the flood control levee but have impounded waters due to the presence of existing site access roads with no active culverts. These wetlands may not meet the criteria of adjacency because they are separated from the active Tanana River floodplain by an artificial structure with no built-in surface water connection. We believe that these wetlands were flooded at the time of field sampling because of high rainfall in the Fairbanks area combined with a high water table due to peak flows in the Tanana River. Further review will be required to determine adjacency of these wetlands in light of the NWPA.

LITERATURE CITED

- ABR, Inc.—Environmental Research & Services (ABR). 2020. Biological Resources Report for the Proposed Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020. Draft report prepared for PND Engineers, Inc., and Federal Highway Administration, Western Federal Lands Highway Division. 32 pp.
- Alaska Department of Fish and Game (ADF&G). 2020. Alaska Anadromous Waters Catalog: Interactive Mapping. [Online] https://www.adfg.alaska.gov/sf/SARR/AWC/. Accessed August 2020.
- Alaska Department of Natural Resources (ADNR). 2020. Navigable Waters Web Map. Available online: http://www.navmaps.alaska.gov/navwatersmap/. Accessed August 2020.
- Dahl, T. E., J. Dick, J. Swords, and B. O. Wilen. 2015. Data Collection Requirements and Procedures for Mapping Wetland, Deepwater and Related Habitats of the United States.
 Division of Habitat and Resource Conservation (version 2), National Standards and Support Team, Madison, WI. 92 pp.
- Environmental Protection Agency (EPA). 2020. Navigable Waters Protection Rule: Training and Implementation Materials. [Online] https://www.epa.gov/nwpr/training-andimplementation-materials. Accessed August 2020.
- Fairbanks Northstar Borough (FNSB) 2007. Tanana Lakes Recreation Area Master Plan. Prepared by the FNSB Department of Parks and Recreation and USKH Inc. Fairbanks, AK.

36 pp. Federal Geographic Data Committee (FGDC). 2013. Classification of Wetlands and Deepwater Habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.

- Lichvar R. W., D. L. Banks, W. N. Kirchner, and N. C. Melvin. 2018. The National Wetland Plant List: 2018 Wetland Ratings. [Online] http://wetlandplants.usace.army.mil/nwpl_static/v34/home/home.html
- U.S. Army Corps of Engineers (USACE). 2020. Navigable Waters of Alaska. [Online] https://www.poa.usace.army.mil/Missions/Regulatory/Recognizing-Wetlands/Navigable-Waters/ Accessed August 2020.
- U.S. Army Corps of Engineers (USACE). 2016. Methodology for assessing functional gains and losses for permittee responsible compensatory mitigation and calculating compensatory mitigation credits and debits for third party mitigation providers in the Alaska District. USACE and Alaska SIRT. 12 pp.
 - 2007. Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region Version 2.0. Wetlands Regulatory Assistance Program, U.S. Army Engineer Research and Development Center, Vicksburg, MS. 72 pp. + appendices.
- U.S. Fish and Wildlife Service (USFWS). 2020. National Wetlands Inventory (NWI) Program. Wetlands Mapper. Available online at https://www.fws.gov/wetlands/Data/Mapper.html. Accessed August 2020.

U.S. Geological Survey (USGS). 2020. USGS gage 15485500 Tanana R at Fairbanks AK [Online] https://waterdata.usgs.gov/nwis/uv?cb_00060=on&cb_00065=on&format=gif_default&site_ no=15485500&period=&begin_date=2020-08-17&end_date=2020-08-24. Accessed July 2020

Viereck, L. A., C. T. Dyrness, A. R. Batten, and K. J. Wenzlick. 1992. The Alaska vegetation classification. U.S. Department of Agriculture, Forest Serv., Pacific Northwest Research Station, Portland, OR. General Technical Report PNW-GTR-286. 278 pp. Appendix A. Wetland Determination Plot Forms

WETLAND DETERMINATION DATA FORM - ALASKA REGION

Project/Site: TLRA Improvements; Wetland De	ineation Borough/City: Fairbanks Northstar I	Borough Sampling Date: 2020-07-08
Applicant/Owner: Federal Highway Administr	ation (FHWA)	Sampling Point: W2-SP1
Investigator(s): WAD, JPP	Landform (hillside, terrace, hummocks, et	tc.): Water Tracks Or Feather Pattern
Local relief (concave, convex, none): concave	Slope: 0.0 % / 0.0 °	Elevation: 464
Subregion: Alaska Lat.: 64.	8039 Long.: -147.7449	Datum: WGS84
Soil Map Unit Name: Tanana-Mosquito comple	2X	NWI classification: PEM1B
Are climatic/hydrologic conditions on the si	e typical for this time of year? Yes $_\checkmark$ N	Io (If no, explain in Remarks)
Are Vegetation _ ✓ _, Soil _ ✓ _, or Hydrology _	/ significantly disturbed? Are "Normal Circu	mstances" present? Yes _ ✓ _ No
Are Vegetation, Soil, or Hydrology	naturally problematic? (If needed, ex	plain any answers in Remarks.)
SUMMARY OF EINDINGS Attach site man	howing compling point locations, transacts	important foaturos, oto

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present	?Yes_√_No	Is the Sampled Area		
Hydric Soil Present?	Yes √ No	within a Wetland?	Yes √	Νο
Wetland Hydrology Present?	Yes 🗸 No 🔄	within a wettand:		NO

Remarks: Swale visible in imagery within the fallow field on the west side of S. Lathrop St. Assume veg, soil and hydrology significantly disturbed because of the presence of non-native plants, evidence of vehicle tracks and altered drainage because of the road.

VEGETATION - Use scientific names of plants. List all species in the plot.

		Absolute	Dominant	Indicator	Dominance Test worksheet:
	Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,
	Total Cover:	0.0			FACW, or FAC: <u>1</u> (A)
	50% of total c	over: 0.0	20% of total	l cover: 0.0	Total Number of Dominant Species Across all
	Sapling/Shrub Stratum				Strata: <u>1</u> (B)
	Total Cover:	0.0			Percent of Dominant Species That are OBL,
	50% of total c	over: 0.0	20% of total	l cover: <u>0.0</u>	FACW, or FAC:(A/B)
	Herb Stratum				
	Calamagrostis canadensis	45.0	\checkmark	FAC	Prevalence Index worksheet:
	Equisetum arvense	10.0		FAC	Total % Cover of: Multiply by:
	Sonchus arvensis	5.0		FACU	OBL Species <u>12.0</u> × 1 = <u>12.0</u>
	Carex utriculata	5.0		OBL	FACW Species <u>0.0</u> × 2 = <u>0.0</u>
	Carex aquatilis	5.0		OBL	FAC Species <u>58.0</u> × 3 = <u>174.0</u>
	Hordeum jubatum	4.0		FACU	FACU Species <u>14.0</u> × 4 = <u>56.0</u>
	Achillea millefolium	2.0		FACU	UPL Species <u>0.0</u> × 5 = <u>0.0</u>
5.	Poa pratensis	2.0		FACU	Column Totals: <u>84.0</u> (A) <u>242.0</u> (B)
).	Beckmannia syzigachne	2.0		OBL	Prevalence Index = B/A = <u>2.881</u>
).	Trifolium hybridum	2.0		FAC	
	Rorippa hispida	2.0			Hydrophytic Vegetation Indicators:
2.	Plantago major	1.0		FAC	\checkmark Dominance Test is > 50%
3.	Moehringia lateriflora	1.0		FACU	\checkmark Prevalence Index is ≤ 3.0
	Total Cover:	86.0			Morphological Adaptations ¹ (Provide supporting data
	50% of total cov	er: <u>43.0</u>	20% of total of	cover: <u>17.2</u>	in Remarks or on a separate sheet)
					Problematic Hydrophytic Vegetation ¹ (Explain)
					¹ Indicators or hydric soil and wetland hydrology must be presen
					unless disturbed or problematic.
					Plot size (radius, or length × width) 1m rad
					% Cover of Wetland Bryophytes (Where applicable) 0.0
					% Bare Ground 0.0
					Total Cover of Bryophytes 0.0
					Hydrophytic
					Vegetation
					Present? Yes √ No

SOIL Sampling Point: W2-SP1 Depth Matrix **Redox Features** (inches) Color (moist) % Color (moist) Loc² Texture Remarks % Type¹ Mod 0-1 0.0 peat 1-9 muck 0.0 9-11 0.0 muck 3/2 4/6 10 С ΡL silt loam 11-14 90 7.5yr 5y ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix **Hvdric Soil Indicators:** Indicators for Problematic Hydric Soils³: Alaska Color Change (TA4)⁴ Alaska Gleyed Without Hue 5Y or Redder Histosol or Histel (A1) Histic Epipedon (A2) Alaska Alpine Swales (TA5) Underlying Layer Other (Explain in Remarks) Alaska Redox With 2.5Y Hue Hydrogen Sulfide (A4) Thick Dark Surface (A12) Alaska Gleyed (A13) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, ✓ Alaska Redox (A14) and an appropriate landscape position must be present unless disturbed or problematic. Alaska Gleyed Pores (A15) ⁴Give details of color change in Remarks. **Restrictive Layer (if present):** Type: No Data **Hydric Soil Present?** Yes √ No Depth (inches): -1000 Remarks: HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (2 or more required) Primary Indicators (any one is sufficient) Water Stained Leaves (B9) Surface Water (A1) Inundation Visible on Aerial Imagery (B7) ✓ Drainage Patterns (B10) High Water Table (A2) Sparsely Vegetated Concave Surface (B8) Oxidized Rizospheres along Living Roots (C3) Saturation (A3) Marl Deposits (B15) Presence of Reduced Iron (C4) Water Marks (B1) Hydrogen Sulfide Odor (C1) Salt Deposits (C5) Sediment Deposits (B2) Dry-Season Water Table (C2) Stunted or Stressed Plants (D1) Drift Deposits (B3) Other (Explain in Remarks) ✓ Geomorphic Position (D2) Algal Mat or Crust (B4) Shallow Aquitard (D3) Microtopographic Relief (D4) Iron Deposits (B5) Surface Soil Cracks (B6) FAC-neutral Test (D5) **Field Observations:** Surface Water Present? Depth (inches): Yes No 0 Water Table Present? Depth (inches): Yes No \checkmark 0 Wetland Hydrology Present? Yes ✓ No Saturation Present? Depth (inches): 0 (includes capillary fringe) Yes No \checkmark Recorded Data (stream gauge, monitor well, aerial photo, previous inspection) if available:

Remarks: Swale within agricultural field, microtopgraphic depressions wth evidence of fooding

Hydric Soil Indicators: Alaska Redox (A14) Wetland Hydrology Indicators: Geomorphic Position (D2), Drainage Patterns (B10)

WETLAND DETERMINATION DATA FORM - ALASKA REGION

Project/Site: TLRA Improvements; Wetland Delineation Borough/City: Fairbanks Northstar borough Sampling Date: 2020-07-07								
Applicant/Owner: Federal Highway A	dministration (FHWA)			Sampling Point: W5-SP1				
Investigator(s): JPP, WAD		Landform (I	nillside, terrace,	hummocks, etc.): Flat or fluvial related				
Local relief (concave, convex, none):	concave	Slope: 0.0	_%/_0.0_°	Elevation: <u>473</u>				
Subregion: <u>Alaska</u>	Lat.: 64.8004	L	ong.: <u>-147.7374</u>	Datum: WGS84				
Soil Map Unit Name: Tanana-Mosquit				NWI classification: PSS1/EM1B				
Are climatic/hydrologic conditions of	on the site typical for	this time of	year? Yes _√	No (If no, explain in Remarks)				
Are Vegetation, Soil, or Hydr	rology_√_significant	tly disturbed?	Are "Normal Cir	cumstances" present? Yes _ ✓ _ No				
Are Vegetation, Soil, or Hyd	drology naturally	problematic	? (If needed,	explain any answers in Remarks.)				
SUMMARY OF FINDINGS - Attach s	site map showing sam	pling point lo	cations, transect	rs, important features, etc.				

			0 1	01						
Hydrophytic Vegetation Present?	Yes	√ No			Is the Sample	od Aroa				
Hydric Soil Present?	Yes	√ No			within a Wet		Yes	.1	No	
Wetland Hydrology Present?	Yes	√ No			within a wet	cana.	163	<u> </u>	NO	

Remarks: Located in a cleared field adjacent to the beach parking area. Completely surrounded by roads and berms.

VEGETATION - Use scientific names of plants. List all species in the plot.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,
Total Cover:	0.0			FACW, or FAC: <u>6</u> (A)
50% of to	otal cover: 0.0	20% of total	cover: 0.0	Total Number of Dominant Species Across all
Sapling/Shrub Stratum				Strata: <u>6</u> (B)
Betula nana	15.0		FAC	Percent of Dominant Species That are OBL,
Salix pulchra	10.0		FACW	FACW, or FAC:100.0% (A/B)
Myrica gale	10.0		OBL	
Chamaedaphne calycula	ata 10.0	\checkmark	FACW	Prevalence Index worksheet:
Salix niphoclada	5.0			Total % Cover of: Multiply by:
Salix interior	5.0		FACW	OBL Species <u>10.0</u> × 1 = <u>10.0</u>
Salix alaxensis	5.0		FAC	FACW Species <u>25.0</u> × 2 = <u>50.0</u>
Rhododendron groenlandicun	n <u>5.0</u>		FAC	FAC Species <u>61.0</u> × 3 = <u>183.0</u>
Vaccinium uliginosum	1.0		FAC	FACU Species <u>0.0</u> × 4 = <u>0.0</u>
Total Cover:	66.0			UPL Species <u>0.0</u> × 5 = <u>0.0</u>
50% of tota	l cover: <u>33.0</u>	20% of total of	cover: <u>13.2</u>	Column Totals: <u>96.0</u> (A) <u>243.0</u> (B)
Herb Stratum				Prevalence Index = $B/A = 2.531$
Equisetum arvense	15.0	\checkmark	FAC	
Calamagrostis canadens	sis 15.0		FAC	Hydrophytic Vegetation Indicators:
Dasiphora fruticosa	4.0		FAC	Dominance Test is > 50%
Iris setosa	1.0		FAC	\checkmark Prevalence Index is ≤ 3.0
Total Cover:	35.0			Morphological Adaptations ¹ (Provide supporting d
50% of tot	al cover: <u>17.5</u>	20% of total	cover: <u>7.0</u>	in Remarks or on a separate sheet)
				Problematic Hydrophytic Vegetation ¹ (Explain)
				¹ Indicators or hydric soil and wetland hydrology must be pres
				unless disturbed or problematic.
				Plot size (radius, or length × width) 5m r
				% Cover of Wetland Bryophytes (Where applicable) 5
				% Bare Ground 0
				Total Cover of Bryophytes 25
				Hydrophytic
				Vegetation
				Present? Yes √ No

SOIL

Sampling Point: W5-SP1

Depth	N	/atrix			Red	ox Fea	tures		_		
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Mod	Remarks
0-3			0.0						peat		
	10yr	_3/2_				0			mucky peat		
7-9	7.5yr	2.5/2				0			muck		
9-12	10yr	4/2	90	7.5yr	4/6	10	<u> </u>	PL 2	silt		
¹ Type: C=0	Concentra	ation, D	=Depl	etion, RM	=Reduce						RC=Root Channel, M=Matrix
Hydric	Soil Ind	licato	rs:						blematic Hy	ydric So	ils ³ :
Hist	tosol or H	istel (A1	L)				Alaska Co		-		Alaska Gleyed Without Hue 5Y or Redder
_√_Hist	tic Epipeo	lon (A2)					Alaska Alp	oine Swa	les (TA5)		Underlying Layer
Нус	lrogen Su	lfide (A	4)				Alaska Re	dox Witł	12.5Y Hue		Other (Explain in Remarks)
Thio	ck Dark S	urface (A12)								
Alas	ska Gleye	d (A13)				³ One	indicator o	or hydro	phytic vegetati	ion, one pr	rimary indicator of wetland hydrology,
Alas	ska Redo	(A14)				and	l an appro	priate la	ndscape posit	ion must b	be present unless disturbed or problematic.
Alas	ska Gleye	d Pores	(A15)			⁴Give	details of	color ch	ange in Remar	ks.	
Restrict	tive Lay	/er (if	pres	ent):							
Type: No l	Data		-							Hydric	: Soil Present? Yes √ No
Depth (ind	ches): -10	00									
emarks:											
YDROL	DGY										
Wetlan	d Hydro	ology	Indi	cators:							Secondary Indicators (2 or more required)
Primary	/ Indicato	ors (any	one is	sufficien	it)						Water Stained Leaves (B9)
Sur	face Wate	er (A1)					Inundatio	n Visible	on Aerial Ima	gery (B7)	Drainage Patterns (B10)
_√_Hig	h Water T	able (A2	2)				Sparsely \	/egetate	d Concave Sur	face (B8)	Oxidized Rizospheres along Living Roots
_√_Sat	uration (A	(3)					Marl Depo	osits (B1	5)		Presence of Reduced Iron (C4)
Wat	er Marks	(B1)					Hydrogen	Sulfide	Odor (C1)		Salt Deposits (C5)
Sed	liment De	posits (B2)				Dry-Seasc	on Water	Table (C2)		Stunted or Stressed Plants (D1)
Drif	t Deposit	s (B3)					Other (Exp	olain in I	Remarks)		Geomorphic Position (D2)
Alga	al Mat or (Crust (B	4)								Shallow Aquitard (D3)
Iror	Deposits	s (B5)									Microtopographic Relief (D4)
Sur	face Soil	Cracks (B6)								✓ FAC-neutral Test (D5)
Field OI	oservat	ions:									
	Water Pr		``	/es	No	1	Denth ((inches):			
	able Pres			/es √	No			(inches):			
	ion Prese						puil			Watland	d Hydrology Present?Yes ✓ No
	es capilla		-) \	∕es √	No		Denth ((inches):		welland	
Include		'y ninge	-/ 1	<u>v</u>			Depuil	(incites).	v		
ecorded	Data (s	tream	gau	ge, mor	nitor we	ll, aeri	ial photo	o, prev	ious inspect	tion) if av	vailable:
emarks:	Hydro	logv m	nav b	e distu	rbed by	surro	unding	roadw	ays but veg	etation a	and soils clearly indicate wetland condi
	-	sturba	-					,		

Hydric Soil Indicators: Histic Epipedon (A2) **Wetland Hydrology Indicators:** High Water Table (A2), FAC-Neutral Test (D5), Saturation (A3)

147.

WETLAND DETERMI	ination Data Form - Alaska Regi	ON
Project/Site: TLRA Improvements; Wetland Delineation	on Borough/City: Fairbanks Northstar Bo	rough Sampling Date: 2020-07-07
Applicant/Owner: Federal Highway Administration (I		Sampling Point: W6-SP1
Investigator(s): WAD	Landform (hillside, terrace, hum	mocks, etc.): Flat or fluvial related
Local relief (concave, convex, none): concave	Slope: 0.0 % / 0.0 °	Elevation: 498
Subregion: Alaska Lat.: 64.7988	Long.: -147.7407	Datum: WGS84
Soil Map Unit Name: Salchaket very fine sandy loam		NWI classification: PEM1F
Are climatic/hydrologic conditions on the site typi		(If no, explain in Remarks)
	nificantly disturbed? Are "Normal Circums	
		ain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showin	a sampling point locations transacts im	nortant features, etc.
		portant leatures, etc.
Hydrophytic Vegetation Present? Yes No	Is the Sampled Area	
Hydric Soil Present? Yes √ No	– within a Wetland?	Yes _ < _ No
Wetland Hydrology Present? Yes No		
Remarks: Inundated swale within the shrubby mean	dow adjacent to the parking area. Vehicle	tracks running through plot.
VEGETATION - Use scientific names of plants. List a		
	Oominant Indicator Dominance Test works	
	Species? Status Number of Dominant Sp	
Total Cover: 0.0	FACW, or FAC:	<u>1</u> (A)
	0% of total cover: <u>0.0</u> Total Number of Domina	
Sapling/Shrub Stratum	Strata:	<u> 1 (B)</u>
Total Cover: 0.0	Percent of Dominant Sp	
	0% of total cover: <u>0.0</u> FACW, or FAC:	_100.0% (A/B)
Herb Stratum		
1. Equisetum fluviatile 25.0	OBL Prevalence Index work	
2. <u>Schoenoplectus tabernaemontani</u> <u>5.0</u>	OBL Total % Cover of:	Multiply by:
3. <u>Comarum palustre</u> <u>5.0</u>	OBL OBL Species 40.0	$\times 1 = 40.0$
4. <u>Carex aquatilis</u> <u>5.0</u>	OBL FACW Species 0.0	$\times 2 = 0.0$
5. Calamagrostis canadensis 2.0	FAC FAC Species 2.0	× 3 = <u>6.0</u>
Total Cover: <u>42.0</u>	FACU Species 0.0	× 4 = <u>0.0</u>
50% of total cover: <u>21.0</u> 20	0% of total cover: <u>8.4</u> UPL Species <u>0.0</u>	$\times 5 = 0.0$
	Column Totals: <u>42.0</u>	(A) <u>46.0</u> (B)
	Prevalence Index = B/A =	= <u>1.095</u>
	Hydrophytic Vegetatio	n Indicators:
	✓ Dominance Tes	
	✓ Prevalence Ind	
		Adaptations ¹ (Provide supporting data
		on a separate sheet)
		/drophytic Vegetation ¹ (Explain)
		l and wetland hydrology must be present,
	unless disturbed or p	
	Plot size (radius, or leng	th × width) <u>1m radius</u>
	% Cover of Wetland Bry	ophytes (Where applicable)0.0
	% Bare Ground	0.0
	Total Cover of Bryophyt	es0.0
	Hydrophytic	
	Vegetation	

Remarks:

No

Yes_√_

Present?

SOIL Sampling Point: W6-SP1 Matrix **Redox Features** Depth Color (moist) % (inches) Color (moist) % Type¹ Loc² Texture Mod Remarks ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils³: Histosol or Histel (A1) Alaska Color Change (TA4)⁴ Alaska Gleyed Without Hue 5Y or Redder Histic Epipedon (A2) Alaska Alpine Swales (TA5) **Underlying Layer** Alaska Redox With 2.5Y Hue ✓ Other (Explain in Remarks) Hydrogen Sulfide (A4) Thick Dark Surface (A12) Alaska Gleyed (A13) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, Alaska Redox (A14) and an appropriate landscape position must be present unless disturbed or problematic. Alaska Gleyed Pores (A15) ⁴Give details of color change in Remarks.

 Restrictive Layer (if present):
 Hydric Soil Present?
 Yes _ ✓
 No ____

 Type:
 Depth (inches):
 Present?
 Yes _ ✓
 No ____

 Remarks: No pit, site inundated
 Ves _ ✓
 Ves _ ✓
 No ____

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)				
Primary Indicators (any one is sufficient)		Water Stained Leaves (B9)				
Surface Water (A1)	Inundation Visible on Aerial Imagery (B7)	 Drainage Patterns (B10)				
High Water Table (A2)	Sparsely Vegetated Concave Surface (B8)	Oxidized Rizospheres along Living Roots (C3				
$_\checkmark$ Saturation (A3)	Marl Deposits (B15)	Presence of Reduced Iron (C4)				
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Salt Deposits (C5)				
Sediment Deposits (B2)	Dry-Season Water Table (C2)	Stunted or Stressed Plants (D1)				
Drift Deposits (B3)	Other (Explain in Remarks)	Geomorphic Position (D2)				
Algal Mat or Crust (B4)		Shallow Aquitard (D3)				
Iron Deposits (B5)		Microtopographic Relief (D4)				
Surface Soil Cracks (B6)		✓ FAC-neutral Test (D5)				
ield Observations:						
Surface Water Present? Yes _✓ No	Depth (inches): 6					
Water Table Present? Yes _✓ No	Depth (inches): 0					
Saturation Present?	Wetland	Hydrology Present?Yes ✓ No				
(includes capillary fringe) Yes _√ No	Depth (inches): 0					
ecorded Data (stream gauge, monitor w	ll, aerial photo, previous inspection) if av	ailable:				
emarks: Vehicle tracks running through	he plot					

Hydric Soil Indicators: Other (explain in remarks) **Wetland Hydrology Indicators:** Surface Water (A1), FAC-Neutral Test (D5), Saturation (A3), High Water Table (A2)

NO SOIL PIT PHOTO TAKEN

Project/Site: TLRA Improvements; Wetland D	Delineation Borough/City: Fairt	oanks Northstar Bord	ough Sampling [Date: 2020-07-07
Applicant/Owner: Federal Highway Adminis	stration (FHWA)		Samplin	ng Point: W7-SP1
Investigator(s): JPP, WAD	Landform (hill	side, terrace, humm	ocks, etc.): Flat	or fluvial related
Local relief (concave, convex, none): none	Slope: 0.0 %/	0.0 °	Elevation: 47	78
Subregion: Alaska Lat.: 6	54.7996 Long	g.: -147.7331	Dat	um: WGS84
Soil Map Unit Name: Eielson-Piledriver com	plex		NWI classificat	tion: PSS1B
Are climatic/hydrologic conditions on the	site typical for this time of ye	ar? Yes √ No	(If no, expl	ain in Remarks)
Are Vegetation, Soil, or Hydrology _	✓ significantly disturbed? Ar	e "Normal Circumst	ances" present?	Yes √ No
Are Vegetation, Soil, or Hydrology				
SUMMARY OF FINDINGS - Attach site map	p showing sampling point locat	tions, transects, imp	ortant features,	etc.
Hydrophytic Vegetation Present?YesHydric Soil Present?YesWetland Hydrology Present?Yes	No within a l	mpled Area Wetland?	Yes_√	No
Remarks: Open mixed forest, water table m	nuch higher than would be indi	cated by vegetation	composition. W	ater flowing from

Remarks: Open mixed forest, water table much higher than would be indicated by vegetation composition. Water flowing from flooded upstream wetlands possibly impounded by downslope hiking trail and also high river water. Vegetation may be considered problematic.

		Absolute	Dominant	Indicator	Dominance Test					
	Tree Stratum	% Cover	Species?	Status	Number of Domin	iant Spec	cies Tha	t are OBL		()
1.	Populus balsamifera	10.0	\checkmark	FACU	FACW, or FAC:				1	(A)
2.	Picea glauca	5.0	\checkmark	FACU	Total Number of D	ominant	Species	Across al	l	
	Total Cover:	15.0			Strata:				5	(B)
	50% of total	cover: 7.5	20% of total	l cover: <u>3.0</u>	Percent of Domin	ant Spec	ies Tha	t are OBL	,	
	Sapling/Shrub Stratum				FACW, or FAC:				20.00	<u>%</u> (A/B)
1.	Rosa acicularis	25.0		FACU						
2.	Salix alaxensis	5.0		FAC	Prevalence Index	worksh	eet:			
3.	Alnus incana	5.0		FAC	Total % Cover of:		Multip	ly by:		
4.	Ribes hudsonianum	4.0		FAC	OBL Species	0.0	×1=	0.0		
	Total Cover:	39.0			FACW Species	0.0	× 2 =	0.0		
	50% of total of	cover: 19.5	20% of total	l cover: <u>7.8</u>	FAC Species	84.0	× 3 =	252.0		
	Herb Stratum				FACU Species	75.0	× 4 =	300.0		
1.	Equisetum arvense	65.0	\checkmark	FAC	UPL Species	0.0	× 5 =	0.0		
2.	Cornus canadensis	35.0	\checkmark	FACU	Column Totals:	159.0	(A)	552.0	(B)	
3.	Calamagrostis canadensis	5.0		FAC	Prevalence Index	= B/A = <u>3</u>	.472			
	Total Cover:	105.0								
	50% of total co	over: <u>52.5</u>	20% of total of	cover: <u>21.0</u>	Hydrophytic Veg	etation I	ndicato	ors:		
					Dominan	ice Test is	s > 50%			
					Prevalen	ce Index	is ≤ 3.0			
					Morphole	ogical Ad	laptatio	ns¹ (Prov	ide supp	orting dat
					in Remar	ks or on	a separa	ate sheet)		
					√ Problem	atic Hydr	ophytic	Vegetatio	on¹ (Expl	ain)
					¹ Indicators or hyd	lric soil ar	nd wetla	ind hydro	logy mus	st be prese
					unless disturbe	ed or prol	blemati	с.		
					Plot size (radius, c	or length	× width)		5m rad
					% Cover of Wetlar	-			licable)	
					% Bare Ground					0.0
					Total Cover of Bry	ophytes				1.0
					Hydrophytic	. ,				
					Vegetation					
					Present?			Yes	1	No
					r resent:			162	v	110

VEGETATION - Use scientific names of plants. List all species in the plot.

0-5 5-9 9-10 10-12	Color (moist) Not Assessed 10yr	<u>NA</u> 3/1	<u>%</u> 100	Color (noist)	%					
5-9			100			/0	Type ¹	Loc ²	Texture	Mod	Remarks
<u>9-10</u> 10-12	10yr	3/1							peat		
10-12		<u>0/ -</u>	80	10yr	3/6	20	C	PL	sandy loam		
			0.0						muck		
12-15	10yr	3/1	90	10yr	4/6	10	C	PL	sandy loam		
<u> </u>			0.0						muck		
'Type: C=Co	oncentration, D=	Deple	etion, R	M=Redu	ed Matr	ix, A=Abs	ent ²l	ocation	: PL=Pore Linin	ng, RC=R	Root Channel, M=Matrix
Hydric S	oil Indicato	rs:	-		Ind	icators	for Pro	blema	atic Hydric S	Soils ³ :	
-	sol or Histel (A1					Alaska (Color Cha	nge (TA4	1) ⁴		Alaska Gleyed Without Hue 5Y or Redder
√ Histic	Epipedon (A2)					Alaska Alpine Swales (TA5)			5)	_	Underlying Layer
Hydro	ogen Sulfide (A4	L)				Alaska I	Redox Wit	h 2.5Y H	ue	_	Other (Explain in Remarks)
Thick	Dark Surface (A	A12)				_				_	
Alask	a Gleyed (A13)				³ On	e indicato	or or hydro	ophytic v	egetation, one	primar	y indicator of wetland hydrology,
Alask	a Redox (A14)				ar	nd an app	ropriate l	andscap	e position mus	st be pre	esent unless disturbed or problematic.
Alask	a Gleyed Pores	(A15)			⁴Giv	e details o	of color cł	nange in	Remarks.		
	Hydrology									<u>S</u>	Secondary Indicators (2 or more required)
		5110 15	Sumere	ent)		Inundat	tion Visibl	e on Aer	ial Imagery (B7	7)	
	. ,)							0.1	· _	
		/								~~	
									21)	_	
	nent Deposits (I	32)					ason Wate			_	Stunted or Stressed Plants (D1)
	Deposits (B3)	,					Explain in			_	✓ Geomorphic Position (D2)
	Mat or Crust (B4	1)					•			_	Shallow Aquitard (D3)
Iron D	Deposits (B5)										Microtopographic Relief (D4)
Surfa	ce Soil Cracks (I	36)								_	FAC-neutral Test (D5)
	servations:										
Field Obs		Y	es	N	o √	Dent	h (inches):			
	Vater Present?			√ N	-		h (inches)				
Surface W	Vater Present? ole Present?	Y					(Watla		
Surface W Water Tab	ole Present?	Y								па ну	/drology Present? Ves ./ No
Surface W Water Tab Saturation			_	√ N	0	Dept	h (inches): 0	wella	na Hy	/drology Present? Yes _√_ No
Primary II Surfac High \ Satura		one is				Sparsel Marl De		ed Conca L5)	rial Imagery (B7 ave Surface (B8 C1)	7)	Secondary Indicators (2 or more required Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roo ✓ Presence of Reduced Iron (C4) Salt Deposits (C5)

Hydric Soil Indicators: Histic Epipedon (A2) **Wetland Hydrology Indicators:** Saturation (A3), Presence of Reduced Iron (C4), High Water Table (A2), Geomorphic Position (D2)

Applicant/Owner: Federal Highway Administration (FHWA) Sampling Point: W9-59. Investigator(s): JPP, WAD Landform (hillside, terrace, hummocks, etc.): Flat or fluvial relates Local relief (concave, convex, none): none Slope: 0.0 % / 0.0 ° Elevation: 476 Subregion: Alaska Lat. 64.8011 Long: -147.7448 Datum: WGS84 Osill Map Unit Name: Tanana-Mosquito complex NWI classification: PF02B NWI classification: PF02B Are Vegetation , or Hydrology significantly disturbed? Are "NormalCircumstances" present? Yes ✓ No (If no, explain in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes ✓ No Is the Sampled Area within a Wetland? No Hydrophytic Vegetation Present? Yes ✓ No Is the Sampled Area within a Wetland? No No Remarks: Tamarack forest along border of sedge marsh Sofk of total cover: 35.0 ✓ FACW 1. Larix laricina 55.0 ✓ FACW Number of Dominant Species That are OBL, 1. Larix karicina 5.0 ✓ FACW FACW 3. Chamaedaphne calyculata 5.0 ✓ FAC 3. Chamaedaphne calyculat					ugh/City: <u>F</u>	airbanks Northstar Borough Sampling Date: 2020-07-0 Sampling Point: W9-SP
Local relief (concave, convex, none): none Slope: 0.0 % / 0.0 ° Elevation: 476 Subregion: Alaska Lat:: 64.8011 Long:: 147.7448 Datum: WGS84 Soll Map Unit Name: Tanana-Mosquito complex NWI classification: PF02B NWI classification: PF02B Are vegetation , or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes \checkmark No (ff needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes \checkmark No Is the Sampled Area within a Wetland? Yes \checkmark No Hydrophytic Vegetation Present? Yes \checkmark No Is the Sampled Area within a Wetland? Yes \checkmark No Is the Sampled Area within a Wetland? Yes \checkmark No Is the Sampled Area within a Wetland? Yes \checkmark No Remarks: Tamarack forest along border of sedge marsh Solver S5.0 \checkmark FAC Dominant Midicator S5.0 Subfordishub Straum 65.0 \checkmark FAC FAC Number of Dominant Species That are OBL, FAC, No 1. Rendagahne calyculata 5.0 FAC FAC 2. Betula glandulosa 40.0 FAC FAC 3. Chamaedaphne calyculata 5.0 FAC 3. Chamaedaphne calycul	•••	¥ ł.,	IIIIstratio		l andfarm (
Subregion: Alaska Lat:: 64.8011 Long:: -147.7448 Datum: WGS84 Soil Map Unit Name: Tanana-Mosquito complex NWI classification: PFO2B Are climatic/hydrologic conditions on the site typical for this time of year? Yes _/ No (If no, explain any answers in Remarks.) NWI classification: PFO2B Are climatic/hydrologic conditions on the site typical for this time of year? Yes _/ No (If no, explain any answers in Remarks.) No						
Soil Map Unit Name: Tanana-Mosquito complex NWI classification: PFO2B Are Vegetation					-	
Are climatic/hydrologic conditions on the site typical for this time of year? Yes _/ No (fr no, explain in Remarks.) Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes _/ No Hydrophytic Vegetation Present? Yes _/ No Hydrology Present? Yes _/ No Hydrology Present? Yes _/ No Remarks: Tamarack forest along border of sedge marsh Is the Sampled Area within a Wetland? Yes _/ No VEGETATION - Use scientific names of plants. List all species in the plot. Is the Sampled Area within a Wetland? Yes _/ No 1. Larix laricina 55.0 / FACW Sapling/Shrub Stratum Iodicater Status S				.1	L	0
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No Hydrophytic Vegetation Present? Yes No Hydrophytic Vegetation Present? Yes No Remarks: Tamarack forest along border of sedge marsh VEGETATION - Use scientific names of plants. List all species in the plot. I. Larix laricina55.0					L	
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No Hydrology Present? Yes No Remarks: Tamarack forest along border of sedge marsh VEGETATION - Use scientific names of plants. List all species in the plot. I. Absolute Dominant Indicator Yes						
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes ✓ No Hydrophytic Vegetation Present? Yes ✓ No Hydrology Present? Yes ✓ No Remarks: Tamarack forest along border of sedge marsh VEGETATION - Use scientific names of plants. List all species in the plot. VEGETATION - Use scientific names of plants. List all species in the plot. Dominant Indicator 1. Larix laricina 55.0 ✓ FACW 7 Total Cover: 5.0 ✓ FACW 1. Rhododendron groenlandicum 65.0 ✓ FAC 2. Betula glandulosa 40.0 ✓ FAC 3. Chamaedaphne calyculata 15.0 FACW 4. Salix glauca 5.0 FAC 5 20% of total cover: 26.2 100.0% (A/B) FACU FACU FACU 6. Vaccinium uliginosum 1.0 FAC 1. Equisetum arvense 5.0 FAC 2. Dasiphora fruticosa <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: Tamarack forest along border of sedge marsh VEGETATION - Use scientific names of plants. List all species in the plot. I. Larix laricina 55.0 Y FACW Total Cover: 55.0 Y FACW Secies? Status Sapling/Shrub Stratum 1.0 Y FAC Saluing/Shrub Stratum 5 (B) 1. Renardedphne calyculata 15.0 FACW FACW or FAC: 100.0% (A/B) FACW FACW or FAC: 100.0% (A/B) FACW FACW FACW or FAC: Total Noure of Dominant Species That are OBL, FAC US or or fortal cover: FACW or FAC: Total Noure of Dominant Species That are OBL, FAC US or or fortal cover: FAC US or fortal cover: FAC US or fortal cover: 100.0% (A/B) FAC US or fortal cover: Intero						
Hydric Soil Present? Yes ✓ No Wetland Hydrology Present? Yes ✓ No Remarks: Tamarack forest along border of sedge marsh Wetland? Yes ✓ No Veg ✓ No Wetland? Yes ✓ No Remarks: Tamarack forest along border of sedge marsh VEGETATION - Use scientific names of plants. List all species in the plot. Image: Status 1. Larix Laricina 55.0 ✓ FACW FACW, or FAC: 5 (A) Solution of the cover: 27.5 20% of total cover: 11.0 Satus Status No Solution of the cover: 10.0 Solution of the cover: 27.5 20% of total cover: 11.0 Satus Solution of the cover: 10.0 Solution of t					ing point it	Scations, transects, important leatures, etc.
Wetland Hydrology Present? Yes No Minima Wetland: Yes No Remarks: Tamarack forest along border of sedge marsh Remarks: Tamarack forest along border of sedge marsh Dominant Indicator VEGETATION - Use scientific names of plants. List all species in the plot. Dominant Indicator 1. Larix laricina % Cover Species? Status 50% of total cover: 55.0 ✓ FACW FACW, or FAC: 5 (A) 1. Rhododendron groenlandicum 65.0 ✓ FAC FACW, or FAC: 100.0% (A/B) 2. Betula glandulosa 40.0 ✓ FAC FACW, or FAC: 100.0% (A/B) 3. Chamaedaphne calyculata 15.0 FACW FACW FACW Prevalence Index worksheet: Total % Cover of: Multiply by: FAC Secies 100.0% (A/B) 5. Picea glauca 5.0 FAC FAC Species 10.0 FAC Species 10.0 FAC Species 10.0 Sali % Glau Secies 10.0 Secies 10.0 Secies 10.0 Secies 10.0 Secies 10.0 Secies 10		nytic vegetation Present? Yes	NO		Is the	Sampled Area
Remarks: Tamarack forest along border of sedge marsh VEGETATION - Use scientific names of plants. List all species in the plot. Image: Status forest along border of sedge marsh Dominant Indicator Tree Stratum Species? Status forest worksheet: 1. Larix laricina 55.0 ✓ FACW 5.0 ✓ FACW FACW FACW, or FAC: 5 (A) 1. Rhododendron groenlandicum 65.0 ✓ FAC FACW, or FAC: 100.0% (A/B) 2. Betula glandulosa 40.0 ✓ FAC FACW, or FAC: 100.0% (A/B) 4. Salix glauca 5.0 FAC FAC FACW, or FAC: 100.0% (A/B) 5. Picca glauca 5.0 FAC FAC FACW Species 10.0 FAC 5.0 FAC FAC FACU Species 0.0 x 1 = 0.0 FACU Species 0.0 x 1 = 0.0 <td< td=""><td></td><td></td><td></td><td></td><td>withir</td><td>n a Wetland? Yes ✓ No</td></td<>					withir	n a Wetland? Yes ✓ No
VEGETATION - Use scientific names of plants. List all species in the plot. Mosolute Dominant Indicator Tree Stratum % Cover Species? Status 1. Larix laricina 55.0 ✓ FACW Total Number of Dominant Species That are OBL, 5.0 ✓ FACW Total Number of Dominant Species Across all Status 5.0 ✓ FACW Total Number of Dominant Species That are OBL, 5.0 ✓ FAC 1. Rhododendron groenlandicum 65.0 ✓ FAC 3. Chamaedaphne calyculata 15.0 FACW Total Cover: 100.0% (A/B) 7 FACU FACU FACU Total Cover: 100.0 FAC 3. Chamaedaphne calyculata 15.0 FACU FACU FACU FACU 6. Vaccinium uliginosum 1.0 FAC FACU FACU Species 0.0 ×1 = 0.0 50% of total cover: 131.0 FAC FAC FACU Species 0.0 ×5 = 0.0 column Totals: 196.0 (A) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Absolute Dominant Indicator Species?Dominant Indicator Species?I.InterpretationSpecies?Status Status 	<u>.</u>					
Tree Stratum% CoverSpecies?StatusNumber of Dominant Species That are OBL,1.Larix laricina 55.0 \checkmark FACWFACW, or FAC: 5 (A)Total Cover: 55.0 \checkmark FACW, or FAC: 5 (A)Som of total cover: 27.5 20% of total cover: 11.0 Strata: 5 (B)Sapting/Shrub Stratum 50% of total cover: 11.0 Strata: 5 (B)Rhododendron groenlandicum 65.0 \checkmark FAC 3.Chamaedaphne calyculata 15.0 FAC 4.Salix glauca 5.0 FAC 5.Picea glauca 5.0 FAC 6.Vaccinium uliginosum 1.0 FAC Total Cover: 131.0 FAC 50% of total cover: 65.5 20% of total cover: 26.2 Herb Stratum 1.0 FAC 1.Equisetum arvense 5.0 \checkmark 2.Dasiphora fruticosa 4.0 \checkmark 3.Calamagrostis canadensis 1.0 FAC 3.Calamagrostis canadensis 1.0 FAC 7.Total Cover: 10.0 FAC 3.Calamagrostis canadensis 1.0 FAC 50% of total cover: 5.0 20% of total cover: 2.0 50% of total cover: 5.0 20% of total cover: 2.0 50% of total cover: 5.0 20% of total cover: 2.0 $7.$ $7.$ $7.$ $7.$ $7.$ $7.$ $7.$ $7.$ $7.$ $7.$ $7.$ <tr< td=""><td>VEGETAT</td><td>ION - Use scientific names of</td><td></td><td></td><td></td><td></td></tr<>	VEGETAT	ION - Use scientific names of				
InterstationDecisionJacture1.Larix laricina 55.0 \checkmark \overrightarrow{FACW} Total Cover: 55.0 \checkmark \overrightarrow{FACW} 50% of total cover: 27.5 20% of total cover: 11.0 50% of total cover: 27.5 Sapting/Shrub Stratum 50% of total cover: 27.5 20% of total cover: 11.0 1.Rhododendron groenlandicum 65.0 \checkmark 2.Betula glandulosa 40.0 \checkmark 3.Chamaedaphne calyculata 15.0 \checkmark 4.Salix glauca 5.0 \overrightarrow{FAC} 5.Picea glauca 5.0 \overrightarrow{FAC} 6.Vaccinium uliginosum 1.0 \overrightarrow{FAC} 70% of total cover: 131.0 \overrightarrow{FAC} 50% of total cover: 65.5 20% of total cover: $2.$ Dasiphora fruticosa 4.0 \checkmark 3.Calamagrostis canadensis 1.0 \overrightarrow{FAC} 3.Calamagrostis canadensis 1.0 \overrightarrow{FAC} 70% of total cover: 5.0 \checkmark 50% of total cover: 5.0 \checkmark 70% of total cover: 20% of total cover: $2.$ Dasiphora fruticosa 4.0 70% of total cover: 5.0 \checkmark						
Image: Constraint of the second se						
50% of total cover: $2T.5$ 20% of total cover: 11.0 Strata:5(B)Sapling/Shrub Stratum1.Rhododendron groenlandicum 65.0 \checkmark FAC2.Betula glandulosa 40.0 \checkmark FAC3.Chamaedaphne calyculata 15.0 FACW4.Salix glauca 5.0 FAC5.Picea glauca 5.0 FAC6.Vaccinium uliginosum 1.0 FAC7.Total Cover: 131.0 FAC5.0% of total cover: 65.5 20% of total cover: 26.2 Herb Stratum1.Equisetum arvense 5.0 \checkmark 2.Dasiphora fruticosa 4.0 \checkmark 3.Calamagrostis canadensis 1.0 FAC3.Calamagrostis canadensis 1.0 FAC3.Column Total cover: 10.0 50% of total cover: 5.0 \checkmark 50% of total cover: 2.0 50% of total cover: 2.0% of total cover: 2.0 20% of total cover: 2.0% 50% of total cover: $2.$	1.	· · · · · · · · · · · · · · · · · · ·			FACW	· · · · · · · · · · · · · · · · ·
Sapling/Shrub Stratum1.Rhododendron groenlandicum 65.0 \checkmark FAC2.Betula glandulosa 40.0 \checkmark FAC3.Chamaedaphne calyculata 15.0 FACW4.Salix glauca 5.0 FAC5.Picea glauca 5.0 FAC6.Vaccinium uliginosum 1.0 FACTotal Cover: 131.0 FAC50% of total cover: 65.5 20% of total cover: 26.2 Herb Stratum 1.0 FAC2.Dasiphora fruticosa 4.0 3.Calamagrostis canadensis 1.0 Total Cover: 10.0 50% of total cover: 5.0 20% of total cover: 2.0 20% of total cover: 2.0% of total cover: 2.0% of total cover: 2.0% 50% of total cover: 2.0% 2.0% of total cover: 2.0%						
1.Rhododendron groenlandicum 65.0 \checkmark FACFAC2.Betula glandulosa 40.0 \checkmark FAC3.Chamaedaphne calyculata 15.0 \checkmark FACW4.Salix glauca 5.0 \checkmark FACU5.Picea glauca 5.0 \checkmark FACU6.Vaccinium uliginosum 1.0 \blacksquare FAC $Total Cover:$ 131.0 \blacksquare FAC 50% of total cover: 65.5 20% of total cover: 26.2 \blacksquare Herb Stratum \blacksquare \checkmark 1.Equisetum arvense 5.0 \checkmark 2.Dasiphora fruticosa 4.0 \checkmark 3.Calamagrostis canadensis 1.0 \checkmark \Box $\Boxal Cover:$ 10.0 \blacksquare <td< td=""><td></td><td></td><td>er: <u>27.5</u></td><td>20% of total (</td><td>cover: <u>11.0</u></td><td></td></td<>			er: <u>27.5</u>	20% of total (cover: <u>11.0</u>	
2.Betula glandulosa40.0 \checkmark FAC3.Chamaedaphne calyculata15.0FACW4.Salix glauca5.0FAC5.Picea glauca5.0FAC6.Vaccinium uliginosum1.0FACTotal Cover:131.0FAC50% of total cover:65.520% of total cover: 26.2Herb Stratum5.0 \checkmark 1.Equisetum arvense5.02.Dasiphora fruticosa4.03.Calamagrostis canadensis1.0Total Cover:10.050% of total cover:5.02.0% of total cover:2.0Merb StratumYevalence Index worksheet:1.Equisetum arvense5.0 \checkmark FACFACWPL Species0.0Yevalence Index = B/A = 2.668Hydrophytic Vegetation Indicators: \checkmark \checkmark Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation 1 (Explain)' Indicators or hydric soil and wetland hydrology must be present,			65.0	,	FAC	
3.Chamaedaphne calyculata15.0FACW4.Salix glauca5.0FAC5.Picea glauca5.0FAC6.Vaccinium uliginosum1.0FACTotal Cover:131.0FAC50% of total cover:6.5.520% of total cover: 26.2Herb Stratum1.Equisetum arvense5.02.Dasiphora fruticosa4.0 \checkmark 3.Calamagrostis canadensis1.0FACTotal Cover:10.0FAC50% of total cover:2.020% of total cover:2.0Multiply by:Column Totals:1.0FAC7FAC704.0 \checkmark 7FAC901.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0Yow of total cover:2.020% of total cover:2.020% of total cover:2.020% of total cover:1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0FAC1.0Yow of total cover:2.020% of total cover:2.0Y				<u> </u>		FACW, or FAC: 100.0% (A/B)
4.Salix glauca5.0FAC9Picea glauca5.0FAC6.Vaccinium uliginosum1.0FACTotal Cover:131.0FAC50% of total cover:65.520% of total cover: 26.2Herb Stratum5.0 \checkmark 1.Equisetum arvense5.0 \checkmark 2.Dasiphora fruticosa4.0 \checkmark 3.Calamagrostis canadensis1.0FACTotal Cover:10.0FAC50% of total cover:5.0 \checkmark 7FACFACWorker of:Multiply by:0OBL Species0.01.Equisetum arvense5.02.Dasiphora fruticosa4.03.Calamagrostis canadensis1.050% of total cover:2.020% of total cover:2.050% of total cover:2.020% of total cover:2.0<						
5.Picea glauca5.0FACU6.Vaccinium uliginosum1.0FACTotal Cover:131.0FAC50% of total cover:65.520% of total cover:26.2Herb Stratum5.0 \checkmark FAC1.Equisetum arvense5.0 \checkmark 2.Dasiphora fruticosa4.0 \checkmark 3.Calamagrostis canadensis1.0FACTotal Cover:10.0FAC50% of total cover:2.020% of total cover:2.02.Dasiphora fruticosa4.04.0 \checkmark FAC90% of total cover:10.050% of total cover:2.090% of total c						
6. Vaccinium uliginosum 1.0 FAC Total Cover: 131.0 50% of total cover: 65.5 20% of total cover: 26.2 Herb Stratum FAC 1. Equisetum arvense 5.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 √ 764.0 70.0 764.0 20% of total cover: 760.0 20% of total cover: <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Total Cover:131.050% of total cover:65.520% of total cover:26.2Herb StratumFAC Species121.0 $\times 3 = 363.0$ 1.Equisetum arvense5.0 \checkmark FAC2.Dasiphora fruticosa4.0 \checkmark FAC3.Calamagrostis canadensis1.0 \checkmark FACTotal Cover:10.0 \checkmark FAC50% of total cover:5.020% of total cover:2.0 \downarrow <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>						· · · · · · · · · · · · · · · · · · ·
50% of total cover: $\underline{65.5}$ 20% of total cover: $\underline{26.2}$ FACU Species $\underline{5.0} \times 4 = \underline{20.0}$ Herb Stratum1.Equisetum arvense 5.0 \checkmark FACUPL Species 0.0 $\times 5 = 0.0$ 2.Dasiphora fruticosa 4.0 \checkmark FACColumn Totals: $\underline{196.0}$ (A) $\underline{523.0}$ (B)3.Calamagrostis canadensis 1.0 \checkmark FACPrevalence Index = $B/A = \underline{2.668}$ Hydrophytic Vegetation Indicators: 50% of total cover: $\underline{5.0}$ 20% of total cover: $\underline{2.0}$ \checkmark Dominance Test is > 50% \checkmark Dominance Test is > 50% \checkmark Prevalence Index is ≤ 3.0 Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation ¹ (Explain)1 Indicators or hydric soil and wetland hydrology must be present,	6.				FAC	
Herb Stratum 1. Equisetum arvense 5.0 √ FAC 2. Dasiphora fruticosa 4.0 √ FAC 3. Calamagrostis canadensis 1.0 ✓ FAC Total Cover: 10.0 ✓ FAC 50% of total cover: 5.0 20% of total cover: 2.0 Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) ✓ Problematic Hydrophytic Vegetation ¹ (Explain) 1 Indicators or hydric soil and wetland hydrology must be present, 100 1				000/ - ft-t-l		
1. Equisetum arvense 5.0 ✓ FAC 2. Dasiphora fruticosa 4.0 ✓ FAC 3. Calamagrostis canadensis 1.0 ✓ FAC Total Cover: 10.0 50% of total cover: 5.0 20% of total cover: 2.0 Column Totals: 196.0 (A) 523.0 (B) Hydrophytic Vegetation Indicators: ✓ Openionance Test is > 50% ✓ Prevalence Index is ≤ 3.0 ✓ Prevalence Index or on a separate sheet) ✓ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present, 1 Indicators or hydric soil and wetland hydrology must be present,			er: <u>65.5</u>	20% of total (cover: <u>26.2</u>	
2. Dasiphora fruticosa 4.0 ✓ FAC 3. Calamagrostis canadensis 1.0 ✓ FAC Total Cover: 10.0 50% of total cover: 5.0 20% of total cover: 2.0 Prevalence Index = B/A = 2.668 Hydrophytic Vegetation Indicators: ✓ Dominance Test is > 50% ✓ Prevalence Index is ≤ 3.0 ✓ ✓ Prevalence Index is ≤ 3.0 ✓ ✓ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present,	1		ГO	/	EAC	· · · · · · · · · · · · · · · · · · ·
3. Calamagrostis canadensis 1.0 FAC Total Cover: 10.0 FAC 50% of total cover: 5.0 20% of total cover: 2.0 ✓ Dominance Test is > 50% ✓ Prevalence Index is ≤ 3.0 ✓ Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present,						
Total Cover: 10.0 50% of total cover: 2.0 20% of total cover: 2.0 Wydrophytic Vegetation Indicators: Dominance Test is > 50% Prevalence Index is ≤ 3.0 Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Explain) 1 Indicators or hydric soil and wetland hydrology must be present,				V		Prevalence index = $B/A = 2.668$
50% of total cover: 5.0 20% of total cover: 2.0 Dominance Test is > 50% Prevalence Index is ≤ 3.0 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present,	3.	· · · · · · · · · · · · · · · · · · ·			FAC	Hydrophytic Vegetation Indicators:
Prevalence Index is ≤ 3.0 Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Explain) 1 Indicators or hydric soil and wetland hydrology must be present,			·	000/ - [+-+-		
Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present,		50% of total co	over: <u>5.0</u>	20% of tota	cover: <u>2.0</u>	
in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present,						
Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present,						
¹ Indicators or hydric soil and wetland hydrology must be present,						
Plot size (radius, or length × width) <u>5m radiu</u>						
% Cover of Wetland Bryophytes (Where applicable) 75.0						
% Bare Ground <u>0.0</u>						
Total Cover of Bryophytes						
Hydrophytic						
Vegetation						-
Present? Yes <u>√</u> No						

Remarks: Tamarack stand, moss cover is entirely live sphagnum

SOIL

Sampling Point: W9-SP1

Depth	Matrix		Redo	x Fea	atures		_		
<u>(inches)</u> 	<u>Color (moist)</u> <u>%</u>	Color (mo	oist)	<u>%</u>	Type ¹	Loc ²	Texture peat mucky peat	Mod	Remarks
8-12	·						muck		
	Concentration, D=De	pletion, RM=	Reduc	ed Ma	atrix, A=Al	osent	² Location: P	L=Pore Lining	g, RC=Root Channel, M=Matrix
Hydric Se	oil Indicators:			Ind	icators	for Pr	oblematic I	Hvdric Soi	ls ³ :
-	sol or Histel (A1)						ange (TA4) ⁴		Alaska Gleyed Without Hue 5Y or Redder
Histic	Epipedon (A2)				_		wales (TA5)		Underlying Layer
Hydro	ogen Sulfide (A4)				Alaska I	Redox W	/ith 2.5Y Hue		Other (Explain in Remarks)
Thick	Dark Surface (A12)								
Alaska	a Gleyed (A13)			³ One	e indicato	r or hyd	rophytic veget	ation, one pr	imary indicator of wetland hydrology,
Alaska	a Redox (A14)			ar	id an app	ropriate	e landscape pos	sition must b	e present unless disturbed or problematic.
Alaska	a Gleyed Pores (A15)			⁴Giv	e details o	of color	change in Rem	arks.	
Restrictiv	/e Layer (if pres	ent):							
Type: Seaso	nal Frost							Hydric	Soil Present? Yes <u>√</u> No
Depth (inch	es): 14							•	
emarks:									
YDROLO									Coordonau II. (a
	Hydrology Indi								Secondary Indicators (2 or more required)
	ndicators (any one is	sufficient)			Inundat	ion Vici	hla an Aarial Im	22000 (D7)	Water Stained Leaves (B9)
	ce Water (A1) Nater Table (A2)				_		ble on Aerial Im ated Concave S	0	Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C3
✓ Hight					Marl De			unace (bo)	Presence of Reduced Iron (C4)
	Marks (B1)				_	• •	de Odor (C1)		Salt Deposits (C5)
	nent Deposits (B2)				_ · ·		ter Table (C2)		Stunted or Stressed Plants (D1)
	Deposits (B3)						n Remarks)		Geomorphic Position (D2)
	Mat or Crust (B4)				_ 、	•	,		Shallow Aquitard (D3)
0	eposits (B5)								Microtopographic Relief (D4)
Iron D									FAC-neutral Test (D5)
	ce Soil Cracks (B6)								
Surfac	. ,								
Surfac	ervations:	/es	No	J	Dent	h (inche	es):		
Surface W	ervations: /ater Present?	/es /es √	No No			h (inche h (inche			
Surface W Surface W Water Tab	Servations: /ater Present?		No No			h (inche h (inche		Wetland	Hydrology Present? Ves ./ No
Surface W Field Obs Surface W Water Tab Saturation	ervations: /ater Present?) ble Present?) n Present?				Dept		es): 6	Wetland	l Hydrology Present?Yes_√_No

Hydric Soil Indicators: Histosol or Histel (A1) **Wetland Hydrology Indicators:** FAC-Neutral Test (D5), Saturation (A3), High Water Table (A2)

Applicant/Owner: Federal Highway Administration (FHV Investigator(s): WAD Local relief (concave, convex, none): concave Subregion: Alaska Lat.: 64.8008 Soil Map Unit Name: Tanana-Mosquito complex Are climatic/hydrologic conditions on the site typical Are Vegetation, Soil, or Hydrology signific Are Vegetation, Soil, or Hydrology nature	Borough/City: Fairbanks Northstar Borough Sampling Date: 2020-07-08 NA) Sampling Point: W13-SP1 Landform (hillside, terrace, hummocks, etc.): Flat or fluvial related Slope: 0.0 % / 0.0 ° Slope: 0.0 % / 0.0 ° Elevation: 474 Long.: -147.7445 Datum: WGS84 NVI classification: PEM1F for this time of year? Yes _ ✓ _ No (If no, explain in Remarks) cantly disturbed? Are "Normal Circumstances" present? Yes _ ✓ _ No ally problematic? (If needed, explain any answers in Remarks.) ampling point locations, transects, important features, etc. Is the Sampled Area within a Wetland? Yes _ ✓ _ No
Remarks: Wet sedge marsh, disturbed by 4 wheeler trai	
VEGETATION - Use scientific names of plants. List all s	
Absolute Domin	
Tree Stratum <u>% Cover</u> <u>Speci</u>	ies? Status Number of Dominant Species That are OBL, FACW, or FAC: 3 (A)
Total Cover: 0.0 50% of total cover: 0.0 20% of	of total cover: 0.0 Total Number of Dominant Species Across all
Sapling/Shrub Stratum	Strata: <u>3</u> (B)
Total Cover: 0.0	Percent of Dominant Species That are OBL,
	of total cover: 0.0 FACW, or FAC: 100.0% (A/B)
Herb Stratum	<u></u> (<i>q</i> _
1. Carex aquatilis 40.0 √	OBL Prevalence Index worksheet:
2. Calamagrostis canadensis 35.0 🗸	FAC Total % Cover of: Multiply by:
3. Carex utriculata 30.0 🗸	OBL OBL Species 90.0 × 1 = 90.0
4. Comarum palustre 20.0	OBL FACW Species 0.0 × 2 = 0.0
Total Cover: 125.0	FAC Species <u>35.0</u> × 3 = <u>105.0</u>
50% of total cover: <u>62.5</u> 20% of	total cover: <u>25.0</u> FACU Species <u>0.0</u> × 4 = <u>0.0</u>
	UPL Species <u>0.0</u> × 5 = <u>0.0</u>
	Column Totals: <u>125.0</u> (A) <u>195.0</u> (B)
	Prevalence Index = $B/A = 1.560$
	Hydrophytic Vegetation Indicators:
	Dominance Test is > 50%
	Prevalence Index is ≤ 3.0
	Morphological Adaptations ¹ (Provide supporting data
	in Remarks or on a separate sheet)
	Problematic Hydrophytic Vegetation ¹ (Explain)
	¹ Indicators or hydric soil and wetland hydrology must be present,
	unless disturbed or problematic.
	Plot size (radius, or length × width) <u>5m radius</u>
	% Cover of Wetland Bryophytes (Where applicable) 0.0
	% Bare Ground 0.0
	Total Cover of Bryophytes 0.0
	Hydrophytic
	Vegetation
	Present? Yes _√ No
Remarks:	

SOIL Sampling Point: W13-SP1 Matrix **Redox Features** Depth Color (moist) % (inches) Color (moist) % Type¹ Loc² Texture Mod Remarks ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils³: Histosol or Histel (A1) Alaska Color Change (TA4)⁴ Alaska Gleyed Without Hue 5Y or Redder Histic Epipedon (A2) Alaska Alpine Swales (TA5) **Underlying Layer** Alaska Redox With 2.5Y Hue ✓ Other (Explain in Remarks) Hydrogen Sulfide (A4) Thick Dark Surface (A12) Alaska Gleyed (A13) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, Alaska Redox (A14) and an appropriate landscape position must be present unless disturbed or problematic. Alaska Gleyed Pores (A15) ⁴Give details of color change in Remarks. **Restrictive Layer (if present):** Hydric Soil Present? Type: Yes √ No

Depth (inches):

Remarks: Site inundated, no pit

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)
Primary Indicators (any one is sufficient)		Water Stained Leaves (B9)
Surface Water (A1)	Inundation Visible on Aerial Imagery (B7)	Drainage Patterns (B10)
High Water Table (A2)	Sparsely Vegetated Concave Surface (B8)	Oxidized Rizospheres along Living Roots (C3)
Saturation (A3)	Marl Deposits (B15)	Presence of Reduced Iron (C4)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Salt Deposits (C5)
Sediment Deposits (B2)	Dry-Season Water Table (C2)	Stunted or Stressed Plants (D1)
Drift Deposits (B3)	Other (Explain in Remarks)	Geomorphic Position (D2)
Algal Mat or Crust (B4)		Shallow Aquitard (D3)
Iron Deposits (B5)		Microtopographic Relief (D4)
Surface Soil Cracks (B6)		FAC-neutral Test (D5)
Field Observations:		
Surface Water Present? Yes _√ No	Depth (inches): 6	
Water Table Present? Yes _√ No	Depth (inches): 0	
Saturation Present?	Wetland	l Hydrology Present?Yes ✓ No
(includes capillary fringe) Yes _√ No	Depth (inches): 0	
Recorded Data (stream gauge, monitor well,	aerial photo, previous inspection) if av	ailable:
Remarks:		

Hydric Soil Indicators: Other (explain in remarks) **Wetland Hydrology Indicators:** Surface Water (A1), FAC-Neutral Test (D5), Saturation (A3), High Water Table (A2)

No Soil Pit Photo Taken

Project/Site: TLRA Improvements; Wetland Delineation Bon	rough/City: Fairbanks Northst	ar borough Sampling Date: 2020-07-07
Applicant/Owner: Federal Highway Administration (FHWA)		Sampling Point: W17-SP1
Investigator(s): WAD	Landform (hillside, terrace,	hummocks, etc.): Flat or fluvial related
Local relief (concave, convex, none): <u>concave</u>	Slope: <u>0.0</u> % / <u>0.0</u> °	Elevation: <u>476</u>
Subregion: Alaska Lat.: 64.7975	Long.: -147.7426	Datum: WGS84
Soil Map Unit Name: Salchaket very fine sandy loam		NWI classification: PEM1/SS1F
Are climatic/hydrologic conditions on the site typical for	this time of year? Yes \checkmark	_ No (If no, explain in Remarks)
Are Vegetation, Soil, or Hydrology significant	ly disturbed? Are "Normal Cir	cumstances" present? Yes _ ✓ _ No
Are Vegetation, Soil, or Hydrology naturally	problematic? (If needed	, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sam	pling point locations, transec	ts, important features, etc.

Hydrophytic Vegetation Present?	Yes_√_No_	 Is the Sampled Area		
Hydric Soil Present?	Yes _√_ No	 within a Wetland?	Yes √	Νο
Wetland Hydrology Present?	Yes_√_No_	 within a wettand.		

Remarks: Wet meadow on the edge of the lake interspersed with tall willow.

VEGETATION - Use scientific names of plants. List all species in the plot.

	Absolute		Indicator	Dominance Test worksheet:
Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,
Total Cover:	0.0			FACW, or FAC: <u>5</u> (A)
500	% of total cover: <u>0.0</u>	20% of tota	l cover: 0.0	Total Number of Dominant Species Across all
Sapling/Shrub Stratun	<u>1</u>			Strata: <u>5</u> (B)
Salix alaxensis	10.0		FAC	Percent of Dominant Species That are OBL,
Salix lasiandra	10.0		FACW	FACW, or FAC:(A/B)
Salix interior	10.0	\checkmark	FACW	
Total Cover:	30.0			Prevalence Index worksheet:
50%	of total cover: <u>15.0</u>	20% of tota	l cover: <u>6.0</u>	Total % Cover of: Multiply by:
Herb Stratum				OBL Species <u>5.0</u> × 1 = <u>5.0</u>
Equisetum palustre		<u> </u>	FACW	FACW Species <u>36.0</u> × 2 = <u>72.0</u>
Calamagrostis cana		<u> </u>	FAC	FAC Species <u>25.0</u> × 3 = <u>75.0</u>
Comarum palustre	5.0		OBL	FACU Species <u>3.0</u> × 4 = <u>12.0</u>
Equisetum arvense	5.0		FAC	UPL Species <u>0.0</u> × 5 = <u>0.0</u>
Chamaenerion angustif	olium 3.0		FACU	Column Totals: <u>69.0</u> (A) <u>164.0</u> (B)
Carex saxatilis	1.0		FACW	Prevalence Index = B/A = <u>2.377</u>
Total Cover:	39.0			
50%	of total cover: <u>19.5</u>	20% of tota	l cover: 7.8	Hydrophytic Vegetation Indicators:
				Dominance Test is > 50%
				\checkmark Prevalence Index is ≤ 3.0
				Morphological Adaptations ¹ (Provide supporting da
				in Remarks or on a separate sheet)
				Problematic Hydrophytic Vegetation ¹ (Explain)
				¹ Indicators or hydric soil and wetland hydrology must be pres
				unless disturbed or problematic.
				Plot size (radius, or length × width) 5m ra
				% Cover of Wetland Bryophytes (Where applicable) 0.
				% Bare Ground 0.
				Total Cover of Bryophytes 0.
				Hydrophytic
				Vegetation

SOIL Sampling Point: W17-SP1 Matrix **Redox Features** Depth Color (moist) % (inches) Color (moist) % Type¹ Loc² Texture Mod Remarks ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils³: Histosol or Histel (A1) Alaska Color Change (TA4)⁴ Alaska Gleyed Without Hue 5Y or Redder Histic Epipedon (A2) Alaska Alpine Swales (TA5) **Underlying Layer** Alaska Redox With 2.5Y Hue ✓ Other (Explain in Remarks) Hydrogen Sulfide (A4) Thick Dark Surface (A12) Alaska Gleyed (A13) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, Alaska Redox (A14) and an appropriate landscape position must be present unless disturbed or problematic. Alaska Gleyed Pores (A15) ⁴Give details of color change in Remarks. **Restrictive Layer (if present):** Hydric Soil Present? Type: No Data Yes √ No____ Depth (inches): -1000 Remarks: No pit, site inundated

Wetland Hydrology Indicators: Primary Indicators (any one is sufficient)		Secondary Indicators (2 or more required) Water Stained Leaves (B9)
✓ Surface Water (A1)	Inundation Visible on Aerial Imagery (B7)	Drainage Patterns (B10)
✓ High Water Table (A2)	Sparsely Vegetated Concave Surface (B8)	Oxidized Rizospheres along Living Roots (C3)
Saturation (A3)	Marl Deposits (B15)	Presence of Reduced Iron (C4)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Salt Deposits (C5)
Sediment Deposits (B2)	Dry-Season Water Table (C2)	Stunted or Stressed Plants (D1)
Drift Deposits (B3)	Other (Explain in Remarks)	Geomorphic Position (D2)
Algal Mat or Crust (B4)		Shallow Aquitard (D3)
Iron Deposits (B5)		Microtopographic Relief (D4)
Surface Soil Cracks (B6)		FAC-neutral Test (D5)
Field Observations:		
Surface Water Present? Yes _√ No	Depth (inches): 5	
Water Table Present? Yes _√ No	Depth (inches): 0	
Saturation Present?	Wetland	l Hydrology Present?Yes ✓ No
(includes capillary fringe) Yes _√ No	Depth (inches): 0	· · ·
Recorded Data (stream gauge, monitor well,	aerial photo, previous inspection) if av	vailable:
Remarks:		

Hydric Soil Indicators: Other (explain in remarks) **Wetland Hydrology Indicators:** Saturation (A3), Surface Water (A1), FAC-Neutral Test (D5), High Water Table (A2)

NO SOIL PIT PHOTO TAKEN

Project/Site: TLRA Improvements; Wetland De	elineation Borough/	City: Fairbanks Nort	hstar Boroug	gh_Sampling	Date: <u>2020-07-07</u>	
Applicant/Owner: Federal Highway Administra	ation (FHWA)			Sampling	g Point: W21-SP1	
Investigator(s): WAD	Land	lform (hillside, terra	ce, hummoc	ks, etc.): Flat	or fluvial related	
Local relief (concave, convex, none): none	Slope:	0.0 %/ 0.0 °		Elevation: 5	04	
Subregion: Alaska Lat.: 64.	.7995	Long.: -147.73	36	Dat	um: WGS84	
Soil Map Unit Name: Eielson-Piledriver compl	lex		1	NWI classifica	tion: PSS1E	
Are climatic/hydrologic conditions on the sit	te typical for this t	ime of year? Yes _	√ No	_ (If no, expl	ain in Remarks)	
Are Vegetation, Soil, or Hydrology	✓ significantly dist	urbed? Are "Normal	Circumstan	ces" present?	Yes_√_No	
Are Vegetation, Soil, or Hydrology _	✓ naturally proble	ematic? (If need	led, explain	any answers	in Remarks.)	
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes ✓ 1	No	Is the Sampled Are	3			
Hydric Soil Present? Yes √	No	within a Wetland?	a Yes		No	
Wetland Hydrology Present? Yes 🗸 I	No		163	<u> </u>	NV	

Remarks: Site is located upslope of the hiking trail and water appears to impounded. Forest floor is barren, understory vegetation appears to be impacted but flooding may not have been present long enough for obligate plant species to establish and for overstory species to begin dying out.

VEGETATION - Use scientific names of plants. List all species in the plot.

		Absolute	Dominant	Indicator	Dominance Test worksheet:
	Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,
	Total Cover:	0.0			FACW, or FAC: <u>0</u> (A)
	50% of to	otal cover: 0.0	20% of tota	l cover: 0.0	Total Number of Dominant Species Across all
	Sapling/Shrub Stratum				Strata: <u>1</u> (B)
1.	Prunus padus	85.0	\checkmark	FACU	Percent of Dominant Species That are OBL,
2.	Alnus incana	10.0		FAC	FACW, or FAC: 0.0% (A/B)
3.	Rosa acicularis	5.0		FACU	
4.	Salix bebbiana	4.0		FAC	Prevalence Index worksheet:
	Total Cover:	104.0			Total % Cover of: Multiply by:
	50% of tota	l cover: 52.0	20% of total	cover: 20.8	OBL Species 0.0 × 1 = 0.0
	Herb Stratum				FACW Species 0.0 × 2 = 0.0
1.	Equisetum arvense	1.0		FAC	FAC Species <u>15.0</u> × 3 = <u>45.0</u>
	Total Cover:	1.0			FACU Species 90.0 × 4 = 360.0
	50% of to	otal cover: 0.5	20% of tota	l cover: 0.2	UPL Species <u>0.0</u> × 5 = <u>0.0</u>
					Column Totals: <u>105.0</u> (A) <u>405.0</u> (B)
					Prevalence Index = B/A = 3.857
					 Prevalence Index is ≤ 3.0 Morphological Adaptations¹ (Provide supporting d in Remarks or on a separate sheet) ✓ Problematic Hydrophytic Vegetation¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be presunless disturbed or problematic.
					Plot size (radius, or length × width) 5m r % Cover of Wetland Bryophytes (Where applicable) % Bare Ground Total Cover of Bryophytes Hydrophytic Vegetation Present? Yes √

SOIL Sampling Point: W21-SP1 Matrix **Redox Features** Depth Color (moist) % (inches) Color (moist) % Type¹ Loc² Texture Mod Remarks ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils³: Histosol or Histel (A1) Alaska Color Change (TA4)⁴ Alaska Gleyed Without Hue 5Y or Redder Histic Epipedon (A2) Alaska Alpine Swales (TA5) **Underlying Layer** Alaska Redox With 2.5Y Hue ✓ Other (Explain in Remarks) Hydrogen Sulfide (A4) Thick Dark Surface (A12) Alaska Gleyed (A13) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, Alaska Redox (A14) and an appropriate landscape position must be present unless disturbed or problematic.

 _____Alaska Gleyed Pores (A15)
 ⁴Give details of color change in Remarks.

 Restrictive Layer (if present):
 Hydric Soil Present?
 Yes _ ✓
 No ____

 Type: No Data
 Pepth (inches): -1000
 Yes _ ✓
 No ____

Remarks: No pit due to flooding but assume histic epipedon similar to neighboring plot

Wetland Hydrology Inc	dicate	ors:			Secondary Indicators (2 or more required)
Primary Indicators (any one	is suff	Water Stained Leaves (B9)			
Surface Water (A1)		B7)Drainage Patterns (B10)			
High Water Table (A2)				Sparsely Vegetated Concave Surface (I	B8)Oxidized Rizospheres along Living Roots (C3
_√_Saturation (A3)				Marl Deposits (B15)	Presence of Reduced Iron (C4)
Water Marks (B1)				✓ Hydrogen Sulfide Odor (C1)	Salt Deposits (C5)
Sediment Deposits (B2)				Dry-Season Water Table (C2)	Stunted or Stressed Plants (D1)
Drift Deposits (B3)				Other (Explain in Remarks)	✓ Geomorphic Position (D2)
Algal Mat or Crust (B4)					Shallow Aquitard (D3)
Iron Deposits (B5)					Microtopographic Relief (D4)
Surface Soil Cracks (B6)					FAC-neutral Test (D5)
ield Observations:					
Surface Water Present?	Yes	\checkmark	No	Depth (inches): 2	
Water Table Present?	Yes	\checkmark	No	Depth (inches): 0	
Saturation Present?				Wet	land Hydrology Present? Yes 🗸 🛛 No
(includes capillary fringe)	Yes	\checkmark	No	Depth (inches): 0	
ecorded Data (stream ga	uge,	monit	or wel	l, aerial photo, previous inspection)	if available:
emarks: Water may be ir	npou	inded i	upslog	pe of trail, creating wetlands	

Hydric Soil Indicators: Other (explain in remarks)

Wetland Hydrology Indicators: Saturation (A3), Surface Water (A1), Hydrogen Sulfide Odor (C1), High Water Table (A2), Water-Stained Leaves (B9), Geomorphic Position (D2)

NO SOIL PIT PHOTO TAKEN

Soil Map Unit Name: <u>Tanana mucky silt lo</u> Are climatic/hydrologic conditions on th Are Vegetation, Soil, or Hydrolog Are Vegetation, Soil, or Hydrolog SUMMARY OF FINDINGS - Attach site m Hydrophytic Vegetation Present? Yes	$\frac{1}{2}$ $\frac{1}{2} = \frac{1}{2} $	n (FHWA)Slop 2 ypical for th ignificantly naturally pr wing sampli	pe: <u>0.0</u> L nis time of disturbed? roblematic ng point lo Is the within	S Landform (hillside, te % / _0.0_ ° Elev ong.: -147.7449 NWI c year? Yes _✓_No (If ? Are "Normal Circumstances" p ? (If needed, explain any a bocations, transects, important f Sampled Area a Wetland? Yes _✓	Sampling Point: errace, hummoo vation: <u>490</u> Datum: <u>W0</u> classification: PF no, explain in present? Yes <u>√</u> onswers in Rema features, etc.	W23-SP1 cks, etc.): GS84 GAB Remarks) _ No
		•	Indicator			
	Absolute	Dominant		Dominance Test worksheet: Number of Dominant Species That	are OBI	
1. Picea mariana	<u>% Cover</u> 20.0	Species?	<u>Status</u> FACW	FACW, or FAC:		(A)
2. Betula neoalaskana	10.0	<u> </u>	FACU	Total Number of Dominant Species.		()
Total Cover:	30.0		17100	Strata:		(B)
50% of total cove		20% of total	cover: 60	Percent of Dominant Species That		()
Sapling/Shrub Stratum		20 /0 01 10101	<u></u>	FACW, or FAC:	71.4%	(A/B)
1. Rhododendron groenlandicum	35.0	\checkmark	FAC			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2. Betula glandulosa	10.0		FAC	Prevalence Index worksheet:		
3. Betula neoalaskana	10.0	$\overline{\checkmark}$	FACU	Total % Cover of: Multiply	v bv:	
4. Vaccinium vitis-idaea	10.0	$\overline{\checkmark}$	FAC	OBL Species 1.0 × 1 =	1.0	
5. Chamaedaphne calyculata	5.0		FACW	FACW Species 26.0 × 2 =	52.0	
6. Myrica gale	1.0		OBL	FAC Species 85.0 × 3 =	255.0	
7. Larix laricina	1.0		FACW	FACU Species 20.0 × 4 =	80.0	
Total Cover:	72.0			UPL Species 0.0 × 5 =	0.0	
50% of total cover:		20% of total c	over: 14.4	Column Totals: 132.0 (A)	388.0 (B)	
Herb Stratum				Prevalence Index = $B/A = 2.939$		
1. Calamagrostis canadensis	25.0	\checkmark	FAC			
2. Equisetum arvense	5.0		FAC	Hydrophytic Vegetation Indicator	rs:	
Total Cover:	30.0			Dominance Test is > 50%		
50% of total cove	r: 15.0	20% of total	cover: 6.0	\checkmark Prevalence Index is ≤ 3.0		
				Morphological Adaptation	1s ¹ (Provide suppor	ting data
				in Remarks or on a separa	te sheet)	
				Problematic Hydrophytic	Vegetation ¹ (Explain	n)
				¹ Indicators or hydric soil and wetlar		present,
				unless disturbed or problematic		
				Plot size (radius, or length × width)	1	5m radius
				% Cover of Wetland Bryophytes (W	here applicable)	5.0
				% Bare Ground		0.0
				Total Cover of Bryophytes		30.0
				Hydrophytic		
				Vegetation		
				Present?	Yes 🗸	No
Remarks:						

SOIL Sampling Point: W23-SP1 Matrix Depth **Redox Features** (inches) Color (moist) % Color (moist) % Type¹ Loc² Texture Mod Remarks 0-4 peat 4-8 mucky peat С 8-12 5gy 5/1 90 5yr 4/6 10 М silt ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix Indicators for Problematic Hydric Soils³: **Hydric Soil Indicators:** Alaska Gleyed Without Hue 5Y or Redder Histosol or Histel (A1) Alaska Color Change (TA4)⁴ ✓ Histic Epipedon (A2) Alaska Alpine Swales (TA5) **Underlying Layer** Hydrogen Sulfide (A4) Alaska Redox With 2.5Y Hue Other (Explain in Remarks) Thick Dark Surface (A12) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, Alaska Gleyed (A13) and an appropriate landscape position must be present unless disturbed or problematic. Alaska Redox (A14) Alaska Gleyed Pores (A15) ⁴Give details of color change in Remarks. **Restrictive Layer (if present):** Hydric Soil Present? Yes √ No

Type: Seasonal Frost

Depth (inches): 17

Remarks: Reached frozen layer with the shavel blade, a a dip positive

Wetland Hydrology Indicators	Secondary Indicators (2 or more required)						
Primary Indicators (any one is sufficie	Water Stained Leaves (B9)						
Surface Water (A1)	Drainage Patterns (B10)						
High Water Table (A2)			Sparsely Vegetated Concav	e Surface (B8)	Oxidized Rizospheres along Living Roots (C3		
✓ Saturation (A3)			Marl Deposits (B15)		✓ Presence of Reduced Iron (C4)		
Water Marks (B1)			Hydrogen Sulfide Odor (C1)		Salt Deposits (C5)		
Sediment Deposits (B2)			Dry-Season Water Table (C2)	Stunted or Stressed Plants (D1)		
Drift Deposits (B3)		(Other (Explain in Remarks)		Geomorphic Position (D2)		
Algal Mat or Crust (B4)					Shallow Aquitard (D3)		
Iron Deposits (B5)					Microtopographic Relief (D4)		
Surface Soil Cracks (B6)					FAC-neutral Test (D5)		
Field Observations:							
Surface Water Present? Yes	No	\checkmark	Depth (inches):				
Water Table Present? Yes	No	\checkmark	Depth (inches): 5				
Saturation Present?				Wetland	Hydrology Present?Yes ✓ No		
(includes capillary fringe) Yes	No	\checkmark	Depth (inches): 1		,		
ecorded Data (stream gauge, mc	nitor wel	l, aeria	al photo, previous ins	pection) if av	ailable:		
emarks:				,			

Hydric Soil Indicators: Histic Epipedon (A2) **Wetland Hydrology Indicators:** High Water Table (A2), Presence of Reduced Iron (C4), Saturation (A3)

Project/Site: TLRA Improvements; Wetland Delineation Bo	rough/City: Fairbanks Northstar Boro	ugh Sampling Date: 2020-07-07					
Applicant/Owner: Federal Highway Administration (FHWA)		Sampling Point: W27-SP1					
Investigator(s): WAD	Landform (hillside, terrace, hummo	ocks, etc.): Flat or fluvial related					
Local relief (concave, convex, none): <u>concave</u>	_Slope: <u>0.0</u> %/ <u>0.0</u> °	Elevation: <u>479</u>					
Subregion: Alaska Lat.: 64.8003	Long.: -147.7356	Datum: WGS84					
Soil Map Unit Name: Tanana-Mosquito complex		NWI classification: PSS1F					
Are climatic/hydrologic conditions on the site typical for	r this time of year? Yes _√_ No	(If no, explain in Remarks)					
Are Vegetation _ ✓ _, Soil, or Hydrology _ ✓ _ significan	ntly disturbed? Are "Normal Circumsta	nces" present? Yes _ ✓ _ No					
Are Vegetation, Soil, or Hydrology naturally	/ problematic? (If needed, explain	n any answers in Remarks.)					
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.							

,	es_√_No es_√_No es_√_No	 •	Is the Sampled Area within a Wetland?	Yes_√	No	_
Wetland Hydrology Present? Y	es_√_No					_

Remarks: Water impounded due to parking lot and poor drainage, vegetation covered in dust.

VEGETATION - Use scientific names of plants. List all species in the plot.

		Absolute	Dominant	Indicator	Dominance Test worksheet:
	Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,
	Total Cover:	0.0			FACW, or FAC: <u>6</u> (A)
	50% of total c	over: 0.0	20% of total	cover: 0.0	Total Number of Dominant Species Across all
	Sapling/Shrub Stratum				Strata: <u>6</u> (B)
1.	Myrica gale	20.0	\checkmark	OBL	Percent of Dominant Species That are OBL,
2.	Salix alaxensis	5.0		FAC	FACW, or FAC:100.0% (A/B)
3.	Betula nana	5.0		FAC	
4.	Salix niphoclada	1.0			Prevalence Index worksheet:
	Total Cover:	31.0			Total % Cover of: Multiply by:
	50% of total co	over: 15.5	20% of total	cover: 6.2	OBL Species × 1 = 40.0
	Herb Stratum				FACW Species <u>0.0</u> × 2 = <u>0.0</u>
1.	Carex aquatilis	10.0	\checkmark	OBL	FAC Species × 3 =60.0
2.	Schoenoplectus tabernaemontani	5.0	\checkmark	OBL	FACU Species <u>0.0</u> × 4 = <u>0.0</u>
3.	Equisetum fluviatile	5.0	\checkmark	OBL	UPL Species <u>0.0</u> × 5 = <u>0.0</u>
4.	Equisetum arvense	5.0	\checkmark	FAC	Column Totals: <u>60.0</u> (A) <u>100.0</u> (B)
5.	Calamagrostis canadensis	5.0	\checkmark	FAC	Prevalence Index = B/A = <u>1.667</u>
	Total Cover:	30.0			
	50% of total co	over: 15.0	20% of total	cover: 6.0	Hydrophytic Vegetation Indicators:
					Dominance Test is > 50%
					\checkmark Prevalence Index is ≤ 3.0
					Morphological Adaptations ¹ (Provide supporting dat
					in Remarks or on a separate sheet)
					Problematic Hydrophytic Vegetation ¹ (Explain)
					¹ Indicators or hydric soil and wetland hydrology must be preser
					unless disturbed or problematic.
					Plot size (radius, or length × width) 2x10m
					% Cover of Wetland Bryophytes (Where applicable) 0.0
					% Bare Ground 0.0
					Total Cover of Bryophytes 0.0
					Hydrophytic
					Vegetation
					Present? Yes √ No

Remarks: Site is likely flooded regularly during the growing season based on the presence of obligate plant species

SOIL Sampling Point: W27-SP1 Matrix **Redox Features** Depth Color (moist) % (inches) Color (moist) % Type¹ Loc² Texture Mod Remarks ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils³: Histosol or Histel (A1) Alaska Color Change (TA4)⁴ Alaska Gleyed Without Hue 5Y or Redder Histic Epipedon (A2) Alaska Alpine Swales (TA5) **Underlying Layer** Alaska Redox With 2.5Y Hue ✓ Other (Explain in Remarks) Hydrogen Sulfide (A4) Thick Dark Surface (A12) Alaska Gleyed (A13) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, Alaska Redox (A14) and an appropriate landscape position must be present unless disturbed or problematic.

Alaska Gleyed Pores (A15)

Restrictive Layer (if present):			
Туре:	Hydric Soil Present?	Yes √	No
Depth (inches):			

⁴Give details of color change in Remarks.

Remarks: No pit, plot inundated, assume hydric soils

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)			
Primary Indicators (any one is sufficient)	Water Stained Leaves (B9)				
Surface Water (A1)	Drainage Patterns (B10)				
✓ High Water Table (A2)	Sparsely Vegetated Concave Surface (B8)	Oxidized Rizospheres along Living Roots (C3			
✓ Saturation (A3)	Marl Deposits (B15)	Presence of Reduced Iron (C4)			
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Salt Deposits (C5)			
Sediment Deposits (B2)	Dry-Season Water Table (C2)	Stunted or Stressed Plants (D1)			
Drift Deposits (B3)	Other (Explain in Remarks)				
Algal Mat or Crust (B4)		Shallow Aquitard (D3)			
Iron Deposits (B5)		Microtopographic Relief (D4)			
Surface Soil Cracks (B6)		FAC-neutral Test (D5)			
ield Observations:					
Surface Water Present? Yes _✓ No	Depth (inches): 6				
Water Table Present? Yes √ No	Depth (inches): 0				
Saturation Present?	Wetland	Hydrology Present?Yes ✓ No			
(includes capillary fringe) Yes _√ No	Depth (inches): 0				
ecorded Data (stream gauge, monitor w	ll, aerial photo, previous inspection) if ava	ailable:			
emarks: Flooded ditch adjacent to park	ng lot, water may be higher than usual du	e to heavy rains a			

Hydric Soil Indicators: Other (explain in remarks) **Wetland Hydrology Indicators:** High Water Table (A2), Geomorphic Position (D2), Saturation (A3), Surface Water (A1), FAC-Neutral Test (D5)

No Soil Pit Photo Taken

	te: <u>TLRA Improvement:</u> /Owner: Federal Highw			ugh/City: <u>F</u>	airbanks Northst		npling Date: 2 mpling Point	
		ay Auministratic		andfarma (hilloido torrogo			
0	or(s): WAD				hillside, terrace,			lat retated
	f (concave, convex, no				%/0.0_°		ation: <u>474</u>	
Subregion		Lat.: <u>64.797</u>		L	ong.: <u>-147.7425</u>		Datum: <u>W</u>	
	Jnit Name: Salchaket v						ssification: P	
	tic/hydrologic conditio						o, explain in	
	ition, Soil, or							
Are Vegeta	ation, Soil, or	r Hydrology	naturally p	roblematic	(If needed	l, explain any an	swers in Rem	arks.)
-	Y OF FINDINGS - Atta		wing sampli	ing point lo	ocations, transec	ts, important fea	atures, etc.	
	hytic Vegetation Preser			Is the	Sampled Area			
-	Soil Present?	Yes <u>√</u> No		within	n a Wetland?	Yes 🗸	No	
	Hydrology Present?	Yes <u>√</u> No						
<u>.</u>	: Wet sedge meadow. M	•				om the road.		
VEGETAT	ION - Use scientific na	mes of plants. Li Absolute	st all specie Dominant	s in the plo	ot. Dominance Test	workshoot		
	Tuo o Stratum		Species?			nant Species That ar	e OBL.	
	<u>Tree Stratum</u> Total Cover:	<u>% Cover</u>	species:	<u>Status</u>	FACW, or FAC:		<u>1</u>	(A)
		0.0 of total cover: 0.0	20% of total	covor: 0.0		Dominant Species Ac		()
	Sapling/Shrub Stratum		20% 01 10181	0.0	Strata:	sommaneopeelesrie	1	(B)
	Total Cover:	0.0				nant Species That ar		(-)
		of total cover: 0.0	20% of total	cover: 0.0	FACW, or FAC:	iant opecies mat a		% (A/B)
	Herb Stratum		2070 01 10141	cover. <u>0.0</u>			_100.0	<u>/////////////////////////////////////</u>
1.	Carex utriculata	45.0	1	OBL	Prevalence Inde	x worksheet:		
2.	Calamagrostis canad			FAC	Total % Cover of		<i>'</i> :	
3.	Equisetum arvense	5.0		FAC	OBL Species		5.0	
	Total Cover:	60.0			FACW Species).0	
		total cover: 30.0	20% of total c	over: 12.0	FAC Species		5.0	
	00,000	<u></u>			FACU Species		0.0	
					UPL Species		0.0	
					Column Totals:		0.0 (B)	
					Prevalence Index			
					Hvdrophytic Veg	getation Indicators:		
						nce Test is > 50%		
						nce Index is ≤ 3.0		
						logical Adaptations ¹	(Provide suppo	orting data
						irks or on a separate		0
						natic Hydrophytic Ve		in)
						dric soil and wetland		
						ed or problematic.		
						or longth y width)		Em radius
						or length × width)	vro applicable)	5m radius
					% Cover of Wetta % Bare Ground	nd Bryophytes (Whe	are applicable)	0.0
						vonhutes		0.0
					Total Cover of Br			0.0
					Hydrophytic			
					Vegetation Present?		Voc /	No
					Fresent:		Yes_√	No
Remarks:	:							

SOIL Sampling Point: W31-SP1 Matrix **Redox Features** Depth Color (moist) % (inches) Color (moist) % Type¹ Loc² Texture Mod Remarks ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, A=Absent ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils³: Histosol or Histel (A1) Alaska Color Change (TA4)⁴ Alaska Gleyed Without Hue 5Y or Redder Histic Epipedon (A2) Alaska Alpine Swales (TA5) **Underlying Layer** Alaska Redox With 2.5Y Hue ✓ Other (Explain in Remarks) Hydrogen Sulfide (A4) Thick Dark Surface (A12) Alaska Gleyed (A13) ³One indicator or hydrophytic vegetation, one primary indicator of wetland hydrology, Alaska Redox (A14) and an appropriate landscape position must be present unless disturbed or problematic. Alaska Gleyed Pores (A15) ⁴Give details of color change in Remarks. **Restrictive Layer (if present):** Hydric Soil Present? Type: Not Assessed Yes √ No____ Depth (inches): -1000

Remarks: No pit, site inundated

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)		
Primary Indicators (any one is sufficient)		Water Stained Leaves (B9)		
Surface Water (A1)	Inundation Visible on Aerial Imagery (B7)	Drainage Patterns (B10)		
✓ High Water Table (A2)	Sparsely Vegetated Concave Surface (B8)	Oxidized Rizospheres along Living Roots (C3		
✓ Saturation (A3)	Marl Deposits (B15)	Presence of Reduced Iron (C4)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Salt Deposits (C5)		
Sediment Deposits (B2)	Dry-Season Water Table (C2)	Stunted or Stressed Plants (D1)		
Drift Deposits (B3)	Other (Explain in Remarks)	Geomorphic Position (D2)		
Algal Mat or Crust (B4)		Shallow Aquitard (D3)		
Iron Deposits (B5)		Microtopographic Relief (D4)		
Surface Soil Cracks (B6)		FAC-neutral Test (D5)		
ield Observations:				
Surface Water Present? Yes _√	No Depth (inches): 6			
Water Table Present? Yes 🗸	No Depth (inches): 0			
Saturation Present?	Wetla	nd Hydrology Present?Yes 🗸 No		
(includes capillary fringe) Yes _√	No Depth (inches): 0	,		
ecorded Data (stream gauge, monito	well, aerial photo, previous inspection) if	available:		
emarks: Hydrology does not appear	be significantly disturbed despite proxin	nity to roadways.		

Hydric Soil Indicators: Other (explain in remarks) **Wetland Hydrology Indicators:** High Water Table (A2), Saturation (A3), FAC-Neutral Test (D5), Surface Water (A1)

No Soil Pit Photo Taken

Project/Site: TLRA Improvem	ents; Wetland Delineatio	on Borough/C	ity: Fairbar	nks Northstar Boro	ugh Sampling Date: 2020-07-07
Applicant/Owner: Federal Hi	ghway Administration (F	HWA)			Sampling Point: TL-05
Investigator(s): JPP, WAD				Landform (hill:	side, terrace, hummocks, etc.):
Local relief (concave, convex	, none):	Slope: 0.0	%/_0.0	0	Elevation: <u>450</u>
Subregion: <u>Alaska</u>	Lat.: 64.7994		Long.:	-147.7332	Datum: WGS84
Soil Map Unit Name: Eielson-	Piledriver complex				NWI classification: U
Are climatic/hydrologic cond	ditions on the site typic	al for this tir	ne of year	? Yes _√_ No	(If no, explain in Remarks)
Are Vegetation, Soil	, or Hydrology signi	ficantly distu	rbed? Are "	Normal Circumsta	nces" present? Yes _ ✓ _ No
Are Vegetation, Soil	, or Hydrology nat	urally probler	matic?	(If needed, explain	n any answers in Remarks.)
SUMMARY OF FINDINGS -	Attach site map showing	g sampling po	oint locatio	ns, transects, impo	ortant features, etc.

Hydrophytic Vegetation Present	? Yes	No √	Is the Sampled Area		
Hydric Soil Present?	Yes	No √	within a Wetland?	Yes	No √
Wetland Hydrology Present?	Yes	No_√_	within a wettand.		

Remarks: Site is located directly downstream from TL-04, with similar vegetation but separated by the newly constructed hiking trail. No wetland indicators observed at this site.

VEGETATION - Use scientific names of plants. List all species in the plot.

		Absolute	Dominant	Indicator	Dominance Test worksheet:	
	Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,	
1.	Populus balsamifera	35.0	\checkmark	FACU	FACW, or FAC: <u>2</u>	(A)
2.	Picea glauca	5.0		FACU	Total Number of Dominant Species Across all	
	Total Cover:	40.0			Strata: 4	(B)
	50% of total	cover: 20.0	20% of tota	l cover: <u>8.0</u>	Percent of Dominant Species That are OBL,	
	Sapling/Shrub Stratum				FACW, or FAC:50.0	% (A/B)
1.	Rosa acicularis	45.0	_√	FACU		
2.	Salix bebbiana	10.0		_FAC_	Prevalence Index worksheet:	
3.	Prunus padus	5.0		FACU	Total % Cover of: Multiply by:	
4.	Salix alaxensis	5.0		FAC	OBL Species <u>0.0</u> × 1 = <u>0.0</u>	
5.	Salix lasiandra	5.0		FACW	FACW Species <u>45.0</u> × 2 = <u>90.0</u>	
	Total Cover:	70.0			FAC Species <u>70.0</u> × 3 = <u>210.0</u>	
	50% of total c	over: <u>35.0</u>	20% of total	cover: <u>14.0</u>	FACU Species <u>100.0</u> × 4 = <u>400.0</u>	
	Herb Stratum				UPL Species <u>0.0</u> × 5 = <u>0.0</u>	
1.	Equisetum arvense	45.0	\checkmark	FAC	Column Totals: <u>215.0</u> (A) <u>700.0</u> (B)	
2.	Equisetum pratense	40.0	\checkmark	FACW	Prevalence Index = $B/A = 3.256$	
3.	Calamagrostis canadensis	10.0		FAC	· · · · · · · · · · · · · · · · · · ·	
4.	Chamaenerion angustifolium	10.0		FACU	Hydrophytic Vegetation Indicators:	
	Total Cover:	105.0			Dominance Test is > 50%	
	50% of total c	over: 52.5	20% of total	cover: <u>21.0</u>	Prevalence Index is ≤ 3.0	
					Morphological Adaptations ¹ (Provide supp	porting data
					in Remarks or on a separate sheet)	
					Problematic Hydrophytic Vegetation ¹ (Exp	
					¹ Indicators or hydric soil and wetland hydrology mu	st be present,
					unless disturbed or problematic.	
					Plot size (radius, or length × width)	5m radiu
					% Cover of Wetland Bryophytes (Where applicable)	0.0
					% Bare Ground	0.0
					Total Cover of Bryophytes	0.0
					Hydrophytic	0.0
					Vegetation	
					Present? Yes	No √

SOIL

Sampling Point: TL-05

Depth M	atrix		Red	ox Fea	atures		_		
(inches) Color (n	oist) <u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Mod	Remarks
0-5	0.0						peat		
	8/2 95	_5yr	_4/4	5	C	_PL_	sand		
¹ Type: C=Concentra	ion, D=De	pletion, R	M=Reduc	ed Matr	ix, A=Abse	nt ²l	_ocation: P	L=Pore Lining	, RC=Root Channel, M=Matrix
Hydric Soil Indic	ators:			Indic	ators fo	r Prob	lematic	Hydric Soi	ls³:
Histosol or Histo	l (A1)			/	Alaska Col	or Chang	ge (TA4) ⁴		Alaska Gleyed Without Hue 5Y or Redder
Histic Epipedon	(A2)			/	Alaska Alpi	ne Swal	es (TA5)		Underlying Layer
Hydrogen Sulfic	e (A4)			/	Alaska Red	ox With	2.5Y Hue		Other (Explain in Remarks)
Thick Dark Surf	ice (A12)								
Alaska Gleyed (A	13)						, 0		mary indicator of wetland hydrology,
Alaska Redox (A	14)			and	an approp	riate lar	ndscape pos	sition must be	e present unless disturbed or problematic.
Alaska Gleyed P	ores (A15)			⁴ Give o	details of c	olor cha	nge in Rem	arks.	
Restrictive Layer	(if pres	ent):							
Туре:								Hydric	Soil Present? Yes No _√
Depth (inches):									
emarks: No hydri		licatora							
emarks. No nyun	SUITING	licators							
Wetland Hydrold Primary Indicators Surface Water (# High Water Table Saturation (A3) Water Marks (B3) Sediment Depo Drift Deposits (E Algal Mat or Cruu Iron Deposits (E	any one is (1) e (A2)) sits (B2) 3) st (B4) 5)		t)			egetated sits (B15) Sulfide C n Water T	l Concave S) Odor (C1) Table (C2)	nagery (B7) urface (B8)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) ✓ Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-neutral Test (D5)
Surface Soil Cra							1		
Field Observatio	ıs:	/05	Ne		Donth /:	nchoc):			
Field Observatio	15: nt?	fes	No		Depth (i				
Field Observatio Surface Water Prese Water Table Presen	15: nt?	les	No No	_√ √	Depth (i Depth (i			Watter	
Field Observatio Surface Water Prese Water Table Presen Saturation Presenta	15: nt? ?	res	No		Depth (i	nches):		Wetland	Hydrology Present?Yes No_√_
Field Observatio Surface Water Prese Water Table Presen	15: nt? ?			√ _√	•	nches):		Wetland	Hydrology Present?Yes No_√
Field Observatio Surface Water Prese Water Table Presen Saturation Presenta	1S: nt? ? ringe)	/es	No No		Depth (i Depth (i	nches): nches):	ous inspe		

Hydric Soil Indicators: None Wetland Hydrology Indicators: Geomorphic Position (D2)

Project/Site: TLRA Improveme	ents; Wetland Delineation Be	orough/City: Fairb	anks Northstar Boro	ugh Sampling Date: 2020-07-07
Applicant/Owner: Federal Hig	hway Administration (FHWA	A)		Sampling Point: TL-10
Investigator(s): WAD, JPP		Landform (hills	side, terrace, hummo	ocks, etc.): Flat or fluvial related
Local relief (concave, convex,	none): <u>convex</u>	_Slope: <u>0.0</u> %	/0.0°	Elevation: <u>481</u>
Subregion: Alaska	Lat.: 64.7988	Lon	g.: <u>-147.7408</u>	Datum: WGS84
Soil Map Unit Name: Salchake	et very fine sandy loam			NWI classification: U
Are climatic/hydrologic cond	itions on the site typical fo	or this time of ye	ar? Yes √ No	(If no, explain in Remarks)
Are Vegetation, Soil,	or Hydrology significa	ntly disturbed? Are	e "Normal Circumsta	nces" present? Yes _ ✓ No
Are Vegetation, Soil	, or Hydrology natural	ly problematic?	(If needed, explain	n any answers in Remarks.)
SUMMARY OF FINDINGS - /	Attach site map showing sar	npling point locat	ions, transects, impo	ortant features, etc.

Hydrophytic Vegetation Present? Yes	No_√	Is the Sampled Area		
Hydric Soil Present? Yes	No √	within a Wetland?	Yes	No √
Wetland Hydrology Present? Yes	No_√	within a wettand.		

Remarks: Disturbed poplar forest, convex topography, surface soil layers composed of fill and also garbage. A small inundated puddle was delineated close to the plot.

VEGETATION - Use scientific names of plants. List all species in the plot. Indicator Absolute Dominant Dominance Test worksheet: Number of Dominant Species That are OBL, **Tree Stratum** % Cover Species? Status FACW, or FAC: 1 (A) Populus balsamifera FACU 1. 80.0 \checkmark Total Number of Dominant Species Across all Total Cover: 80.0 Strata: (B) 50% of total cover: 40.0 20% of total cover: 16.0 5 Sapling/Shrub Stratum Percent of Dominant Species That are OBL, Rosa acicularis FACU FACW, or FAC: 1. 75.0 20.0% (A/B) 2. Alnus incana 5.0 FAC FACU Rubus idaeus **Prevalence Index worksheet:** 3. 5.0 Salix bebbiana 4. 1.0 FAC Total % Cover of: Multiply by: OBL Species Total Cover: 0.0 ×1= 86.0 0.0 FACW Species 50% of total cover: 43.0 20% of total cover: 17.2 0.0 × 2 = 0.0 Herb Stratum FAC Species 10.0 × 3 = 30.0 1. Galium boreale FACU FACU Species 5.0 170.0 680.0 ×4= FACU 2. Chamaenerion angustifolium 5.0 UPL Species 0.0 × 5 = 0.0 3. Calamagrostis canadensis 4.0 FAC Column Totals: 180.0 (A) 710.0 (B) Total Cover: Prevalence Index = B/A = 3.944 14.0 50% of total cover: 7.0 20% of total cover: 2.8 Hydrophytic Vegetation Indicators: Dominance Test is > 50% Prevalence Index is ≤ 3.0 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Explain) ¹ Indicators or hydric soil and wetland hydrology must be present, unless disturbed or problematic. Plot size (radius, or length × width) 5m radius % Cover of Wetland Bryophytes (Where applicable) 0.0 % Bare Ground Total Cover of Bryophytes 0.0 Hydrophytic Vegetation **Present?** Yes No √ Remarks: Other cover is leaf litter

Depth	Matrix	Rec	lox Featu	ires				
inches)	Color (moist) %	Color (moist)	%	Гуре¹	Loc ²	Texture	Mod	Remarks
0-2	0.0					peat		
_2-4	10yr					mucky peat		
4-12	10yr <u>3/2</u>		0			sand	gravelly	
Type: C=C	oncentration, D=Dep	letion, RM=Reduc	ed Matrix, A	A=Absen	nt ² L	ocation: PL=P	ore Lining, R	C=Root Channel, M=Matrix
Hydric S	Soil Indicators:		Indica	ntors f	or Pro	blematic H	ydric Soil	s ³ :
Histo	osol or Histel (A1)		Al	laska Co	lor Cha	nge (TA4) ⁴		Alaska Gleyed Without Hue 5Y or Redder
Histi	ic Epipedon (A2)		Al	laska Alı	pine Sw	ales (TA5)		Underlying Layer
Hyd	rogen Sulfide (A4)		Al	laska Re	dox Wit	h 2.5Y Hue		Other (Explain in Remarks)
Thic	k Dark Surface (A12)							
Alas	ka Gleyed (A13)		³ One in	dicator	or hydro	ophytic vegetat	ion, one prir	mary indicator of wetland hydrology,
Alas	ka Redox (A14)		and a	n appro	priate la	andscape posit	ion must be	present unless disturbed or problematic.
Alas	ka Gleyed Pores (A15	5)	^₄ Give de	^₄ Give details of color change in Remarks.				
	e hes): -1000 Soil pit significar	ntly disturbed,	digging ι	up tras	sh		Hydric S	Soil Present? Yes No _✓
Depth (incl emarks: (DROLC	hes): -1000 Soil pit significar D GY		digging ι	up tras	sh		Hydric S	
Depth (incl emarks: (DROLC Wetlanc	hes): -1000 Soil pit significar DGY I Hydrology Indi	icators:	digging u	up tras	sh		Hydric S	Secondary Indicators (2 or more required)
Depth (incl emarks: /DROLC Wetlanc Primary	hes): -1000 Soil pit significar OGY I Hydrology Ind Indicators (any one i	icators:				e on Aerial Ima		Secondary Indicators (2 or more required) Water Stained Leaves (B9)
Depth (inclemarks: DROLO Wetland Primary Surf.	hes): -1000 Soil pit significar OGY I Hydrology Ind Indicators (any one i ace Water (A1)	icators:	ln	undatio	on Visibl	e on Aerial Ima	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10)
Pepth (incl emarks: DROLC Wetlanc Primary Surf High	hes): -1000 Soil pit significar OGY I Hydrology Indi Indicators (any one i ace Water (A1) Water Table (A2)	icators:	In Sp	undatic parsely V	on Visibl Vegetate	ed Concave Su	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C.
Pepth (inclemarks: DROLC Wetlanc Primary Surf. High Satu	hes): -1000 Soil pit significar OGY I Hydrology Indi Indicators (any one i ace Water (A1) n Water Table (A2) Irration (A3)	icators:	In Sţ M	undatic parsely V arl Depo	on Visibl Vegetate osits (B1	ed Concave Su .5)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4)
Pepth (inclemarks: DROLO Wetlanc Primary Surf. Satu Wate	hes): -1000 Soil pit significar OGY I Hydrology Ind Indicators (any one i ace Water (A1) Water Table (A2) Water Table (A2) Water Marks (B1)	icators:	In Sş M H	undatic parsely v arl Depo ydroger	on Visibl Vegetate osits (B1	ed Concave Su 5) 9 Odor (C1)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C. Presence of Reduced Iron (C4) Salt Deposits (C5)
Primary Satu Wate Satu Satu Satu Satu Satu	hes): -1000 Soil pit significar OGY I Hydrology Indi Indicators (any one i ace Water (A1) n Water Table (A2) Irration (A3)	icators:	In Sr M H D	undatic parsely arl Depo ydroger ry-Seaso	on Visibl Vegetate osits (B1 o Sulfide on Wate	ed Concave Su .5)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4)
Depth (inclemarks: DROLO Wetlance Primary Surf: High Satu Wate Sedi Drift	hes): -1000 Soil pit significar OGY I Hydrology Indi Indicators (any one i ace Water (A1) Water Table (A2) Iration (A3) er Marks (B1) ment Deposits (B2)	icators:	In Sr M H D	undatic parsely arl Depo ydroger ry-Seaso	on Visibl Vegetate osits (B1 o Sulfide on Wate	ed Concave Su 5) Odor (C1) r Table (C2)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C. Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1)
Depth (inclemarks: DROLO Wetlanc Primary Surf. High Satu Wate Sedi Drift Alga	hes): -1000 Soil pit significar OGY I Hydrology Indi Indicators (any one i ace Water (A1) n Water Table (A2) Irration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3)	icators:	In Sr M H D	undatic parsely arl Depo ydroger ry-Seaso	on Visibl Vegetate osits (B1 o Sulfide on Wate	ed Concave Su 5) Odor (C1) r Table (C2)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C. Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Depth (inclemarks: DROLC Wetlance Primary Surfa High Satu Wate Sedi Drift Alga Iron	hes): -1000 Soil pit significar OGY I Hydrology Indi Indicators (any one i ace Water (A1) water Table (A2) water Table (A2) water Table (A2) water Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4)	icators:	In Sr M H D	undatic parsely arl Depo ydroger ry-Seaso	on Visibl Vegetate osits (B1 o Sulfide on Wate	ed Concave Su 5) Odor (C1) r Table (C2)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (inclements) Primarks: /DROLC Wetlanc Primary Surf: High Satu Wate Sedi Drift Alga Iron Surf:	hes): -1000 Soil pit significar GY d Hydrology Indi Indicators (any one i ace Water (A1) to Water Table (A2) tration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5)	icators:	In Sr M H D	undatic parsely arl Depo ydroger ry-Seaso	on Visibl Vegetate osits (B1 o Sulfide on Wate	ed Concave Su 5) Odor (C1) r Table (C2)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (inclemarks: DROLO Wetlanc Primary Surfa High Satu Wate Sedi Drift Alga Iron Surfa Field Ob	hes): -1000 Soil pit significar OGY I Hydrology Indi Indicators (any one i ace Water (A1) n Water Table (A2) uration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6)	icators:	In Sţ M Di O	undatic parsely arl Depo ydroger ry-Seaso ther (Ex	on Visibl Vegetate osits (B1 o Sulfide on Wate	ed Concave Sur 5) 9 Odor (C1) r Table (C2) Remarks)	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (inclemarks: Primarks: Primary Surfa Satu Wate Sedi Drift Alga Iron Surface	hes): -1000 Soil pit significar GY Hydrology Indi Indicators (any one i ace Water (A1) Water Table (A2) Iration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) Deposits (B5) ace Soil Cracks (B6)	icators: is sufficient)	In Sţ M Di O	undatic parsely arl Depo ydroger ry-Seaso ther (Ex Depth	on Visibl Vegetate osits (B1 o Sulfide on Wate plain in	ed Concave Sur .5) : Odor (C1) r Table (C2) Remarks) :	gery (B7)	Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)

Recorded Data (stream gauge, monitor well, aerial photo, previous inspection) if available:

(includes capillary fringe) Yes No ✓ Depth (inches):

Remarks: No hydrology indicators, except for small inundated puddle just outside plot radius. Water table is well below the average surface within the forest.

Hydric Soil Indicators: None Wetland Hydrology Indicators: None

	Sampling Point: TL-15 dform (hillside, terrace, hummocks, etc.): Flat or fluvial related 0.0 % / 0.0 ° Elevation: 451 Long.: -147.7453 Datum: WGS84 NWI classification: U time of year? Yes ✓ No (If no, explain in Remarks) turbed? Are "Normal Circumstances" present? Yes ✓ No lematic? (If needed, explain any answers in Remarks.)
Remarks: Balsam poplar forest, well drained substrates, no evid	lence of surface water or periodic flooding.
VEGETATION - Use scientific names of plants. List all species in	•
Tree Stratum <u>% Cover</u> Species? St	Dominance Test worksheet: tatus Number of Dominant Species That are OBL, ACU FACW, or FAC: 1 (A) Total Number of Dominant Species Across all I I I
50% of total cover: <u>37.5</u> 20% of total cover Sapling/Shrub Stratum 1. Alnus incana 35.0 √	
2.Orthilia secunda10.0✓F.3.Cornus canadensis5.0F.4.Pyrola asarifolia5.0F.5.Calamagrostis canadensis2.0F.6.Geocaulon lividum1.0F.	Prevalence Index worksheet:Total % Cover of:Multiply by:ACUOBL Species 0.0 $\times 1 =$ 0.0 ACUFACW Species 0.0 $\times 2 =$ 0.0 ACUFAC Species 37.0 $\times 3 =$ 111.0 ACUFAC Species 107.0 $\times 4 =$ 428.0 FACUPL Species 0.0 $\times 5 =$ 0.0 ACUColumn Totals: 144.0 (A) 539.0 ACUPrevalence Index = B/A = 3.743 3.743
50% of total cover: <u>17.0</u> 20% of total cover	er: 6.8 Hydrophytic Vegetation Indicators: Dominance Test is > 50% Prevalence Index is ≤ 3.0 Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Explain) 1 Indicators or hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Remarks: Predominant ground cover is leaf litter	Plot size (radius, or length × width) 5m radius % Cover of Wetland Bryophytes (Where applicable) 0.0 % Bare Ground 0.0 Total Cover of Bryophytes 5.0 Hydrophytic 5.0 Vegetation Yes No _√_

SOIL

Sampling Point: TL-15

Depth	Matrix			Red	ox Fea	tures		_		
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Mod	Remarks
0-1		0.0						peat		
1-5			. <u> </u>					mucky peat		
5-13	<u>10yr</u> <u>3/2</u>	90	5yr	3/4	10	C	PL	sand		
¹ Type: C=C	oncentration, D	=Dep	letion, R	M=Reduce	ed Matri	x, A=Abseı	nt ²l	Location: PL=P	ore Lining, R	RC=Root Channel, M=Matrix
Hydric S	ioil Indicato	rs:			Indi	cators f	or Pro	blematic H	ydric Soil	s ³ :
Histo	osol or Histel (A	1)				Alaska Co	olor Cha	nge (TA4) ⁴		Alaska Gleyed Without Hue 5Y or Redder
Histi	c Epipedon (A2)					Alaska Al	pine Sw	ales (TA5)		Underlying Layer
Hydr	Hydrogen Sulfide (A4) Alaska Redox With				h 2.5Y Hue		Other (Explain in Remarks)			
Thicl	k Dark Surface (A12)								
Alask	ka Gleyed (A13)				³ One	indicator	or hydro	ophytic vegetat	tion, one prir	mary indicator of wetland hydrology,
Alas	ka Redox (A14)				an	d an appro	priate la	andscape posit	tion must be	present unless disturbed or problematic.
Alask	ka Gleyed Pores	(A15)		⁴ Give	details of	color ch	nange in Remai	rks.	
Restricti	ve Layer (if	pres	sent):							
Type: No D	ata								Hydric S	Soil Present? Yes No _√_
Depth (inch	nes): -1000								•	
Surfa High Satu Wate Sediu Drift	Indicators (any ace Water (A1) Water Table (A2 ration (A3) er Marks (B1) ment Deposits (Deposits (B3)	2) [B2)	<u>s surrere</u>			_Sparsely _Marl Depo _Hydroger _Dry-Seaso	Vegetate osits (B1 n Sulfide on Wate	e on Aerial Ima ed Concave Su 15) e Odor (C1) r Table (C2) Remarks)	• • •	Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
	Deposits (B5)	4)								Microtopographic Relief (D4)
	ace Soil Cracks (B6)								FAC-neutral Test (D5)
	servations:									
Surface V Water Ta Saturatio	Water Present? ble Present? on Present?		Yes Yes	No No	_√ _√	Depth	(inches) (inches)):	Wetland	Hydrology Present?Yes No_√
(includes	s capillary fringe	e)	Yes	No		_ Depth	(inches)):		
ecorded I	Data (stream	gau	ige, mo	nitor we	ell, aer	ial phot	o, prev	/ious inspec	tion) if ava	ailable:

Hydric Soil Indicators: None Wetland Hydrology Indicators: None

WETLAND DETERMINATION DATA FORM - ALASKA REGION

Project/Site: TLRA Improvements; Wetland Delineation Bord	bugh/City: Fairbanks Northstar Borough Sampling Date: 2020-07-08
Applicant/Owner: Federal Highway Administration (FHWA)	Sampling Point: TL-17
Investigator(s): WAD, JPP	Landform (hillside, terrace, hummocks, etc.): Flat or fluvial related
Local relief (concave, convex, none): Slope	: <u>0.0</u> % / <u>0.0</u> ° Elevation: <u>460</u>
Subregion: Alaska Lat.: 64.8040	Long.: -147.7447 Datum: WGS84
Soil Map Unit Name: Tanana-Mosquito complex	NWI classification: U
Are climatic/hydrologic conditions on the site typical for	this time of year? Yes \checkmark No (If no, explain in Remarks)
Are Vegetation _ ✓, Soil _ ✓, or Hydrology significant	ly disturbed? Are "Normal Circumstances" present? Yes _ ✓ _ No
Are Vegetation, Soil, or Hydrology naturally	problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing samp	ling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🗸	′_No	Is the Sampled Area		
Hydric Soil Present?	Yes	No √	within a Wetland?	Yes	No √
Wetland Hydrology Present?	Yes	No √	within a wettand.		

Remarks: Fallow cleared field, supports multiple non-native potentially invasive species.

VEGETATION - Use scientific names of plants. List all species in the plot.

		Absolute	Dominant	Indicator	Dominance Test worksheet:
	Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,
	Total Cover:	0.0			FACW, or FAC: <u>4</u> (A)
	50% of total of	over: 0.0	20% of total	cover: 0.0	Total Number of Dominant Species Across all
	Sapling/Shrub Stratum				Strata: <u>5</u> (B)
1.	Salix alaxensis	5.0	\checkmark	FAC	Percent of Dominant Species That are OBL,
2.	Salix glauca	5.0	\checkmark	FAC	FACW, or FAC: 80.0% (A/B)
3.	Salix interior	5.0		FACW	
	Total Cover:	15.0			Prevalence Index worksheet:
	50% of total of	over: <u>7.5</u>	20% of total	cover: <u>3.0</u>	Total % Cover of: Multiply by:
	Herb Stratum				OBL Species <u>0.0</u> × 1 = <u>0.0</u>
1.	Equisetum arvense	25.0		FAC	FACW Species <u>8.0</u> × 2 = <u>16.0</u>
2.	Senecio viscosus	20.0	\checkmark		FAC Species <u>44.0</u> × 3 = <u>132.0</u>
3.	Melilotus albus	10.0			FACU Species <u>8.0</u> × 4 = <u>32.0</u>
4.	Trifolium hybridum	5.0		FAC	UPL Species <u>0.0</u> × 5 = <u>0.0</u>
5.	Vicia cracca	5.0			Column Totals: <u>60.0</u> (A) <u>180.0</u> (B)
6.	Achillea millefolium	4.0		FACU	Prevalence Index = B/A = <u>3.000</u>
7.	Sonchus arvensis	3.0		FACU	
8.	Iris setosa	2.0		FAC	Hydrophytic Vegetation Indicators:
9.	Festuca rubra	1.0		FAC	Dominance Test is > 50%
.0.	Carex aurea	1.0		FACW	\checkmark Prevalence Index is ≤ 3.0
1.	Calamagrostis canadensis	1.0		FAC	Morphological Adaptations ¹ (Provide supporting data
2.	Solidago multiradiata	1.0		FACU	in Remarks or on a separate sheet)
3.	Platanthera aquilonis	1.0		FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
4.	Juncus castaneus	1.0		FACW	¹ Indicators or hydric soil and wetland hydrology must be preser
	Total Cover:	80.0			unless disturbed or problematic.
	50% of total cov	er: 40.0	20% of total of	cover: 16.0	
					Plot size (radius, or length × width) _5m rad
					% Cover of Wetland Bryophytes (Where applicable)0.0
					% Bare Ground5.0
					Total Cover of Bryophytes0.0
					Hydrophytic
					Vegetation
					Present? Yes_√_ No

etation is not likely to be considered hydrophytic if these plants with the majority of cover at the site are considered UPL plants. ADD Galeopsis bifida to species list.

Depth		Matrix	(Red	lox Fea	tures				
(inches)	Color	(moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Mod	Remarks
0-1			0.0						peat		
1-5	10yr	2/1				0			muck		
5-9	10yr	4/1	85	5yr	5/6	15	C	PL	<u>silt loam</u>		
											Very few root channels with reduced matrix observe
9-11	5y	4/2	95	10gy	4/1	5	RM	PL	silt loam		in the lowest horizon.
¹ Type: C=Co	oncent	ration, I	D=Dep	oletion, R	M=Reduc	ed Matri	x, A=Absei	nt ²l	_ocation: P	L=Pore l	ining, RC=Root Channel, M=Matrix
Hydric So	il Ind	icator	's:			Indic	ators fo	r Prob	lematic	Hvdrid	: Soils ³ :
Histoso							laska Colo				Alaska Gleyed Without Hue 5Y or Redder
Histic E	Epiped	on (A2)					laska Alpi				Underlying Layer
Hydrog	gen Sul	fide (A4	.)				laska Red				Other (Explain in Remarks)
Thick D	- Dark Su	ırface (A	12)								
Alaska	Gleyed	l (A13)				³ One ir	ndicator o	r hydrop	hytic veget	ation, o	ne primary indicator of wetland hydrology,
Alaska	Redox	(A14)				and	an approp	oriate lar	ndscape po	sition m	ust be present unless disturbed or problematic.
Alaska	Gleyec	Pores	(A15)			⁴ Give d	letails of c	olor cha	nge in Rem	arks.	
marks: No		na read	ction								
DROLOG Netland H	iY Iydro	logy	ndic	ators:							Secondary Indicators (2 or more required)
DROLOG Netland H Primary Ind	iY Iydro dicator	o logy I rs (any c	ndic	ators:	t)		nundation	Visible	on Aorial Ir		Water Stained Leaves (B9)
DROLOG Netland H Primary Ind Surface	i Y Hydro dicator e Water	logy l rs (any c r (A1)	ndic one is	ators:	t)				on Aerial Ir	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10)
DROLOG Netland H Primary In Surface High W	i Y Hydro dicator e Water /ater Ta	logy I rs (any c r (A1) able (A2	ndic one is	ators:	t)		Sparsely Ve	egetated	l Concave S	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (Context)
DROLOG Netland H Primary In Surface High W Saturat	i Y Hydro dicator e Water Vater Ta tion (A:	blogy l rs (any c r (A1) able (A2 3)	ndic one is	ators:	t)	S	Sparsely Ve Marl Depos	egetated sits (B15	l Concave S)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4)
DROLOG Netland H Primary In Surface High W Saturat	i Y Hydro dicator e Water /ater Ta tion (A: Marks (blogy l rs (any c r (A1) able (A2 3) B1)	n dic one is	ators:	t)	S N H	Sparsely Ve Marl Depos Hydrogen S	egetated sits (B15 Sulfide C	l Concave S) Odor (C1)	0 .	Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5)
DROLOG Netland H Primary In Surface High W Saturat Water N Sedime	Y dicator e Water Vater Ta tion (A Marks (ent Dep	rs (any or r (A1) able (A2 3) B1) posits (E	n dic one is	ators:	t)	S M F	Sparsely Ve Marl Depos Hydrogen S Dry-Seasor	egetated sits (B15 Sulfide C n Water	l Concave S) Odor (C1) Table (C2)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1)
DROLOG Netland H Primary In Surface High W Satural Water N Sedime Drift De	Y dicator e Water later Ta tion (A Marks (ent Dep eposits	logy I rs (any or (A1) uble (A2 3) B1) posits (B (B3)	ndic one is) 32)	ators:	t)	S M F	Sparsely Ve Marl Depos Hydrogen S	egetated sits (B15 Sulfide C n Water	l Concave S) Odor (C1) Table (C2)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
DROLOG Netland H Primary In Surface High W Saturat Water N Sedime	Y dicator e Water later Ta tion (A: Marks (ent Dep eposits lat or C	ology I rs (any or r (A1) able (A2 3) B1) posits (B (B3) crust (B4	ndic one is) 32)	ators:	t)	S M F	Sparsely Ve Marl Depos Hydrogen S Dry-Seasor	egetated sits (B15 Sulfide C n Water	l Concave S) Odor (C1) Table (C2)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1)
DROLOG Netland H Primary In Surface High W Saturat Water N Sedime Drift De Algal M	A gradient of the second secon	blogy I rs (any or r (A1) able (A2 3) B1) posits (E (B3) crust (B2 (B5)	Indic one is) 32) 4)	ators:	t)	S M F	Sparsely Ve Marl Depos Hydrogen S Dry-Seasor	egetated sits (B15 Sulfide C n Water	l Concave S) Odor (C1) Table (C2)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Shallow Aquitard (D3)
DROLOG Netland H Primary In Surface High W Saturat Water I Sedime Drift De Algal M Iron De	iY Hydro dicator e Water /ater Ta tion (A: Marks (ent Dep eposits lat or C eposits e Soil C	Iogy I rs (any c r (A1) able (A2 3) B1) posits (E (B3) crust (B2 (B5) cracks (E	Indic one is) 32) 4)	ators:	t)	S M F	Sparsely Ve Marl Depos Hydrogen S Dry-Seasor	egetated sits (B15 Sulfide C n Water	l Concave S) Odor (C1) Table (C2)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
DROLOG Netland H Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface	A gradient of the second secon	blogy l rs (any or r (A1) able (A2 3) B1) posits (B (B3) arust (B2 (B5) aracks (B iracks (B	ndic one is) 32) 4) 36)	ators:	t) No	S M F	Sparsely Ve Marl Depos Hydrogen S Dry-Seasor	egetated sits (B15 Sulfide C n Water ⁻ lain in R	l Concave S) Odor (C1) Table (C2)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
DROLOG Netland H Primary In Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface	A grant of the second s	blogy l rs (any or r (A1) able (A2 3) B1) posits (F (B3) arust (B2 (B5) arust (B5) arust	(Indic pone is) 32) 4) 36)	sufficient		22 M F1 1 0	Sparsely Ve Marl Depos Hydrogen S Dry-Season Other (Exp	egetated sits (B15 Sulfide C n Water ⁻ lain in R lain in R	l Concave S) Odor (C1) Table (C2)	0 .	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
DROLOG Netland H Primary In Surface High W Saturat Water I Sedime Drift De Algal M Iron De Surface Surface Wa	A gradient of the second secon	blogy l s (any of (A1) able (A2 3) B1) boosits (E (B3) crust (B2 (B5) cracks (E ions: esent?	(Indic pone is) 32) 4) 36)	es	No		Sparsely Ve Marl Depos Hydrogen S Dry-Season Other (Exp Dther (Exp	egetated sits (B15 Sulfide C n Water ⁻ lain in R lain in R	l Concave S) Odor (C1) Table (C2)	Surface (Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) ✓ FAC-neutral Test (D5)
DROLOG Netland H Primary In- Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Surface Wa Water Tabl	A grant of the second s	elogy I s (any of (A1) able (A2 3) B1) posits (E (B3) crust (B2 (B5) cracks (E ions: esent? ent?	(ndic pone is) 32) 4) 36) Ya Ya	es	No No		Sparsely Ve Marl Depos Hydrogen S Dry-Season Other (Exp Dther (Exp	egetated sits (B15 Sulfide C n Water ⁻ lain in R nches): nches):	l Concave S) Odor (C1) Table (C2)	Surface (Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
DROLOG Netland H Primary In Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Surface Wa Water Table Saturation (includes c	y Hydro dicator e Water Vater Ta tion (A: Marks (ent Dep eposits lat or C eposits e Soil C ervati ater Pre- e Preser apillar	ology I rs (any of (A1) able (A2 3) B1) posits (F (B3) arust (B2 (B5) arust (B5) aracks (F ons: esent? ent? ht? y fringe	(ndic one is) 32) 4) 36) Ya Ya Ya	eses	No No No		Sparsely Vo Marl Depos Hydrogen S Dry-Season Other (Exp Depth (i Depth (i Depth (i	egetated sits (B15 Sulfide C n Water ⁻ lain in R nches): nches): nches):	l Concave S) Odor (C1) Table (C2) emarks)	Wet	Water Stained Leaves (B9) B7) Drainage Patterns (B10) B8) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) ✓ FAC-neutral Test (D5)

Sampling Point: TL-17 NWI classification: U

Hydric Soil Indicators: None Wetland Hydrology Indicators: FAC-Neutral Test (D5)

WETLAND DETERMINATION DATA FORM - ALASKA REGION

Project/Site: TLRA Improvements	; Wetland Delineation Bo	prough/City: <u>Fairbanks Northstar Boro</u>	ugh_Sampling Date: 2020-07-08
Applicant/Owner: Federal Highwa	ay Administration (FHWA	A)	Sampling Point: TL-19
Investigator(s): WAD, JPP		Landform (hillside, terrace, humme	ocks, etc.): Flat or fluvial related
Local relief (concave, convex, nor	e): concave	Slope: 0.0 % / 0.0 °	Elevation: 471
Subregion: Alaska	Lat.: 64.8059	Long.: -147.7443	Datum: WGS84
Soil Map Unit Name: Urban land			NWI classification: U
Are climatic/hydrologic condition	ns on the site typical fo	or this time of year? Yes √ No	(If no, explain in Remarks)
Are Vegetation , Soil , or H	Iydrology significar	ntly disturbed? Are "Normal Circumsta	nces" present? Yes ✓ No
Are Vegetation, Soil, or	Hydrology naturall	y problematic? (If needed, explai	n any answers in Remarks.)
SUMMARY OF FINDINGS - Atta	ch site map showing san	npling point locations, transects, imp	ortant features, etc.

		0 1	01	,	/ I	,	
Hydrophytic Vegetation Present?			Is the Samp	led Area			
Hydric Soil Present?	Yes _√_ No _		within a We	tland?	Yes	No √	
Wetland Hydrology Present?	Yes No	\checkmark	within a we	ctana.	105		

Remarks: Disturbed patch next to railroad. Hydrophytic vegetation present not with 1 dominant an NI indicator not included in veg analysis. Hydric soils present but hydrology absent. Potentially borderline plot but classed as an upland because hydrology should be present given the wet spring and early summer in Fairbanks.

VEGETATION - Use scientific names of plants. List all species in the plot.

		Absolute	Dominant	Indicator	Dominance Test worksheet:
	Tree Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL,
	Total Cover:	0.0			FACW, or FAC: <u>3</u> (A)
	50% of tota	al cover: 0.0	20% of total	cover: 0.0	Total Number of Dominant Species Across all
	Sapling/Shrub Stratum				Strata: <u>5</u> (B)
1.	Salix glauca	65.0		FAC	Percent of Dominant Species That are OBL,
2.	Rosa acicularis	55.0		FACU	FACW, or FAC: 60.0% (A/B)
3.	Myrica gale			OBL	
4.	Salix interior	15.0		FACW	Prevalence Index worksheet:
5.	Betula neoalaskana	5.0		FACU	Total % Cover of: Multiply by:
6.	Populus balsamifera	5.0		FACU	OBL Species <u>32.0</u> × 1 = <u>32.0</u>
	Total Cover:	175.0			FACW Species <u>21.0</u> × 2 = <u>42.0</u>
	50% of total of	cover: <u>87.5</u>	20% of total of	cover: <u>35.0</u>	FAC Species 82.0 × 3 = 246.0
	Herb Stratum				FACU Species <u>68.0</u> × 4 = <u>272.0</u>
1.	Iris setosa	8.0		FAC	UPL Species <u>0.0</u> × 5 = <u>0.0</u>
2.	Calamagrostis canadens	is <u>5.0</u>	\checkmark	FAC	Column Totals: <u>203.0</u> (A) <u>592.0</u> (B)
3.	Vicia cracca	5.0			Prevalence Index = $B/A = 2.916$
4.	Petasites frigidus	4.0		FACW	
5.	Dasiphora fruticosa	2.0		FAC	Hydrophytic Vegetation Indicators:
6.	Carex aurea	2.0		FACW	Dominance Test is > 50%
7.	Achillea millefolium	2.0		FACU	\checkmark Prevalence Index is ≤ 3.0
8.	Rumex arcticus	2.0		FAC	Morphological Adaptations ¹ (Provide supporting data
9.	Carex utriculata	2.0		OBL	in Remarks or on a separate sheet)
.0.	Galium boreale	1.0		FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
	Total Cover:	33.0			¹ Indicators or hydric soil and wetland hydrology must be present
	50% of total	cover: <u>16.5</u>	20% of total	cover: 6.6	unless disturbed or problematic.
					Plot size (radius, or length × width) 1m radiu
					% Cover of Wetland Bryophytes (Where applicable) 0.0
					% Bare Ground 0.0
					Total Cover of Bryophytes 0.0
					Hydrophytic
					Vegetation
					Present? Yes √ No

Depth		Matrix	<u> </u>		Red	lox Fea	atures				
(inches)	Color	(moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Mod	Remarks
0-1			0.0						peat		
1-3			0.0						muck		
3-5	10yr	3/2				0			silt loam		
5-6			0.0				·		muck		
	5y	3/1	85	7.5yr	5/6	15	<u> </u>	PL	silt loam		Organic inclusions throughout
¹ Type: C=C	Concent	ration, I	D=Dep	oletion, R	M=Reduc	ed Matr	ix, A=Abse	nt 1	_ocation: Pl	L=Pore Li	ining, RC=Root Channel, M=Matrix
Hydric So	oil Ind	icator	'S:			Indic	ators fo	r Prob	lematic	Hydric	Soils ³ :
	sol or Hi	• • •)				Alaska Col		-		Alaska Gleyed Without Hue 5Y or Redder
	Epiped						Alaska Alpi				Underlying Layer
	ogen Sul						Alaska Red	lox With	2.5Y Hue		Other (Explain in Remarks)
	Dark Su	•	.12)			2					
	a Gleyec										ne primary indicator of wetland hydrology,
_√_Alaska			\								ust be present unless disturbed or problematic.
Alaska	a Gleyec	l Pores (A15)			"Give	details of c	olor cha	nge in Rem	arks.	
Restrictiv	/e Lay	er (if p	orese	ent):							
Type: None										Hyd	Iric Soil Present? Yes √ No
Depth (inche	es): -100	00									
High V Satura Water Sedim Drift D	ndicator ce Water Water Ta ation (A: Marks (nent Dep Deposits Mat or C Deposits	r (A1) able (A2) 3) B1) posits (E (B3) trust (B4) 32)	sufficient	:)			egetatec sits (B15 Sulfide C n Water	Odor (C1) Table (C2)		
Surfac	ce Soil C	racks (E	36)								FAC-neutral Test (D5)
Field Obs	ervati	ions:									
Surface W	later Pre	esent?	Ye	es	No	\checkmark	Depth (i	nches):			
Water Tab	ole Prese	ent?	Ye	es	No	_√	Depth (i	nches):			
Saturatior	n Preser	nt?								Wetl	and Hydrology Present?Yes No 🗸
(includes	capillar	y fringe) Ye	es	No	_√	Depth (i	nches):			
ecorded D)ata (st	ream	gallo	re, mon	itor we	ll. aeri	al photo	. previ	ous inspe	ction)	if available:
			0~~6	,-,		-	•	•	•		
omortion D	100	a a d a		and a +1	o road		una	~ ff f~	mraad ^	four	nall depressions supporting car utr that may

Hydric Soil Indicators: Alaska Redox (A14) Wetland Hydrology Indicators: None

WETLAND DETERMINATION DATA FORM - ALASKA REGION

Project/Site: TLRA Improvements; Wetland Delineation Borough/	City: Fairbanks Northstar Borough Sampling Date: 2020-07-	-08
Applicant/Owner: Federal Highway Administration (FHWA)	Sampling Point: TL-	-21
Investigator(s): JPP, WAD	Landform (hillside, terrace, hummocks, etc.): Bluffs or Ban	۱ks
Local relief (concave, convex, none): <u>convex</u> Slope:	<u>1.7</u> % / <u>1.0</u> ° Elevation: <u>463</u>	
Subregion: Alaska Lat.: 64.7996	Long.: -147.7445 Datum: WGS84	
Soil Map Unit Name: Tanana-Mosquito complex	NWI classification: U	
Are climatic/hydrologic conditions on the site typical for this t	ime of year? Yes _✓_ No (If no, explain in Remar	ks)
Are Vegetation, Soil, or Hydrology significantly distu	urbed? Are "Normal Circumstances" present? Yes _ ✓ _ No	
Are Vegetation, Soil, or Hydrology naturally proble	ematic? (If needed, explain any answers in Remarks.)	
SUMMARY OF FINDINGS - Attach site map showing sampling p	point locations, transects, important features, etc.	

Hydrophytic Vegetation Present?	Yes √	No	Is the Sampled Area		
Hydric Soil Present?	Yes √	No	within a Wetland?	Yes	No √
Wetland Hydrology Present?	Yes	No ✓	within a wettand.		

Remarks: Convex bank, supporting tall shrubs next to the slough.

VEGETATION - Use scientific names of plants. List all species in the plot.

		Absolute	Dominant	Indicator	Dominance Test worksheet:		
Tree Stratu	IM	% Cover	Species?	Status	Number of Dominant Species That are		
Т	otal Cover:	0.0			FACW, or FAC:	3	(A)
	50% of total	cover: 0.0	20% of tota	cover: 0.0	Total Number of Dominant Species Acro	oss all	
Sapling/Sh	rub Stratum				Strata:	4	(B)
Salix alax	ensis	35.0	\checkmark	FAC	Percent of Dominant Species That are	OBL,	
Alnus inc	ana	25.0	\checkmark	FAC	FACW, or FAC:	75.00	6 (A/B)
	Iron groenlandicum	5.0		FAC			
Salix inte		5.0		FACW	Prevalence Index worksheet:		
Prunus p		4.0		FACU	Total % Cover of: Multiply by:	:	
Rosa acio	ularis	1.0		FACU	OBL Species <u>0.0</u> × 1 = <u>0</u>	.0	
Т	otal Cover:	75.0			FACW Species <u>55.0</u> × 2 = <u>11</u>	0.0	
	50% of total co	ver: <u>37.5</u>	20% of total of	cover: <u>15.0</u>	FAC Species <u>65.0</u> × 3 = <u>19</u>	5.0	
Herb Strat	um				FACU Species <u>35.0</u> × 4 = <u>14</u>	0.0	
Equisetu	m pratense	50.0	\checkmark	FACW	UPL Species $0.0 \times 5 = 0.0$.0	
Chamaene	rion angustifolium	30.0		FACU	Column Totals: <u>155.0</u> (A) <u>44</u>	5.0 (B)	
Т	otal Cover:	80.0			Prevalence Index = B/A = <u>2.871</u>		
					✓ Dominance Test is > 50% ✓ Prevalence Index is ≤ 3.0 Morphological Adaptations1 (I in Remarks or on a separate sh Problematic Hydrophytic Vege ¹ Indicators or hydric soil and wetland hy unless disturbed or problematic. Plot size (radius, or length × width) % Cover of Wetland Bryophytes (Where % Bare Ground Total Cover of Bryophytes Hydrophytic	neet) etation ¹ (Expl ydrology mus	ain)
					Vegetation Present? Y	′es_√	No

SOIL

Sampling Point: TL-21

Depth	Matrix		Redo	ox Fe	atures		_		
(inches)	Color (moist) <u>%</u>	Color	(moist)	%	Type ¹	Loc ²	Texture	Mod	Remarks
0-2							peat		
2-4							mucky peat		
	<u>5y 3/2 75</u>		4/6	25	C	PL	sandy loam		
¹ Type: C=Co	ncentration, D=D	epletion, I	RM=Redu	ced Ma	atrix, A=A	bsent	² Location: P	L=Pore Lin	ng, RC=Root Channel, M=Matrix
Hydric Soi	l Indicators:			Ind	licators	for Pr	oblematic I	Hydric S	oils³:
Histoso	l or Histel (A1)				Alaska	Color Ch	ange (TA4)⁴		Alaska Gleyed Without Hue 5Y or Redder
Histic E	pipedon (A2)				_Alaska	Alpine S	wales (TA5)		Underlying Layer
Hydrog	en Sulfide (A4)				Alaska	Redox W	ith 2.5Y Hue		Other (Explain in Remarks)
	ark Surface (A12)								
	Gleyed (A13)					-			primary indicator of wetland hydrology,
_√_Alaska I									be present unless disturbed or problematic.
Alaska (Gleyed Pores (A15)		⁴Giv	e details	of color	change in Rem	arks.	
Restrictive	Layer (if pre	sent):							
una. Na Data								Hydri	c Soil Present? Yes √ No
ype: No Data								•	
Pepth (inches): -1000								
Depth (inches emarks: 'DROLOG' Wetland H): -1000 Y ydrology Indi								Secondary Indicators (2 or more required)
Depth (inches marks: DROLOG Wetland H Primary Inc): -1000 Y ydrology Indi licators (any one i				Inunda	tionVisi		22000 / (P7)	Water Stained Leaves (B9)
Pepth (inches marks: DROLOG Wetland H Primary Inc Surface): -1000 Y ydrology Indi licators (any one i Water (A1)						ble on Aerial Im		Water Stained Leaves (B9) Drainage Patterns (B10)
Depth (inches marks: DROLOG Wetland H Primary Inc Surface High Wa): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2)				Sparsel	y Vegeta	ited Concave S		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C
Depth (inches marks: DROLOG Wetland H Primary Inc Surface High Wa Saturat): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3)				Sparsel Marl De	y Vegeta posits (I	ited Concave S 315)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4)
Depth (inches marks: DROLOG Wetland H Primary Inc Surface High Wa Saturat Water M): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1)				Sparsel Marl De Hydrog	y Vegeta posits (I en Sulfio	ited Concave S 315) de Odor (C1)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5)
Pepth (inches marks: DROLOG Wetland H Primary Inc Surface High Wa Saturat Water M Sedime): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3)				Sparsel Marl De Hydrog Dry-Sea	y Vegeta posits (I en Sulfic ason Wat	ited Concave S 315)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4)
Pepth (inches marks: DROLOGY Wetland H Primary Inc Surface High Wa Saturat Water M Sedime Drift De): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1) nt Deposits (B2)				Sparsel Marl De Hydrog Dry-Sea	y Vegeta posits (I en Sulfic ason Wat	ited Concave S 315) de Odor (C1) ter Table (C2)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1)
Primary Inc Surface High Wa Saturat Water M Sedime Drift De Algal Ma): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1) nt Deposits (B2) posits (B3)				Sparsel Marl De Hydrog Dry-Sea	y Vegeta posits (I en Sulfic ason Wat	ited Concave S 315) de Odor (C1) ter Table (C2)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C: Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Depth (inches marks: DROLOGY Wetland H Primary Inc Surface High Wa Saturat Water M Sedime Drift De Algal Ma Iron De): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)				Sparsel Marl De Hydrog Dry-Sea	y Vegeta posits (I en Sulfic ason Wat	ited Concave S 315) de Odor (C1) ter Table (C2)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (inches emarks: DROLOGY Wetland H Primary Inc Surface High Wa Saturat Water M Sedime Drift De Algal Ma Iron De Surface): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6)				Sparsel Marl De Hydrog Dry-Sea	y Vegeta posits (I en Sulfic ason Wat	ited Concave S 315) de Odor (C1) ter Table (C2)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (inches emarks: /DROLOGY Wetland H Primary Inc Surface High Wa Saturat Water M Sedime Drift De Algal Ma Iron De): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) rvations:				Sparsel Marl De Hydrog Dry-Sea Other (1	y Vegeta posits (I en Sulfic ason Wat	ited Concave S 315) de Odor (C1) ter Table (C2) n Remarks)		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C. Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (inches emarks: /DROLOGY Wetland H Primary Inc Surface High Wa Saturat Water M Sedime Drift De Algal Ma Iron De Surface Field Obse): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) rvations: ter Present?	s sufficien)t) 		Sparsel Marl De Hydrog Dry-Sea Other (I	y Vegeta posits (I en Sulfic ason Wat Explain i	s):		Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (inches emarks: /DROLOGY Wetland H Primary Inco Surface High Wa Saturat Water M Sedime Drift De Algal Ma Iron De Surface Surface Water): -1000 Y ydrology Indi licators (any one i Water (A1) ater Table (A2) ion (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) rvations: ter Present?	s sufficien	it)		Sparsel Marl De Hydrog Dry-Sea Other (I	y Vegeta posits (I en Sulfic ason Wat Explain i Explain i	s):	urface (B8)	Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)

Remarks: Hydrology indicators absent, alpha alpha negative, no surface evidence of periodic flooding.

Hydric Soil Indicators: Alaska Redox (A14) Wetland Hydrology Indicators: None

WETLAND DETERMINATION DATA FORM - ALASKA REGION

Applicant/C Investigato Local relief Subregion: Soil Map Ur Are climati Are Vegetat Are Vegetat SUMMARY Hydrophy Hydric So Wetland	nit Name: <u>Tanana-Mosquito</u> c/hydrologic conditions or ion, Soil, or Hydro ion, Soil, or Hydro / OF FINDINGS - Attach si ytic Vegetation Present? Ye bil Present? Ye Hydrology Present? Ye	Iministratic onvex Lat.: <u>64.800</u> o complex n the site t ologys rologys te map sho es No es No	on (FHWA)	Landform (I ope:L his time of rdisturbed? roblematic ing point lo Is the s within	hillside, terrace, hun _% / _0.0_° ong.: -147.7449 7 year? Yes _√_ No 2 Are "Normal Circum ? (If needed, exp ocations, transects, in Sampled Area a Wetland?	Samocks, etc.): <u>F</u> Elevation NWI c o (If no, e nstances" preser plain any answe mportant featur	mpling Poi lat or fluvia 1: <u>504</u> Datum: WC lassificatio xplain in F nt? Yes _ ✓ rs in Rema es, etc. No _ √	nt: <u>TL-</u> al relat 5S84 n: <u>U</u> Remark _No _ .rks.)	22 ed
	Black spruce stand immedi					but not ice rich.			
VEGETATI	ON - Use scientific names of	•	•						
	T	Absolute	Dominant	Indicator	Dominance Test worl Number of Dominant		al and a second s		
1.	<u>Tree Stratum</u> Picea mariana	<u>% Cover</u>	Species?	<u>Status</u> FACW	FACW, or FAC:			(A)	
1. 2.	Betula neoalaskana	<u>45.0</u> 5.0		FACU	Total Number of Domi	nant Species Across		(,,)	
2.	Total Cover:	50.0		170	Strata:	nuncopectes/teross		(B)	
	50% of total co		20% of total o	r_{0}	Percent of Dominant S	Species That are OF		(2)	
	Sapling/Shrub Stratum	<u>23.0</u>	2070 01 10101 0	.0001. 10.0	FACW, or FAC:		50.0%	(A/B)	
1.	Rosa acicularis	10.0	1	FACU				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2.	Vaccinium vitis-idaea	5.0		FAC	Prevalence Index wo	rksheet:			
3.	Rhododendron groenlandicum	2.0		FAC	Total % Cover of:	Multiply by:			
	Total Cover:	17.0			OBL Species 0.0				
	50% of total		20% of total	cover: 3.4	FACW Species 46.				
	Herb Stratum				FAC Species 7.0				
1.	Geocaulon lividum	50.0	\checkmark	FACU	FACU Species 65.				
2.	Equisetum pratense	1.0		FACW	UPL Species 0.0		-		
	Total Cover:	51.0			Column Totals: 118		(B)		
	50% of total co	over: 25.5	20% of total o	cover: 10.2	Prevalence Index = B/	A = <u>3.161</u>	-		
					Hydrophytic Vegetat	ion Indicators:			
					Dominance T				
					Prevalence In				
						al Adaptations ¹ (Pro	wide sunnor	ting data	a
						r on a separate shee		ung uut	
						Hydrophytic Vegeta		n)	
					¹ Indicators or hydric se				ıt.
					unless disturbed or		0,	·	
					Plot size (radius, or ler	ngth × width)		5m rad	ius
					% Cover of Wetland B		onlicable)	0.0	
					% Bare Ground		Pileobic/	0.0	
					Total Cover of Bryoph	vtes		80.0	
					Hydrophytic	,			—
					Vegetation				
					Present?	Yes	; 1	No √	
Remarks:									

Sampling Point: TL-22

	Ма	ntrix		Red	ox Fe	atures				
(inches)	Color (m	oist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Mod	Remarks
0-7								peat		
7-10	10yr _4	1/2 5	5yr	5/6	<u>95</u>	C	PL	sand		Frozen at bottom
¹ Type: C=Co	oncentrati	ion, D=Dep	pletion, R	M=Redu	ced M	atrix, A=A	bsent	² Location	: PL=Por	e Lining, RC=Root Channel, M=Matrix
Hydric Soil	Indicat	ors:			Indi	cators f	or Pro	blematic	Hydri	c Soils ³ :
Histosol	or Histel (A1)				Alaska Co	olor Cha	nge (TA4) ⁴		Alaska Gleyed Without Hue 5Y or Redder
Histic Epi	ipedon (A	.2)				 Alaska Al	pine Sw	ales (TA5)		Underlying Layer
Hydroger	n Sulfide ((A4)				Alaska Re	edox Wit	h 2.5Y Hue		Other (Explain in Remarks)
 Thick Dar	rk Surface	e (A12)								
Alaska Gl	eyed (A1	3)			³ One	indicator	or hydro	ophytic vege	tation, o	ne primary indicator of wetland hydrology,
Alaska Re	edox (A14	.)			and	l an appro	opriate l	andscape po	osition m	nust be present unless disturbed or problematic.
Alaska Gl	eyed Por	es (A15)			⁴Give	details of	f color cł	nange in Ren	narks.	
Remarks: Froz	zen laye	er is not i	ice rich	miner	al soi	il textur	e is sar	nd did no	t consi	dor it a saturated layor
TURULUGT					ut 50					
Wetland Hv										
Wetland Hy Primary Indic	drolog	y Indica	ntors:							Secondary Indicators (2 or more required) Water Stained Leaves (B9)
Wetland Hy Primary Indic Surface W	r drolog cators (an	y Indica ny one is su	ntors:					e on Aerial I		Secondary Indicators (2 or more required)Water Stained Leaves (B9)
Primary Indic	r drolog cators (an Vater (A1)	y Indica ny one is su	ntors:			Inundatio	on Visibl		magery (B7) Drainage Patterns (B10)
Primary Indic	r drolog cators (an Vater (A1) cer Table (y Indica ny one is su	ntors:			Inundatio	on Visibl Vegetate	e on Aerial I ed Concave	magery (B7) Drainage Patterns (B10)
Primary India Surface W High Wate	drolog cators (an Vater (A1) eer Table (on (A3)	y Indica ny one is su	ntors:			Inundatio Sparsely Marl Dep	on Visibl Vegetate osits (B1	e on Aerial I ed Concave	magery (Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) [B8) Oxidized Rizospheres along Living Roots (C3)
Primary Indic Surface W High Wate Saturatio	r drolog cators (an Water (A1) eer Table (on (A3) arks (B1)	y Indica ny one is su (A2)	ntors:			Inundatio Sparsely Marl Dep Hydrogel	on Visibl Vegetate osits (B1 n Sulfide	e on Aerial I ed Concave : 15)	magery (Bay Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (Ca Presence of Reduced Iron (C4)
Primary India Surface W High Wate Saturatio Water Ma	r drolog cators (an Vater (A1) ter Table (on (A3) arks (B1) t Deposite	y Indica ny one is su (A2) s (B2)	ntors:			Inundatio Sparsely Marl Dep Hydrogen Dry-Seas	on Visibl Vegetate osits (B1 n Sulfide on Wate	e on Aerial I ed Concave 2 15) e Odor (C1)	magery (Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) (B8) Oxidized Rizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Salt Deposits (C5)
Primary India Surface W High Wate Saturatio Water Ma Sediment	rdrolog cators (an Vater (A1) cer Table (on (A3) arks (B1) t Deposits osits (B3)	y Indica ny one is su A2) s (B2)	ntors:			Inundatio Sparsely Marl Dep Hydrogen Dry-Seas	on Visibl Vegetate osits (B1 n Sulfide on Wate	e on Aerial I ed Concave : 5) e Odor (C1) r Table (C2)	magery (Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) (B8) Oxidized Rizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1)
Primary India Surface W High Wate Saturatio Water Ma Sediment	vdrolog cators (an Vater (A1) ter Table (on (A3) arks (B1) t Deposits osits (B3) t or Crust	y Indica ny one is su (A2) s (B2) (B4)	ntors:			Inundatio Sparsely Marl Dep Hydrogen Dry-Seas	on Visibl Vegetate osits (B1 n Sulfide on Wate	e on Aerial I ed Concave : 5) e Odor (C1) r Table (C2)	magery (Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) (B8) Oxidized Rizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Primary India Surface W High Wata Saturatio Water Ma Sediment Drift Depo	vdrolog cators (an Water (A1) er Table (on (A3) arks (B1) t Deposits osits (B3) t or Crust osits (B5)	y Indica ny one is su (A2) s (B2) (B4)	ntors:			Inundatio Sparsely Marl Dep Hydrogen Dry-Seas	on Visibl Vegetate osits (B1 n Sulfide on Wate	e on Aerial I ed Concave : 5) e Odor (C1) r Table (C2)	magery (Secondary Indicators (2 or more required)

Field Observations:					
Surface Water Present?	Yes	No _√	Depth (inches):		
Water Table Present?	Yes	No _√	Depth (inches):		
Saturation Present?				Wetland Hydrology Present? Yes	No √
(includes capillary fringe)	Yes	No _√	Depth (inches):		
Recorded Data (stream ga	auge, monito	or well, aeria	al photo, previous insp	pection) if available:	
Remarks:					

Hydric Soil Indicators: None Wetland Hydrology Indicators: Shallow Aquitard (D3)

WETLAND DETERMINATION DATA FORM - ALASKA REGION

Applicant/	e: TLRA Improvements; Wetlan Owner: <u>Federal Highway Adm</u> or(s): WAD, JPP			ugh/City: <u>Fa</u>	airbanks Northstar Borough Landform (hillside	Sampling P	oint: <u>TL-27</u>
	(concave, convex, none): con	vex	SI	ope: 8.7		Elevation: 476	
Subregion:		t.: 64.801		•	ong.: -147.7438	Datum: V	VGS84
0	nit Name: Tanana-Mosquito c					NWI classificat	
	ic/hydrologic conditions on t		vnical for t	his time of	vear? Ves / No	(If no, explain ir	
	tion , Soil , or Hydrold				Are "Normal Circumstance		•
•			naturally p				
Are Vegeta		0,				-	idiks.)
SUMMAR	Y OF FINDINGS - Attach site	map sho	wing sampl	ing point lo	cations, transects, importa	nt features, etc.	
Hydroph	ytic Vegetation Present? Yes	No	\checkmark	ls the	Sampled Area		
Hydric Se	oil Present? Yes	No	\checkmark		•	No	/
Wetland	Hydrology Present? Yes	No	\checkmark	within	a Wetland? Yes	No	<u>v</u>
Remarks:	Base of s shallow ridge domin	ated by r	mature pap	er birch			
VEGETAT	ION - Use scientific names of p		•	•			
		Absolute	Dominant	Indicator	Dominance Test worksheet:		
	Tree Stratum	% Cover	Species?	Status	Number of Dominant Species T		(.)
1.	Betula neoalaskana	85.0		FACU	FACW, or FAC:	0	(A)
2.	Picea glauca	5.0		FACU	Total Number of Dominant Spec	cies Across all	
	Total Cover:	90.0			Strata:	2	(B)
	50% of total cove	r: <u>45.0</u>	20% of total of	cover: <u>18.0</u>	Percent of Dominant Species T	hat are OBL,	
	Sapling/Shrub Stratum				FACW, or FAC:	0.0%	(A/B)
1.	Rosa acicularis	75.0	\checkmark	FACU			
2.	Salix bebbiana	2.0		FAC	Prevalence Index worksheet:		
	Total Cover:	77.0			Total % Cover of: Mul	tiply by:	
	50% of total cove	r: 38.5	20% of total of	over: 15.4	OBL Species 0.0 × 1 =	= 0.0	
	Herb Stratum				FACW Species 0.0 × 2	= 0.0	
1.	Calamagrostis canadensis	5.0		FAC	FAC Species 7.0 × 3	= 21.0	
	Total Cover:	5.0			FACU Species 165.0 × 4	= 660.0	
	50% of total co		20% of total	cover: 1.0	UPL Species 0.0 × 5	= 0.0	
	-				Column Totals: 172.0 (A)		
					Prevalence Index = $B/A = 3.959$		
					Hydrophytic Vegetation Indic	ators:	
					Dominance Test is > 50	0%	
					Prevalence Index is ≤ 3	8.0	
					Morphological Adapta	tions ¹ (Provide supp	orting data
					in Remarks or on a sep		8
					Problematic Hydrophy		ain)
					¹ Indicators or hydric soil and we		
					unless disturbed or problem		
						44.)	
					Plot size (radius, or length × wid		-
					% Cover of Wetland Bryophytes	s (where applicable)	0.0
					% Bare Ground		0.0
					Total Cover of Bryophytes		0.0
					Hydrophytic		
					Vegetation		
					Present?	Yes	No_√_
Remarks:	Other cover is leaf litter						

US Army Corps of Engineers

SOIL

Depth	Matrix	Redo	ox Fe	atures				
(inches) 0-4 4-12	Color (moist) %	Color (moist)	<u>%</u> 	<u>Type</u> ¹	Loc ²	Texture peat mucky peat ² Location: P	Mod	Remarks
Histos Histic Hydro Alaska	bil Indicators: sol or Histel (A1) Epipedon (A2) gen Sulfide (A4) Dark Surface (A12) a Gleyed (A13) a Redox (A14) a Gleyed Pores (A15)		³ On ar	Alaska (Alaska A Alaska F e indicato nd an app	Color Ch Alpine S Redox W r or hyd ropriate		ation, one pri sition must be	LS ² : Alaska Gleyed Without Hue 5Y or Redder Underlying Layer Other (Explain in Remarks) imary indicator of wetland hydrology, e present unless disturbed or problematic.
Type: Depth (inche	re Layer (if present): o frost detected		orgai	nic but r	not sat	curated	Hydric	Soil Present? Yes No _√
Primary In Surfac High V Satura Water Sedim Drift D Algal N Iron D Surfac	Hydrology India ndicators (any one is ce Water (A1) Vater Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) eposits (B5) ce Soil Cracks (B6)			Sparsel Marl De Hydrog Dry-Sea	y Vegeta posits (I en Sulfio son Wat	ble on Aerial In ated Concave S B15) de Odor (C1) ter Table (C2) in Remarks)		Secondary Indicators (2 or more required) Water Stained Leaves (B9) Drainage Patterns (B10) Oxidized Rizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Salt Deposits (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-neutral Test (D5)
Surface W Water Tab Saturatior	le Present? Y n Present?	res No res No	_√ _√ _√	Dept	h (inche h (inche h (inche	es):	Wetland	l Hydrology Present?Yes No _√

Hydric Soil Indicators: None Wetland Hydrology Indicators: None

Appendix B. Map Verification Plot Information and Photos

Sampling Point: STREAM-1

Site: TLRA Improvements; Wetland Delineation Date: 2020-07-07 NWI classification: R4SBC Viereck code: Species:

Notes: Site is a constructed drainage channel from upslope wetland to Cushman lake across the beach. The channel was lined with landscaping fabric but channel bed has been eroded and the fabric is exposed. Assumed that veg, soil and hydrology are significantly disturbed because it's a constructed drainage channel that been degraded from original condition. R4USC

Sampling Point: STREAM-2 Site: TLRA Improvements; Wetland Delineation Date: 2020-07-07 NWI classification: R2UBH Viereck code: Species: Hippuris vulgaris, Equisetum palustre, Schoenoplectus pungens Notes: Flowing slough, water 6 inches deep

Sampling Point: W3-V1

Site: TLRA Improvements; Wetland Delineation Date: 2020-07-08

NWI classification: PSS1E

Viereck code:

Species: Chamaedaphne calyculata, Salix bebbiana, Rosa acicularis, Alnus incana, Betula glandulosa, Iris setosa, Calamagrostis canadensis, Equisetum palustre

Notes: Inundated through the width of study area, not evident in 2019 imagery. Inundation is likely due to the combination of impounded waters accumulating from rainfall and not draining due to high flood stage on the Tanana River. Vegetation is not yet supporting obligate plants and existing shrubs and trees are not yet dying. Flooding may be very intermittent.

Sampling Point: W4-V1

Site: TLRA Improvements; Wetland Delineation Date: 2020-07-08

NWI classification: PSS1E

Viereck code:

Species: Populus balsamifera, Betula glandulosa, Salix alaxensis, Calamagrostis canadensis

Notes: Inundated through the width of study area, not evident in 2019 imagery. Inundation is likely due to the combination of impounded waters accumulating from rainfall and not draining due to high flood stage on the Tanana River. Vegetation is not yet supporting obligate plants and existing shrubs and trees are not yet dying. Flooding may be very intermittent.

Sampling Point: W8-V1

Site: TLRA Improvements; Wetland Delineation Date: 2020-07-07

NWI classification: PUBH

Viereck code:

Species: Salix interior, Equisetum palustre, Juncus alpinoarticulatus, Schoenoplectus tabernaemontani, Equisetum variegatum

Notes: Ditch impounding water supporting obligate plants, likely flooded throughout the growing season in most years.

Sampling Point: W20-V1

Site: TLRA Improvements; Wetland Delineation **Date:** 2020-07-07

NWI classification: L2EM2H

Viereck code:

Species: Salix interior, Schoenoplectus tabernaemontani, Typha latifolia

Notes: The shoreline of the lake is much higher upslope during the time of sampling than indicated in the 2019 aerial photograph. However the presence of obligate aquatic wetland plants such as scival and typlat indicate that the area is typically flooded.

Sampling Point: W24-V1

Site: TLRA Improvements; Wetland Delineation Date: 2020-07-08

NWI classification: U

Viereck code:

Species: Picea mariana, Rosa acicularis, Vaccinium vitisidaea, Salix bebbiana, Geocaulon lividum

Notes: Similar black spruce upland on slightly raised ridge. Assume upland based on veg composition and lack of hydrology.

Sampling Point: TL-02

Site: TLRA Improvements; Wetland Delineation **Date:** 2020-07-07

NWI classification: Us Viereck code:

Species: Salix lasiandra, Salix interior, Populus balsamifera, Salix niphoclada, Epilobium palustre, Melilotus albus, Crepis tectorum

Notes: Edge of parking lot with a large population of white sweet clover. Verification plot to document invasive population.

Sampling Point: TL-07

Site: TLRA Improvements; Wetland Delineation Date: 2020-07-07

NWI classification: U

Viereck code:

Species: Populus balsamifera, Achillea millefolium, Equisetum arvense, Equisetum palustre, Festuca rubra, Hordeum jubatum, Juncus sp., Melilotus albus, Piperia dilatata, Platanthera aquilonis, Plantago major, Poa pratensis, Potentilla recta, Taraxacum officinale, Trifolium hybridum, Vicia cracca

Notes: Constructed berm above beach area, colonized by some non native plants.

Sampling Point: TL-18

Site: TLRA Improvements; Wetland Delineation **Date:** 2020-07-08

NWI classification: U

Viereck code: Moist Forb Meadow

Species: Vicia cracca

Notes: Extensive infestation of viccra alongside road and extending into the field.

Appendix C. Wetland Functional Assessment Worksheets

NWI Code(s): R2UBH [Lower Perennial Stream] HGM: Riverine

Function and Indicators	Rating	Project Rationale
A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters).	N/A	
Wetland or water is a depressional HGM class or has depressional features capable of storage.	0	The waterbody is an active slough draining Cushman Lake.
 Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris). 	1	Extensive lodged debris and sediment deposits were observed during the field survey.
 Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow. 	0	The waterbody is an active channel.
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	0	The waterbody is a perennial stream.
Functional score = sum of ratings for indicators/total possible score = 1/4	0.25	
B. Sediment, Nutrient (N and P), Toxicant Removal 1. Slow-moving or still water is present.	1	Slow moving water was observed near the banks, within areas of emergent vegetation.
2. Low to tall woody vegetation present (N/A if assessing waters).	N/A	
 At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters). 	1	An area of well developed riparian emergent vegetation is present, as well as rooted aquatic vegetation within the stream.
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	1	Extensive sediment deposits were observed during the field survey.
5. Thick surface organic horizon and/or abundant fine organic itter is present (N/A if assessing waters).	N/A	
6. Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland.	1	The study area is completely surrounded by urban development, floodwaters present during the field survey are likely to contain pollutants from surrounding access roads and groins
Functional score = sum of ratings for indicators/total possible score = 4/4	1	
C. Erosion Control and Shoreline Stabilization 1. Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion.	1	Dense emergent obligate wetland vascular plants on the banks and in-stream rooted aquatics within the channel.
2. Soils are not predominantly sandy or silty, and are not ice rich.	0	The soil profiles are dominated by riverine sands and silts.
 Historical aerial photography (if available) indicates stable shoreline features. 	0	Shorelines of sloughs are typically susceptible to rapid change in active riverine systems.
Functional score = sum of ratings for indicators/total possible score= 1/3	0.33	
D. Organic Matter Production and Export 1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	1	Well developed emergent vegetation in channel.
2. At least 10% of wetland is seasonally flooded (N/A for waters).	N/A	
3. Surface water outflow occurs regularly throughout the growing season.	1	The waterbody is an active flowing channel.
Functional score = sum of ratings for indicators/total possible score = 2/2	1	

NWI Code(s): R2UBH [Lower Perennial Stream] HGM: Riverine

Function and Indicators	Rating	Project Rationale
 E. Avian and Mammal Habitat Suitability Wetland or water is undisturbed by human habitation or development. 	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	0	No breeding birds were present during the June 2020 field survey.
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component).	1	The cover of emergent vegetation is at least 10%.
4. Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters).	N/A	
Functional score = sum of ratings for indicators/total possible score = 1/3	0.33	
F. Fish Habitat Suitability 1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands).	0	Channel was up to 12 inches deep at the time of sampling but expected to fluctuate throughout the growing season and potentially dry up during the winter
2. Fish are present.	1	Fish are assumed to be present due to the close proximity to the Tanana River.
3. Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter.	1	A well developed littoral zone is present.
4. Suitable spawning areas are present.	1	Well developed bank vegetation and in-channel vegetation providing cover, substrate is sands and silts
5. Juvenile rest areas present.	1	Well developed bank vegetation and in-channel vegetation providing cover, substrate is sands and silts
Functional score = sum of ratings for indicators/total possible score = 4/5	0.8	
G. Educational, Scientific, Recreational, or Subsistence Use 1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non-motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	

NWI Code(s): R4USC [Intermittent Stream] HGM: Riverine

Function and Indicators	Rating	Project Rationale
 A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters). 	N/A	
Wetland or water is a depressional HGM class or has depressional features capable of storage.	0	The waterbody is an active riverine feature
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	1	The waterbody is a small constructed drainage channel draining a semipermanently flooded wetland into Cushman Lake across the swim beach.
4. Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow.	0	The waterbody is an active channel.
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	0	The waterbody is not a lake.
Functional score = sum of ratings for indicators/total possible score = 1/4	0.25	
B. Sediment, Nutrient (N and P), Toxicant Removal 1. Slow-moving or still water is present.	1	Water was not flowing in the channel at the time of the field survey, but patches of stagnant surface water were present.
2. Low to tall woody vegetation present (N/A if assessing waters).	N/A	
 At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters). 	0	The waterbody is a constructed channel with landscaping fabric and no bank vegetation.
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	1	The landscaping fabric and banks were eroded indicating higher water levels in the past.
 Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters). 	N/A	
 Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland. 	1	The study area is completely surrounded by urban development; floodwaters present during the field survey are likely to contain pollutants from surrounding access roads and groins.
Functional score = sum of ratings for indicators/total possible score = 3/4	0.75	
C. Erosion Control and Shoreline Stabilization 1. Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion.	0	No vegetation present.
2. Soils are not predominantly sandy or silty, and are not ice rich.	0	Channel is constructed with landscaping fabric and sand from the swim beach.
 Historical aerial photography (if available) indicates stable shoreline features. 	0	Channel was recently constructed.
Functional score = sum of ratings for indicators/total possible score = 0/3	0	
D. Organic Matter Production and Export 1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	0	No vegetation present.
2. At least 10% of wetland is seasonally flooded (N/A for waters).	N/A	
 Surface water outflow occurs regularly throughout the growing season. 	1	Assume that channel is active periodically during the growing season
Functional score = sum of ratings for indicators/total possible score = 1/2	0.5	

NWI Code(s): R4USC [Intermittent Stream] HGM: Riverine

Function and Indicators	Rating	Project Rationale
E. Avian and Mammal Habitat Suitability1. Wetland or water is undisturbed by human habitation or development.	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	0	No breeding birds were present during the June 2020 field survey.
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component).	0	No in-stream vegetation, channel is a degraded constructed feature
4. Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters).	N/A	
Functional score = sum of ratings for indicators/total possible score = 0/3	0	
 F. Fish Habitat Suitability 1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands). 	0	
2. Fish are present.	0	
 Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter. 	0	0
4. Suitable spawning areas are present.	0	
5. Juvenile rest areas present.	0	
Functional score = sum of ratings for indicators/total possible score = 0/5	0	
G. Educational, Scientific, Recreational, or Subsistence Use		
1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non- motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	

NWI Code(s): L2EM2H [Lacustrine Lentic Waters] HGM: Depressional

Function and Indicators	Rating	Project Rationale
 A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters). 	N/A	
Wetland or water is a depressional HGM class or has depressional features capable of storage.	1	The waterbody is a lacustrine fringe surrounding a depressional lake (Cushman Lake).
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	1	Based on comparison with historical imagery, the entire littoral area has developed within the past 3 years since the construction of TLRA.
 Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow. 	0	Channelized outflow was observed on the west side of the lake.
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	1	The waterbody is a lacustrine fringe surrounding a lake >20 acres in size.
Functional score = sum of ratings for indicators/total possible score = 3/4	0.75	
B. Sediment, Nutrient (N and P), Toxicant Removal		
1. Slow-moving or still water is present.	1	Still water is present (Cushman Lake).
2. Low to tall woody vegetation present (N/A if assessing waters).	N/A	
 At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters). 	1	Persistent Emergent vegetation is present along the shoreline, and extensive rooted aquatic vegetation is also present.
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	1	Assume significant fluctuation in water levels by comparison to historical imagery.
 Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters). 	N/A	
 Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland. 	1	The study area is completely surrounded by urban development; waterbody is likely to contain pollutants from surrounding access roads and groins.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	
C. Erosion Control and Shoreline Stabilization 1. Wetland has dense, energy absorbing vegetation bordering	0	Vegetation is primarily rooted aquatic plants, with little lacustrine
the watercourse and no evidence of erosion.	Ū	shoreline vegetation development
2. Soils are not predominantly sandy or silty, and are not ice rich.	0	The soil profiles were dominated by riverine sands and silts.
 Historical aerial photography (if available) indicates stable shoreline features. 	0	Comparison with historical imagery indicates increasing water levels with the rapid development of a vegetated littoral zone.
Functional score = sum of ratings for indicators/total possible score = 0/3	0	
D. Organic Matter Production and Export 1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	1	A well developed littoral zone is present.
2. At least 10% of wetland is seasonally flooded (N/A for waters).	N/A	
3. Surface water outflow occurs regularly throughout the growing season.	1	Active outflow was occurring through a culvert on the east side of Cushman Lake at the time of the field survey.
Functional score = sum of ratings for indicators/total possible score = 2/2	1	

NWI Code(s): L2EM2H [Lacustrine Lentic Waters] HGM: Depressional

Function and Indicators	Rating	Project Rationale
 E. Avian and Mammal Habitat Suitability Wetland or water is undisturbed by human habitation or development. 	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	0	No breeding birds were present during the June 2020 field survey.
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component).	1	Well developed rooted aquatic vegetation is present.
 Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters). 	N/A	
Functional score = sum of ratings for indicators/total possible score = 1/3	0.33	
 F. Fish Habitat Suitability 1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands). 	1	Assume Cushman lake is deep enough to allow overwintering.
2. Fish are present.	1	Cushman Lake is assumed to support fish based on its close proximity to the Tanana River.
 Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter. 	1	A well developed littoral zone is present.
4. Suitable spawning areas are present.	1	Cushman Lake has vegetated littoral zones and some areas of overhanging vegetation
5. Juvenile rest areas present.	1	Cushman Lake has vegetated littoral zones and some areas of overhanging vegetation
Functional score = sum of ratings for indicators/total possible score = 5/5	1	
G. Educational, Scientific, Recreational, or Subsistence Use		
1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non- motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorize boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	

NWI Code(s): PUBH [Palustrine Lentic Waters] HGM: Depressional

Function and Indicators	Rating	Project Rationale
 A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters). 	N/A	
Wetland or water is a depressional HGM class or has depressional features capable of storage.	1	HGM class is depressional.
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	1	Small ponds are present in isolated depressions with no evidence of inflow or outflow; shorelines show limited evidence of fluctuation.
4. Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow.	0	No evidence of throughflow; these small features are not in landscape positions that would receive floodflow. Due to their very small size, they do not provide significant storage function.
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	0	Waterbodies <20 acres, shallow water, forming in depressions caused by prior disturbance
Functional score = sum of ratings for indicators/total possible score = 2/4	0.5	
B. Sediment, Nutrient (N and P), Toxicant Removal 1. Slow-moving or still water is present.	1	PUBH waters were assumed to be flooded throughout the growing season.
2. Low to tall woody vegetation present (N/A if assessing waters).	N/A	
3. At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters).	0	No islands are present; floating vegetation and lacustrine fringe development are limited.
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	0	No sediment deposits were observed during the field survey.
5. Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters).	N/A	
6. Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland.	1	Small waterbodies completely surrounded by disturbance
Functional score = sum of ratings for indicators/total possible score = 2/4	0.5	
 C. Erosion Control and Shoreline Stabilization 1. Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion. 	N/A N/A	The PUBH waters are surrounded entirely by uplands.
2. Soils are not predominantly sandy or silty, and are not ice rich.	N/A	
 Historical aerial photography (if available) indicates stable shoreline features. 	N/A	
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A	
D. Organic Matter Production and Export 1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	0	No emergent vegetation is present.
2. At least 10% of wetland is seasonally flooded (N/A for waters).	0	
3. Surface water outflow occurs regularly throughout the growing season.	0	No inflow or outflow was observed.
Functional score = sum of ratings for indicators/total possible score = 0/3	0	

NWI Code(s): PUBH [Palustrine Lentic Waters] HGM: Depressional

Function and Indicators	Rating	Project Rationale
 E. Avian and Mammal Habitat Suitability 1. Wetland or water is undisturbed by human habitation or development. 	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	0	No breeding birds were present during the June 2020 field survey
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component).	0	
4. Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters).	N/A	
Functional score = sum of ratings for indicators/total possible score = 0/3	0	
 F. Fish Habitat Suitability 1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands). 	0	
2. Fish are present.	0	
3. Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter.	1	PUBH in the study area are surrounded by forested uplands, very little littoral development is present but forest canopy overhangs the waterbody.
4. Suitable spawning areas are present.	0	
5. Juvenile rest areas present.	0	
Functional score = sum of ratings for indicators/total possible score 1/5	0.2	
G. Educational, Scientific, Recreational, or Subsistence Use 1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non- motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	

NWI Code(s): PEM1F, PEM1/SS1F, PSS1F [Semipermanently Flooded Wetlands] HGM: Slope

Function and Indicators	Rating	Project Rationale
 A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters). 	1	Wetlands in this functional class have dense graminoid vegetatior or closed canopies of tall, broad-leaved deciduous shrubs.
Wetland or water is a depressional HGM class or has depressional features capable of storage.	0	All wetlands in this functional class are classified as HGM slope.
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	1	Wetlands in this functional class were flooded at the time of the field survey. Prior disturbances (ATV tracks) indicate that water levels have not always been as high.
 Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow. 	1	The area is within an active floodplain with evidence of impounded waters throughout. No channelized features were observed.
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	N/A	
Functional score = sum of ratings for indicators/total possible score = 3/4	0.75	
B. Sediment, Nutrient (N and P), Toxicant Removal 1. Slow-moving or still water is present.	1	Substantial surface water was present during the field survey.
2. Low to tall woody vegetation present (N/A if assessing waters).	1	Woody vegetation is the dominant stratum.
3. At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters).	0	The wetlands were completely flooded at the time of the field survey.
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	0	No sediment deposits were observed during the field survey,
5. Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters).	1	The organic layer wasn't directly assessed because the wetlands were flooded. The organic layers are expected to be thick histosols.
 Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland. 	1	The wetlands are completely surrounded by urban development; floodwaters present during the field survey are likely to contain pollutants from surrounding access roads and groins.
Functional score = sum of ratings for indicators/total possible score = 4/6	0.66	
C. Erosion Control and Shoreline Stabilization	N/A	None of the wetlands in this class borders a waterbody; thus this function was not assessed.
 Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion. 	N/A	
2. Soils are not predominantly sandy or silty, and are not ice rich.	N/A	
Historical aerial photography (if available) indicates stable shoreline features.	N/A	
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A	
D. Organic Matter Production and Export 1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	1	The wetlands in this functional class have at least 30% cover of herbaceous vegetation, woody vegetation when present is composed of broad-leaved deciduous shrubs.
2. At least 10% of wetland is seasonally flooded (N/A for waters).	1	The wetlands were completely flooded at the time of the field survey.
3. Surface water outflow occurs regularly throughout the growing season.	1	These wetlands are likely to be flooded throughout most of the growing season, and are assumed to be draining downstream to the Tanana River
Functional score = sum of ratings for indicators/total possible score = 3/3	1	

NWI Code(s): PEM1F, PEM1/SS1F, PSS1F [Semipermanently Flooded Wetlands] HGM: Slope

Function and Indicators	Rating	Project Rationale
 E. Avian and Mammal Habitat Suitability 1. Wetland or water is undisturbed by human habitation or development. 	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	1	Breeding birds were present during the June 2020 field survey.
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component).	1	Emergent vegetation and tall shrub canopy cover provide interspersion.
4. Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters).	1	Wetlands in this class are dominated by emergent vegetation, shrubs are typically also present and may be low shrubs within the emergent canopy or tall shrubs above the emergent canopy.
Functional score = sum of ratings for indicators/total possible score = 3/4	0.75	
F. Fish Habitat Suitability		This function is not assessed for terrestrial wetland types that are not immediately adjacent to a fish-bearing waterbody.
1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands).	N/A	
2. Fish are present.	N/A	
 Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter. 	N/A	
4. Suitable spawning areas are present.	N/A	
5. Juvenile rest areas present.	N/A	
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A	
G. Educational, Scientific, Recreational, or Subsistence Use 1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non- motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	

NWI Code(s): PSS1E, PFO1C [Seasonally Flooded Wetlands] HGM: Slope

Function and Indicators	Rating	Project Rationale
 A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters). 	1	Wetlands in this functional class have open canopies of low or tall shrubs or broad-leaved deciduous trees.
Wetland or water is a depressional HGM class or has depressional features capable of storage.	0	All wetlands in this functional class are classified as HGM slope.
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	1	These wetlands have vegetation typical of upland or seasonally saturated communities, but at least 12 inches of water was observed during the field survey. Frogs, aquatic invertebrates and algal covering on substrate were present but obligate wetland vegetation had not yet developed
 Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow. 	1	The area is within an active floodplain with evidence of impounded waters throughout. No channelized features observed
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	N/A	
Functional score = sum of ratings for indicators/total possible score = 3/4	0.75	
B. Sediment, Nutrient (N and P), Toxicant Removal 1. Slow-moving or still water is present.	1	Substantial surface water present was present during the field survey.
2. Low to tall woody vegetation present (N/A if assessing waters).	1	Woody vegetation is the dominant stratum.
 At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters). 	0	The wetlands were flooded at the time of the field survey.
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	0	No sediment deposits were observed during the field survey
5. Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters).	1	The organic layer was not directly assessed because the area was flooded at the time of the field survey. The organic layer is expected to be similar to that of a typical seasonally saturated wetland.
 Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland. 	1	The wetlands are completely surrounded by urban development; floodwaters present during the field survey are likely to contain pollutants from surrounding access roads and groins.
Functional score = sum of ratings for indicators/total possible score = 4/6	0.66	
C. Erosion Control and Shoreline Stabilization	N/A	None of the wetlands in this class borders a waterbody; thus this function was not assessed.
 Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion. 	N/A	
2. Soils are not predominantly sandy or silty, and are not ice rich.	N/A	
 Historical aerial photography (if available) indicates stable shoreline features. 	N/A	
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A	
D. Organic Matter Production and Export 1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	1	The wetlands have at least 30% cover of vegetation, including an open canopy of shrubs or broad-leaved deciduous trees.
2. At least 10% of wetland is seasonally flooded (N/A for waters).	1	These wetlands may receive floodwaters due to impoundment of water by TLRA access roads.

NWI Code(s): PSS1E, PFO1C [Seasonally Flooded Wetlands] HGM: Slope

Function and Indicators	Rating	Project Rationale
3. Surface water outflow occurs regularly throughout the growing season.	1	Floodwaters are likely to recede periodically through the growing season.
Functional score = sum of ratings for indicators/total possible score = 3/3	1	
E. Avian and Mammal Habitat Suitability		
1. Wetland or water is undisturbed by human habitation or development.	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	1	Breeding birds were present during the June 2020 field survey.
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component).	0	Surface water was continuous during the field survey, based on the vegetation at the site very little interspersion is expected when floodwaters recede
4. Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters).	1	Wetlands in this class have an open canopy of broad-leaved deciduous trees with an understory of deciduous shrubs, or an open tall deciduous shrub canopy with an herbaceous understory.
Functional score = sum of ratings for indicators/total possible score = 2/4	0.5	
F. Fish Habitat Suitability		This function is not assessed for terrestrial wetland types that are not immediately adjacent to a fish-bearing waterbody.
1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands).	N/A	
2. Fish are present.	N/A	
3. Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter.	N/A	
4. Suitable spawning areas are present.	N/A	
5. Juvenile rest areas present.	N/A	
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A	
G. Educational, Scientific, Recreational, or Subsistence Use 1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non- motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	

NWI Code(s): PEM1B, PSS1/EM1B, PSS1B [Seasonally Saturated Emergent and Shrub Scrub] HGM: Slope

Function and Indicators	Rating	Project Rationale	
 A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters). 	1	Wetlands in this functional class have dense graminoid cover or closed tall shrub canopies.	
Wetland or water is a depressional HGM class or has depressional features capable of storage.	0	All wetlands in this functional class are classified as HGM slope.	
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	0	No signs of storage or fluctuating surface water levels were observed during the field survey.	
4. Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow.	1	The area is within an active floodplain with evidence of impounded waters throughout. No channelized features were observed; the wetlands are seasonally saturated.	
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	N/A		
Functional score = sum of ratings for indicators/total possible score = 2/4	0.5		
B. Sediment, Nutrient (N and P), Toxicant Removal 1. Slow-moving or still water is present.	0	No surface water was observed during the field survey.	
2. Low to tall woody vegetation present (N/A if assessing waters).	1	Woody vegetation is present.	
3. At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters).	0	No surface water was observed during the field survey.	
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	0	No sediment deposits were observed during the field survey	
5. Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters).	1	The organic layer is more than 8 inches in depth.	
6. Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland.	1	The wetlands are completely surrounded by urban developme in the unlikely event of a flood, pollutants could enter the syst from the surrounding roadways.	
Functional score = sum of ratings for indicators/total possible score = 3/6	0.5		
C. Erosion Control and Shoreline Stabilization	N/A	None of the wetlands in this functional class borders a waterbody; thus this function was not assessed.	
1. Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion.	N/A		
2. Soils are not predominantly sandy or silty, and are not ice rich.	N/A		
3. Historical aerial photography (if available) indicates stable shoreline features.	N/A		
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A		
D. Organic Matter Production and Export		Wetlands in this class have >30% cover of vegetation with deciduous shrubs, but are not likely to receive flood waters regularly; thus this function was scored at 0.	
1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	0		
2. At least 10% of wetland is seasonally flooded (N/A for waters).	0		
 Surface water outflow occurs regularly throughout the growing season. 	0		
Functional score = sum of ratings for indicators/total possible score = 0/3	0		

NWI Code(s): PEM1B, PSS1/EM1B, PSS1B [Seasonally Saturated Emergent and Shrub Scrub] HGM: Slope

Function and Indicators	Rating	Project Rationale
E. Avian and Mammal Habitat Suitability1. Wetland or water is undisturbed by human habitation or development.	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	1	Breeding birds were present during the June 2020 field survey.
 Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component). 		No surface water was observed during the field survey.
 Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters). 	1	Wetlands in this class consist of a forb/shrub understory with a low or tall deciduous shrub stratum.
Functional score = sum of ratings for indicators/total possible score = 2/4	0.5	
F. Fish Habitat Suitability		This function is not assessed for terrestrial wetland types that are not immediately adjacent to a fish-bearing waterbody.
 Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands). 	N/A	
2. Fish are present.	N/A	
 Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter. 	N/A	
4. Suitable spawning areas are present.	N/A	
5. Juvenile rest areas present.	N/A	
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A	
G. Educational, Scientific, Recreational, or Subsistence Use 1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non- motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = 4/4	1	

NWI Code(s): PFO2B, PFO4B [Seasonally Saturated Needle-leaved Forest] HGM: Slope

Function and Indicators	Rating	Project Rationale				
A. Flood Flow Regulation (Storage) 1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters).	1	Wetlands in this functional class have open canopies of needle- leaved trees (<i>Picea mariana</i> and <i>Larix laricina</i>), in some cases with dense tall deciduous shrub understory.				
Wetland or water is a depressional HGM class or has depressional features capable of storage.	0	All wetlands in this functional class are classified as HGM slope.				
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	0	No signs of storage or fluctuating surface water levels were observed during the field survey.				
 Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow. 	1	The area is within an active floodplain with evidence of impounded waters throughout. No channelized features were observed; the wetlands were seasonally saturated. Evidence of permafrost was observed in the PFO4B wetlands.				
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	N/A					
Functional score = sum of ratings for indicators/total possible score = 2/4	0.5					
B. Sediment, Nutrient (N and P), Toxicant Removal 1. Slow-moving or still water is present.	0	No surface water was observed during the field survey.				
2. Low to tall woody vegetation present (N/A if assessing waters).	1	Woody vegetation is present.				
3. At least moderate interspersion of vegetation and water is present. Surface water patches should account for >10% areal coverage (N/A if assessing waters).	0	No surface water was observed during the field survey.				
 Sediment deposits are present, providing evidence of deposition during natural flood events. 	0	No sediment deposits were observed during the field survey.				
 Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters). 	1	The organic layer is more than 8 inches in depth.				
		The wetlands are completely surrounded by urban development; in the unlikely event of a flood, pollutants could enter the system from the surrounding roadways.				
Functional score = sum of ratings for indicators/total possible score = 3/6	0.5					
C. Erosion Control and Shoreline Stabilization	N/A	None of the wetlands in this class borders a waterbody; thus this function was not assessed.				
 Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion. 	N/A					
2. Soils are not predominantly sandy or silty, and are not ice rich.	N/A					
 Historical aerial photography (if available) indicates stable shoreline features. 	N/A					
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A					
D. Organic Matter Production and Export 1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	0					
2. At least 10% of wetland is seasonally flooded (N/A for waters).	1	Wetlands may receive floodwaters due to impoundment of water at TLRA access roads.				
3. Surface water outflow occurs regularly throughout the 1 Floodwaters are likely to recede periodically through growing season. season.		Floodwaters are likely to recede periodically through the growing season.				
Functional score = sum of ratings for indicators/total possible score = 2/3	0.66					

NWI Code(s): PFO2B, PFO4B [Seasonally Saturated Needle-leaved Forest] HGM: Slope

Function and Indicators	Rating	Project Rationale		
E. Avian and Mammal Habitat Suitability1. Wetland or water is undisturbed by human habitation or development.	0	The study area is completely surrounded by urban development.		
2. Birds and/or mammals recorded using habitat.	1	Breeding birds were present during the June 2020 field survey		
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5–10% areal cover, or continuous cover of surface water with a well-developed emergent component).	0	No surface water was observed during the field survey.		
4. Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters).	1	Wetlands in this class consist of an open canopy of needle-leaved trees with an understory of deciduous shrubs.		
Functional score = sum of ratings for indicators/total possible score = 2/4	0.5			
F. Fish Habitat Suitability		This function is not assessed for terrestrial wetland types that are not immediately adjacent to a fish-bearing waterbody.		
1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands).	N/A			
2. Fish are present.	N/A			
Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter.				
4. Suitable spawning areas are present.	N/A			
5. Juvenile rest areas present.	N/A			
Functional score = sum of ratings for indicators/total possible score (not applicable)	N/A			
G. Educational, Scientific, Recreational, or Subsistence Use 1. Site has documented scientific or educational use.		The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non- motorized watercraft rentals, and motorized boat launch		
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.		
3. Accessible trails are available.	1	See indicator 1 above.		
 Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking). 	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.		
Functional score = sum of ratings for indicators/total possible score = 4/4	1			

ADDENDUM TO THE WETLAND AND STREAM DELINEATION FOR THE TANANA RIVER RECREATION ACCESS IMPROVEMENTS PROJECT, FAIRBANKS, ALASKA, 2020: AK FNSB TANANA(1)

DRAFT

Prepared for:

PND Engineers Inc. 1506 W. 36th Ave Anchorage, Alaska 99503

and

Federal Highway Administration Western Federal Lands Highway Division 610 E. 5th Street Vancouver, Washington 98661

Prepared by:

ABR, Inc.—Environmental Research & Services P.O. Box 240268 Anchorage, AK 99518

December 2020

TABLE OF CONTENTS

INTRODUCTION	.1
PROJECT LOCATION	.1
STUDY AREA	.1
METHODS	.2
WETLAND CLASSIFICATION AND MAPPING	.2
WETLAND FUNCTIONAL ASSESSMENT	.2
RESULTS AND DISCUSSION	.2
WETLAND CLASSIFICATION AND MAPPING	.2
Wetlands	2
Streams and Waters of the U.S.	2
Uplands	3
WETLAND FUNCTIONAL ASSESSMENT	.3
PROPOSED JURISDICTIONAL STATUS	.4
LITERATURE CITED	.4

LIST OF TABLES

Table 1.	Acreages of wetlands, waters, and uplands types in numbered, mapped polygons in the Tanana River Recreation Access Improvements study area, Fairbanks, Alaska, 2020	5
Table 2.	Wetland function scores for wetlands and waters functional classes within the mapping area for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020	7
Table 3.	Connectivity characteristics and proposed jurisdictional classification for each mapped wetland within the mapping area for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.	8

LIST OF FIGURES

Figure 1.	Wetland mapping study area for the proposed Tanana River Recreation Access	
	Improvements Project, Fairbanks, Alaska, 2020.	10
Figure 2.	Wetlands and Waters of the proposed Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.	11

LIST OF APPENDICES

Appendix A. Wetland Functional Assessment Data Form.	.1	2
--	----	---

INTRODUCTION

A wetland field survey, wetland delineation, and functional assessment were prepared to support wetland permitting and NEPA documentation for the Tanana River Recreation Access Improvements Project in October 2020 (ABR 2020a). The project design has evolved since the original report was finalized and this addendum documents the changes in study area boundaries and the new wetland types and wetland functional classes found within the revised study area boundaries.

PROJECT LOCATION

The project area is located immediately south of the city of Fairbanks within the Fairbanks North Star Borough (Figure 1). The coordinates for the center point of the main portion of the project are: 64.800963, -147.741609° and the legal land description is: Sections 21-22, and 27-28, Township 1South, Range 1West, Fairbanks Meridian, Alaska.

STUDY AREA

The revised wetland delineation study area is as described in ABR (2020a), but it has been expanded from 23.0 to 31.1 acres. The additional acreage encompasses expansions of the project footprint for the motorized boat launch at the Tanana River and the non-motorized boat launch on Cushman Lake as well as an expansion of the swim beach on Cushman Lake (Figure 1). The majority of the expansion area is composed of upland fill, but the expansion of the swim beach and non-motorized boat launch boundaries now includes seasonally flooded and unvegetated fringe wetlands and open lake water on Cushman Lake. Revisions to the design of the proposed extension of South Lathrop Street involved shifting the road alignment slightly to the west near the intersection with Northlake Lane. Similarly, the road alignment for Northlake Lane was also shifted and curved slightly to the north. Both of these alterations were done to minimize fill in high-value wetlands (see ABR 2020b).

METHODS

WETLAND CLASSIFICATION AND MAPPING

As noted above, the wetland mapping study area was expanded and now includes new wetland and waters types not previously mapped or described. Mapping followed the methods detailed in ABR (2020a). No additional field data were collected to support the mapping prepared for this addendum.

WETLAND FUNCTIONAL ASSESSMENT

The new wetlands and waters types mapped were evaluated for wetland functions using the same methodology described in ABR (2020a). The new functional assessment worksheets are presented in Appendix A.

RESULTS AND DISCUSSION

WETLAND CLASSIFICATION AND MAPPING

WETLANDS

No new wetland types were identified during the mapping for the revised study area. One additional wetland polygon was mapped as Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub (PEM1/SS1F, polygon W-33, Figure 2). Polygon W-33 encompasses 0.07 acres or 0.2% of the study area (Table 1). A total of 6 existing wetland polygons increased slightly in size where the new study area boundaries expanded slightly; these are W-18 (0.18 acres or 0.6% of the study area), W-30 (0.21 acres, 0.7%), W-21 (0.05 acres, 0.2%), W-9, 0.42 acres, 1.4%), W-23 (0.24 acres, 0.8%) and W-26 (0.16 acres, 0.5%).

STREAMS AND WATERS OF THE U.S.

Lacustrine Permanently Flooded Littoral Unconsolidated Sandy Bottom (L2UB2H) and Lacustrine Seasonally Flooded Littoral Unconsolidated Sandy Shore (L2US2C) were new waters types mapped in polygons W-37, W-34, W-36, and W-38 (Figure 2, Table 1). Both waters are unvegetated with a sandy unconsolidated substrate composed of sand deposited to form the swim beach and the non-motorized boat launch. L2UB2H is the portion of constructed beach

determined to be permanently flooded and L2US2C is subject to seasonal lake level fluctuations and slight wave action.

The Stream-2 polygon classified as Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom (R2UBH) increased slightly in size in the new mapping to 0.15 acres or 0.5% of the study area (Table 1). The R2UBH polygon is an extention of the lower perennial active slough connecting Cushman Lake to the Tanana River.

UPLANDS

In the new mapping, total uplands increased from 16.70 acres (72.6% of the study area) to 23.66 acres (76.2% of the study area; Table 1). The majority of the additional acreage was categorized as upland fill within the two boat launch parking lots and the swim beach (Figure 2).

WETLAND FUNCTIONAL ASSESSMENT

The two new waters types included in the revised study area were combined into one new wetland functional class (Appendix A). L2UB2H and L2US2C make up the Lacustrine Sandy Shoreline wetland functional class, which is considered to occupy the lacustrine fringe surrounding Cushman Lake. The overall Functional Capacity Index (FCI) score for Lacustrine Sandy Shoreline is 0.49, which is low to moderate functioning across all evaluated functional indicators (Table 2).

The water level of Cushman lake appears to fluctuate based on assessments of historical imagery and field observations, which indicates the potential for moderately high functional value (0.75) in flood-flow regulation or storage for the Lacustrine Sandy Shoreline wetland functional class (Table 2). Sediment nutrient and toxicant removal also rated moderate-high (0.75) because still water is present, which would allow for settlement and because the proximity to urban development increases the likelihood that pollutants are entering the system during floods (Table 2; Appendix A). There were no changes to the functional assessment scores for the remaining wetlands and waters within the new study area boundaries. Descriptions and functional assessment worksheets for those types can be found in ABR (2020a).

Wetland Survey Addendum

PROPOSED JURISDICTIONAL STATUS

The previous assessment established Cushman Lake as a jurisdictional lake on the basis that it immediately abuts the active channel of the Tanana River (a traditional navigable water). The new waters types (mapped in polygons W-36 and W-37, Figure 2) described in this addendum are part of Cushman Lake and are thus considered jurisdictional. Similarly, the L2EM2H wetland mapped at polygon W-38 and the PEM1/SS1F wetland mapped at W-33 both directly abut Cushman Lake and are considered jurisdictional. The remaining increases in mapped acreages were extensions of previously mapped and numbered polygons and the jurisdictional determination for those types discussed in ABR (2020a) still applies. Table 3 provides updated acreages and jurisdictional categories for all mapped wetlands in the new study area.

LITERATURE CITED

- ABR, Inc.—Environmental Research & Services (ABR). 2020a. Wetland and stream delineation for the Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020:
 AK FNSB Tanana(1). Final report prepared for PND Engineers, Inc., and Federal Highway Administration, Western Federal Lands Highway Division. 24 pp. + Appendices.
- ABR, Inc.—Environmental Research & Services (ABR). 2020b. Addendum to the wetland impacts and mitigation report for the Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020: AK FNSB Tanana(1). Final report prepared for PND Engineers, Inc., and Federal Highway Administration, Western Federal Lands Highway Division. 15 pp.

NWI_Code ^a	NWI Description ^a	Wetland Name	Acres ^b	% of Study Area
Waters		Total	0.93	3.00
L2UB2H	Lacustrine Permanently Flooded Littoral Unconsolidated Sandy Bottom	W-37	0.32	1.04
L2US2C	Lacustrine Seasonally Flooded Littoral Unconsolidated Sandy Shore	W-34	0.20	0.65
		W-36	0.15	0.49
L2EM2H	Lacustrine Permanently Flooded Littoral Nonpersistent Emergent Marsh	W-20	0.01	0.02
		W-38	0.03	0.11
PUBH	Palustrine Permanently Flooded Unconsolidated Bottom	W-10	0.01	0.02
		W-28	0.04	0.13
		W-8	0.01	0.03
R2UBH	Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom	Stream-2	0.15	0.48
R4USC	Riverine Seasonally Flooded Intermittent Unconsolidated Shore	Stream-1	0.01	0.04
Wetlands		Total	6.45	20.78
PEM1F	Palustrine Semipermanently Flooded Persistent Emergent	W-13	0.99	3.18
		W-18	0.18	0.58
		W-31	0.18	0.57
		W-6	0.13	0.41
PSS1F	Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub	W-11	0.37	1.18
		W-12	0.04	0.14
		W-25	0.08	0.26
		W-27	0.16	0.50
		W-30	0.21	0.69
PEM1/SS1F	Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub	W-17	0.16	0.50
		W-19	0.02	0.08
		W-33	0.07	0.23

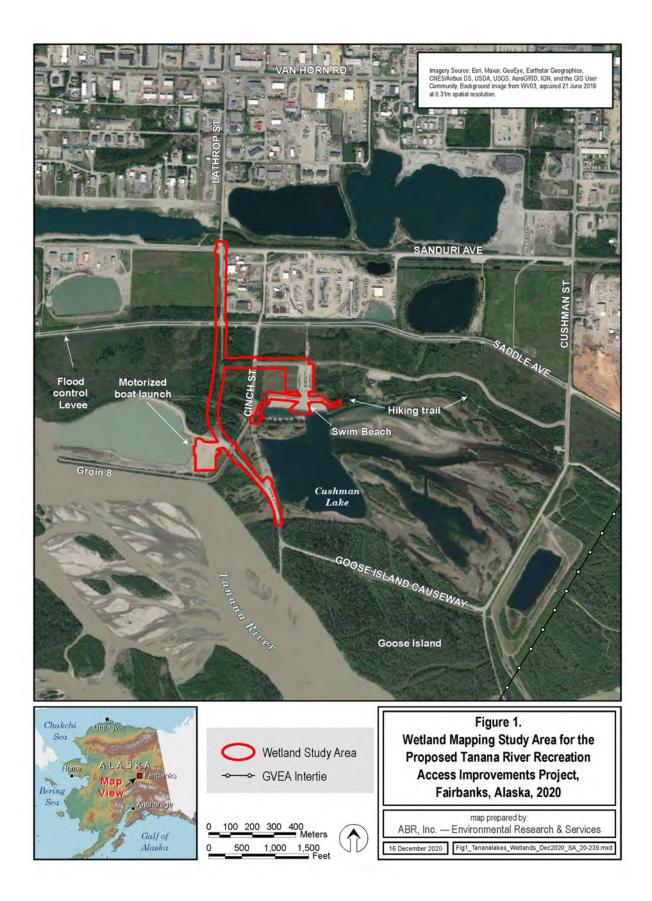
Table 1.	Acreages of wetlands, waters, and uplands types in numbered, mapped polygons in the Tanana River Recreation Access
	Improvements study area, Fairbanks, Alaska, 2020.

Tab	le 1.	Continued.
-----	-------	------------

NWI_Code ^a	NWI Description ^a	Wetland Name	Acres ^b	% of Study Area
Wetlands (cont.)	-			
PSS1E	Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub	W-14	0.12	0.39
		W-16	0.24	0.76
		W-21	0.05	0.16
		W-3	0.35	1.14
		W-4	0.04	0.12
PEM1B	Palustrine Seasonally Saturated Persistent Emergent	W-1	0.07	0.24
		W-2	0.09	0.28
PSS1/EM1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent	W-5	1.71	5.50
PSS1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub	W-7	0.05	0.16
PFO2B	Palustrine Seasonally Saturated Needle-leaved Deciduous Forest	W-32	0.02	0.07
		W-9	0.42	1.36
PFO4B	Palustrine Seasonally Saturated Needle-leaved Evergreen Forest	W-23	0.24	0.77
		W-26	0.16	0.50
PFO1C	Palustrine Seasonally Flooded Broad-leaved Deciduous Forest	W-22	0.11	0.34
		W-24	0.21	0.67
Uplands		Total	23.66	76.22
U	Uplands		7.82	25.20
Ur	Uplands (urban)		0.86	2.78
Us	Uplands (fill)		14.97	48.23
Grand Total	-		31.05	100.00

^a National Wetland Inventory (NWI) annotation based on FGDC (2013) classification system. ^b All values rounded to the nearest 0.01 acre.

1 1 /				I · · · ·	J	-,		
Wetland Functional Class	Flood Flow Regulation	Sediment/ Nutrient/ Toxicant Removal	Erosion Control & Shoreline Stabil.	Organic Matter Production and Export	Avian and Mammal Habitat Suitability	Fish Habitat Suitability	Education/ Science/ Rec/ Subsist Use	Overall FCI score
Waters	<u> </u>	01		Ŭ	7	<u>F4</u>	<u> </u>	
Lower Perennial Stream	0.25	1.00	0.33	1.00	0.33	0.80	1.00	0.67
R2UBH								
Intermittent Stream	0.25	0.75	0.00	0.50	0.00	0.00	1.00	0.36
R4USC								
Lacustrine Lentic Waters	0.75	1.00	0.00	1.00	0.33	1.00	1.00	0.73
L2EM2H Lacustrine Sandy Shoreline	0.55	0.55	0	o -	0	0.4	1.00	0.40
L2UB2H, L2US2C	0.75	0.75	0	0.5	0	0.4	1.00	0.49
Palustrine Lentic Waters	0.50	0.50	N/A	0.00	0.00	0.20	1.00	0.37
PUBH	0.50	0.50	11/71	0.00	0.00	0.20	1.00	0.57
Wetlands								
Semipermanently Flooded Wetlands	0.75	0.66	N/A	1.00	0.75	N/A	1.00	0.83
PEM1F, PEM1/SS1F, PSS1F								
Seasonally Flooded Wetlands	0.75	0.66	N/A	1.00	0.50	N/A	1.00	0.78
PSS1E, PFO1C								
Seasonally Saturated Emergent and Shrub Scrub PEM1B, PSS1/EM1B, PSS1B	0.50	0.50	N/A	0.00	0.50	N/A	1.00	0.50
Seasonally Saturated Needle-leaved Forest PFO2B, PFO4B	0.50	0.50	N/A	0.66	0.50	N/A	1.00	0.63


Table 2.Wetland function (Functional Capacity Index) scores for wetlands and waters functional classes within the mapping area
for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.

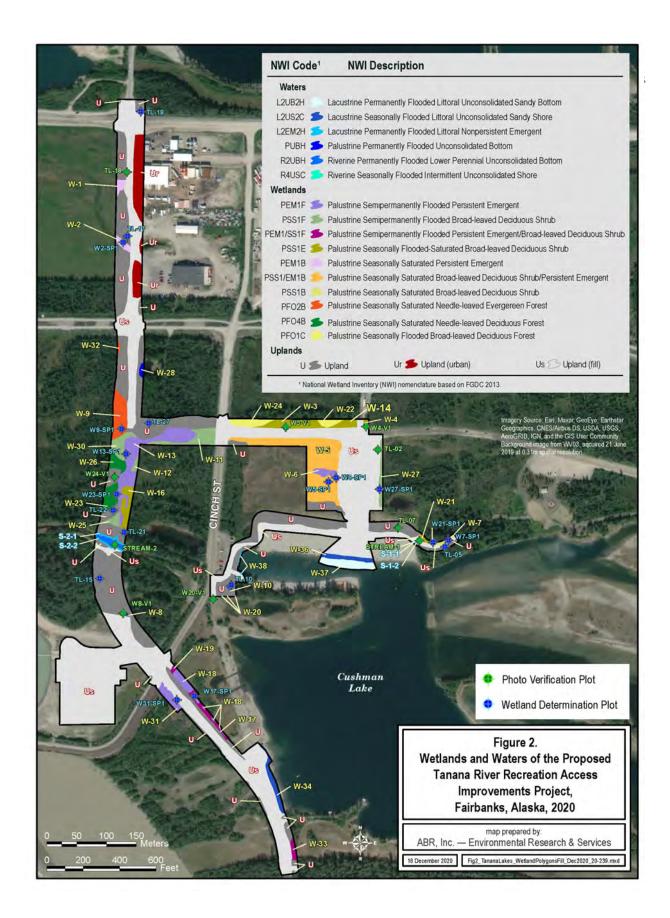

Wetland Name	NWI Code	Area (acres)	Jurisdictional Class	Characteristics
Stream-1	R4USC	0.01	(a)(2) tributaries	Constructed ditch contributing intermittent flow from upstream wetlands to Cushman lake, to STREAM-2, to the Tanana River
Stream-2	R2UBH	0.15	(a)(2) tributaries	Active riparian slough with perennial flow connecting directly to the Tanana River
W-1	PEM1B	0.07	non-jurisdictional (wetlands)	Drainage feature within a fallow field with no direct surface water connection to a navigable water
W-2	PEM1B	0.09	non-jurisdictional (wetlands)	Drainage feature within a fallow field with no direct surface water connection to a navigable water
W-3	PSS1E	0.35	non-jurisdictional (wetlands)	Impounded wetlands with no direct surface water connection to a navigable water
W-4	PSS1E	0.04	non-jurisdictional (wetlands)	Impounded wetlands with no direct surface water connection to a navigable water
W-5	PSS1/EM1B	1.71	(a)(4) adjacent wetlands	Wetland abuts Cushman Lake, connected directly to the Tanana River through STREAM-2
W-6	PEM1F	0.13	(a)(4) adjacent wetlands	Wetland abuts W-5
W-7	PSS1B	0.05	(a)(4) adjacent wetlands	Wetland abuts W-21
W-8	PUBH	0.01	non-jurisdictional (wetlands)	Constructed ditch within surrounding uplands, flooding likely to be solely from precipitation
W-9	PFO2B	0.42	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-10	PUBH	0.01	non-jurisdictional (waters)	Depression possibly from prior gravel mining operations, flooding likely to be solely from precipitation
W-11	PSS1F	0.37	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-12	PSS1F	0.04	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-13	PEM1F	0.99	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River

Table 3.Connectivity characteristics and proposed jurisdictional classification for each mapped wetland within the mapping area for
planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.

Table 3. Continued.

Wetland Name	NWI Code	Area (acres)	Jurisdictional Class	Characteristics
W-14	PSS1E	0.12	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-16	PSS1E	0.24	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-17	PEM1/SS1F	0.16	(a)(4) adjacent wetlands	Wetland directly abuts Cushman Lake
W-18	PEM1F	0.18	(a)(4) adjacent wetlands	Wetland directly abuts Cushman Lake
W-19	PEM1/SS1F	0.02	(a)(4) adjacent wetlands	Wetland directly abuts Cushman Lake
W-20	L2EM2H	0.01	(a)(3) lakes and ponds	Wetland directly abuts Cushman Lake
W-21	PSS1E	0.05	(a)(4) adjacent wetlands	Wetland connects to Cushman Lake via STREAM-1
W-22	PFO1C	0.11	non-jurisdictional (wetlands)	Impounded wetlands with no surface water connection
W-23	PFO4B	0.24	non-jurisdictional (wetlands)	Impounded wetlands with no surface water connection
W-24	PFO1C	0.21	non-jurisdictional (wetlands)	Impounded wetlands with no surface water connection
W-25	PSS1F	0.08	(a)(4) adjacent wetlands	Wetland directly abuts STREAM-2
W-26	PFO4B	0.16	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-27	PSS1F	0.16	(a)(4) adjacent wetlands	Wetland drains to Cushman Lake through STREAM-1
W-28	PUBH	0.04	non-jurisdictional (waters)	Flooded depression, possibly from prior gravel mining, surrounded by uplands, no surface water inlets or outlets observed during field survey
W-30	PSS1F	0.21	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-31	PEM1F	0.18	(a)(4) adjacent wetlands	Wetland directly abuts the Tanana River
W-32	PFO2B	0.02	(a)(4) adjacent wetlands	Wetland is part of the undisturbed riverine wetland complex directly abutting the Tanana River
W-33	PEM1/SS1F	0.07	(a)(4) adjacent wetlands	Wetland directly abuts Cushman Lake
W-34	L2US2C	0.20	(a)(3) lakes and ponds	Wetland directly abuts Cushman Lake
W-36	L2US2C	0.15	(a)(3) lakes and ponds	Wetland directly abuts Cushman Lake
W-37	L2UB2H	0.32	(a)(3) lakes and ponds	Wetland directly abuts Cushman Lake
W-38	L2EM2H	0.03	(a)(3) lakes and ponds	Wetland directly abuts Cushman Lake

Appendix A. Wetland Functional Assessment Data Form.

Function and Indicators	Rating	Project Rationale
A. Flood Flow Regulation (Storage)		
1. Dense vegetation or tussocks, low to tall woody vegetation present (N/A if assessing waters).	N/A	
2. Wetland or water is a depressional HGM class or has depressional features capable of storage.	1	The waterbody is a lacustrine fringe surrounding a depressional lake (Cushman Lake).
3. Wetland or water shows signs of storage (i.e. fluctuating water levels, algal mats, and/or lodged debris).	1	This shoreline is a constructed feature involving the placement of sandy fill material within the lacustrine fringe. Based on aerial photography and field observations the water levels in the lake appear to fluctuate
4. Floodwaters enter and flow through wetland predominantly as sheet flow rather than channel flow.	0	Channelized outflow was observed on the west side of the lake.
5. Waterbody is a lake (>20 acres) (N/A if assessing wetlands).	1	The waterbody is a lacustrine fringe surrounding a lake >20 acres in size.
Functional score = sum of ratings for indicators/total possible score = 3/4	0.75	
B. Sediment, Nutrient (N and P), Toxicant Removal		
1. Slow-moving or still water is present.		Still water is present (Cushman Lake).
2. Low to tall woody vegetation present (N/A if assessing waters).	N/A	
3. At least moderate interspersion of vegetation and water is present. Surface water patches should account for $>10\%$ areal coverage (N/A if assessing waters).	0	This is an unvegetated constructed water feature
4. Sediment deposits are present, providing evidence of deposition during natural flood events.	1	Assume significant fluctuation in water levels by comparison to historical imagery.
5. Thick surface organic horizon and/or abundant fine organic litter is present (N/A if assessing waters).	N/A	
6. Sediment, nutrients, or toxicants (from agriculture, roadways, or development) appear to be or are likely to be entering the wetland.	1	The study area is completely surrounded by urban development; waterbody is likely to contain pollutants from surrounding access roads and groins.
Functional score = sum of ratings for indicators/total possible score = $3/4$	0.75	

NWI Code(s): L2UB2H and L2US2C [Lacustrine Sandy Shoreline] HGM: Lacustrine Fringe

NWI Code(s): L2UB2H and L2US2C [Lacustrine Sandy Shoreline] HGM: Lacustrine Fringe

Function and Indicators	Rating	Project Rationale
C. Erosion Control and Shoreline Stabilization		
1. Wetland has dense, energy absorbing vegetation bordering the watercourse and no evidence of erosion.	0	Vegetation is primarily rooted aquatic plants, with little lacustrine shoreline vegetation development
2. Soils are not predominantly sandy or silty, and are not ice rich.	0	The soil profiles were dominated by riverine sands and silts.
3. Historical aerial photography (if available) indicates stable shoreline features.	0	Comparison with historical imagery indicates changing water levels.
Functional score = sum of ratings for indicators/total possible score = $0/3$	0	
D. Organic Matter Production and Export		
1. Wetland has at least 30%, or water has at least 10%, cover herbaceous vegetation. Woody plants are predominantly deciduous.	0	Water feature is unvegetated
2. At least 10% of wetland is seasonally flooded (N/A for waters).	N/A	
3. Surface water outflow occurs regularly throughout the growing season.	1	Active outflow was occurring through a culvert on the east side of Cushman Lake at the time of the field survey.
Functional score = sum of ratings for indicators/total possible score = $1/2$	0.5	
E. Avian and Mammal Habitat Suitability		
1. Wetland or water is undisturbed by human habitation or development.	0	The study area is completely surrounded by urban development.
2. Birds and/or mammals recorded using habitat.	0	Although non-breeding waterbirds are known to use Cushman Lake, the sandy substrate in this functional class is unlikely to provide suitable habitat for foraging by dabbling or diving species.
3. Interspersion of vegetation and water is at least moderate (surface water patches accounting for 5– 10% areal cover, or continuous cover of surface water with a well-developed emergent component).	0	
4. Wetland has 2 or more vegetation strata with at least 30% total cover each (N/A for waters).	N/A	
Functional score = sum of ratings for indicators/total possible score = $0/3$	0	

NWI Code(s): L2UB2H and L2US2C [Lacustrine Sandy Shoreline] HGM: Lacustrine Fringe

Function and Indicators	Rating	Project Rationale
F. Fish Habitat Suitability		
1. Water has sufficient size and depth of open water so as not to freeze completely during winter (N/A for wetlands).	1	Assume Cushman lake is deep enough to allow overwintering.
2. Fish are present.	1	Cushman Lake is assumed to support fish based on its close proximity to the Tanana River.
3. Herbaceous and/or woody vegetation is present in wetland and/or buffer to provide cover, shade, and/or detrital matter.	0	
4. Suitable spawning areas are present.	0	Sandy bottom may provide limited spawning habitat but the swim beach is highly disturbed
5. Juvenile rest areas present.	0	
Functional score = sum of ratings for indicators/total possible score 2/5	0.4	
G. Educational, Scientific, Recreational, or Subsistence Use		
1. Site has documented scientific or educational use.	1	The Tanana Lakes Recreation area has multiple recreational and educational uses. This site has a nature trail, swim beach, non motorized watercraft rentals, and motorized boat launch
2. Wetland or water is in public ownership.	1	The study area is managed by the Fairbanks North Star Borough.
3. Accessible trails are available.	1	See indicator 1 above.
4. Wetland or water supports subsistence activities (e.g., hunting, fishing, berry picking).	1	The area provides some hunting opportunities as well as a motorized boat launch for access to hunting and fishing locations along the Tanana River.
Functional score = sum of ratings for indicators/total possible score = $4/4$	1	

WETLAND IMPACTS AND MITIGATION REPORT FOR THE TANANA RIVER RECREATION ACCESS IMPROVEMENTS PROJECT, FAIRBANKS, ALASKA, 2020: AK FNSB TANANA(1)

Prepared for:

PND Engineers Inc. 1506 W. 36th Ave Anchorage, Alaska 99503

On behalf of:

Federal Highway Administration Western Federal Lands Highway Division 610 E. 5th St Vancouver, Washington 98661

Prepared by: **ABR, Inc.—Environmental Research & Services** P.O. Box 80410 Fairbanks, Alaska 99708-0410

and

P.O. Box 240268 Anchorage, Alaska 99524

October 2020

TABLE OF CONTENTS

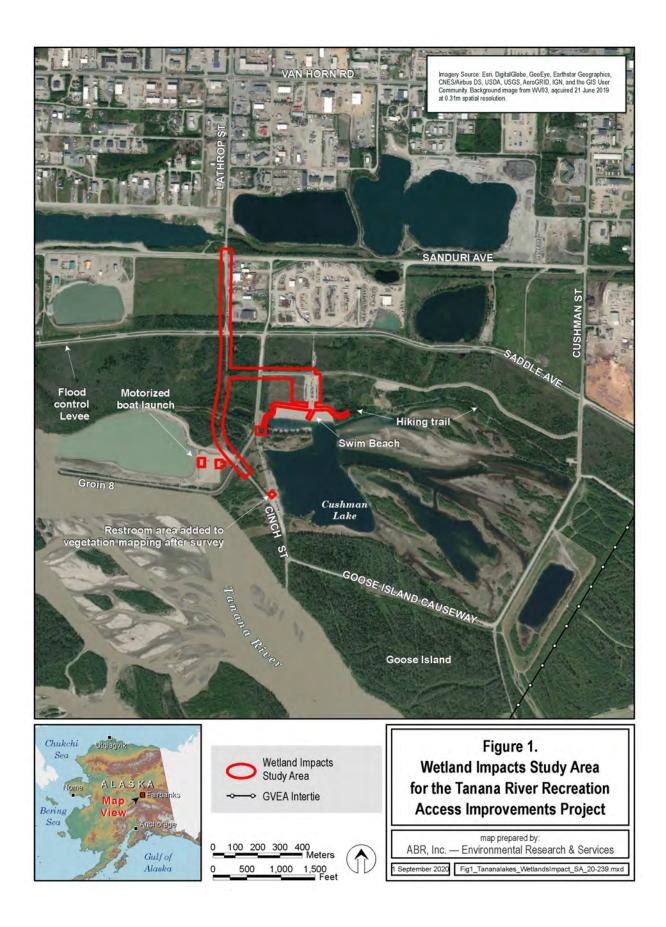
INTRODUCTION
STUDY AREA1
METHODS
WETLAND IMPACTS4
WETLAND AVOIDANCE AND MINIMIZATION4
WETLAND MITIGATION4
RESULTS AND DISCUSSION
WETLANDS AFFECTED5
IMPACTS TO WETLANDS10
DRAINAGE CONSIDERATIONS14
POTENTIAL DESIGN MODIFICATIONS14
WETLAND MITIGATION OPTIONS16
LITERATURE CITED

TABLES

Table 1.	Acreages of wetlands and waters by wetland type and name, and acreages of uplands within the mapping area for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, AK.	6
Table 2.	Wetland function (functional capacity index) scores for wetlands and waters functional classes within the mapping area for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, AK.	9
Table 3.	Acres of wetland and waters types within the project footprint and disturbance buffers for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska	1

FIGURES

Figure 1.	Wetland impacts study area for the Tanana River Recreation Access Improvements Project	2
Figure 2.	Wetlands and Waters in the Tanana River Recreation Access Improvements Project Study Area.	8
Figure 3.	Wetland types in the project footprint and surrounding mapping area, Tanana River Recreation Access Improvements Project.	2


INTRODUCTION

The Tanana River Recreation Access Improvements Project is managed by the Federal Highway Administration, Western Federal Lands Highway Division (WFLHD). The project is intended to improve access to the Tanana Lakes Recreation Area (TLRA), which is managed by Fairbanks North Star Borough (FNSB). PND Engineers Inc. (PND) is the engineering and environmental contractor to WFLHD for the project and ABR, Inc.—Environmental Research & Services (ABR) is the subcontractor providing wetland information, National Environmental Policy Act (NEPA), and permitting support for the project.

This impacts and mitigation report is based on data in the draft wetland and stream delineation survey report for the project (ABR 2020a), the scientific literature, and the proposed improvement plans for the project. This report summarizes the impacts to wetlands that are likely to occur from gravel fill for construction and from subsequent use of the proposed infrastructure. In addition, the report outlines potential wetland mitigation measures mitigation measures that could be used to offset the loss of wetlands from gravel fill. This information is provided to support subsequent consultation, permitting efforts, and preparation of the NEPA document for the project.

STUDY AREA

The TLRA is located on the south (river) side of the Tanana Flood Control levee in south Fairbanks. A small portion of the project study area north of the levee is outside of the TLRA boundary. The recreation area has been established around Cushman Lake, which was formed by the impounded waters of an active slough of the Tanana River (Figure 1). The Goose Island Causeway (a groin extension of South Cushman Street) and Groin 8 (an extension of Cinch Street) were constructed to create the freshwater Cushman Lake, which is suitable for recreation activities and habitat conservation. Groin 8 also protects the motorized boat launch area at the Tanana River. Following the master plan for the area (FNSB 2007), the TLRA was developed after 2012 to include a swimming beach on Cushman Lake, hiking trails, the motorized boat launch on the Tanana River, and the non-motorized boat launch on the shore of Cushman Lake.

The entire TLRA area is located within the active floodplain of the large, braided Tanana River, but the hydrology has been substantially altered by the construction of the levee system and the creation of Cushman Lake. Surface water levels in the area are driven by water levels in the Tanana River and rainfall, but frequent flood events typical of undisturbed floodplains are moderated in the TLRA by the groins. Waters in the area have been formed by the impoundment of active sloughs of the Tanana River, the filling of gravel excavation depressions, and there is one flowing slough crossing the study area north of the motorized boat launch area. Overall, the terrain is characterized by flat, riverine-influenced lowlands, with small variations in elevation along the edges of abandoned river channels and depressions. North of the levee along South Lathrop Street, the study area is composed of a fallow field and an industrial park. According to the 2007 TLRA Master Plan, historically the area was composed of over 80% jurisdictional wetlands prior to any facility development (FNSB 2007). Surficial deposits are composed of alluvial sands and silts, with shallow organic layers developing in wetland areas. The geomorphology of the area consists of fluvial landscape features. As is much of Interior Alaska, the TLRA is located in a discontinuous permafrost zone.

The wetland survey and impacts study area was defined in the FHWA Statement of Work as specific buffer zones surrounding areas of proposed infrastructure improvements. This included a buffer of 75 feet of either side of the proposed road centerlines, a buffer of 25 feet on either side of the proposed trail centerlines, a buffer of 25 feet around the proposed parking areas, and a buffer of 50 feet around the proposed restroom locations (Figure 1). In total, the wetland study area encompasses approximately 23 acres. However, because the project footprint was finalized after the wetland field survey and mapping work was completed, small portions of the footprint (0.55 acre total, see Results and Discussion below) were not included in the study area; these areas were examined during the preparation of this report on the same satellite imagery used to map wetlands. The study area includes a proposed extension of South Lathrop Street to access the motorized boat launch on the Tanana River, a spur road from South Lathrop Street to the east to access the existing swim beach, and proposed improvements to the motorized boat launch facilities on the southwest side of Cushman Lake, and the facilities at the swim beach on the north side of Cushman Lake. With the exception of a short

section of South Lathrop Street north of the Tanana Flood Control levee, the majority of the study area is on the Tanana River side of the levee, on both the east and west sides of Groin 8.

METHODS

WETLAND IMPACTS

Impacts to wetlands in the study area were evaluated in ArcGIS by overlaying the expected cut and fill boundaries (the footprint) of the proposed project improvements on the mapped National Wetland Inventory (NWI) wetland types occurring in the area. The cut and fill boundaries were provided by PND and the wetland mapping was prepared by ABR. The two layers were intersected, using an ArcGIS analytical operation, to calculate the total acreage of each wetland type that would be lost to cut and fill during construction. The acreage of each wetland type within the wetland mapping area, but outside the project footprint, was calculated to assess the additional acreage that could be altered during construction, operation, and maintenance of the proposed infrastructure.

WETLAND AVOIDANCE AND MINIMIZATION

The acreage and locations of the wetland and waters types in the study area were assessed after the proposed project footprint was overlaid on the mapping of wetlands to determine if any modifications of the infrastructure plans could be made to avoid and/or minimize impacts to wetlands. In this process, the functional values of the wetland and waters types were also taken into account so as to identify design modifications that could made to reduce impacts on the higher functioning wetlands in the study area.

WETLAND MITIGATION

On-site mitigation options within the TLRA that could be used to offset the loss and alteration of wetlands from construction, operation, and maintenance of the proposed project infrastructure were evaluated by ABR staff while in the field conducting the wetland survey in July 2020. This site visit provided key information on the current status of wetlands in the study area and generated ideas on how wetland functions in the area could be maintained and/or improved by various local mitigation measures. Information on suitable wetland mitigation banks that could be used to offset wetland impacts from the proposed project was assessed after

the field survey. A search for active mitigation banks in Interior Alaska (within the same region of the state as the project) was made using the U.S. Army Corps of Engineers (USACE) Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) website, and by contacting ablestaff at the Salcha-Delta Soil & Water Conservation District (Salcha-Delta SWCD), which maintains wetland banks in the region. Only those banks that are currently known to have wetland credits available were evaluated.

RESULTS AND DISCUSSION

WETLANDS AFFECTED

The mapping of wetlands for the proposed project (ABR 2020a) indicates that 14 NWI wetland and waters types occur in the study area (Table 1, Figure 2). This includes 4 waters and 10 wetland types. The waters cover only small portions of the study area and include both lotic (active sloughs) and lentic (impounded) waters. Wetlands include 3 semipermanently flooded wetland types, 1 semipermanently flooded/saturated type, 1 seasonally flooded type, and 5 saturated types. These wetlands include open sedge marshes, grass- and forb-dominated meadows, shrub wetlands dominated by willows (*Salix* species), and forested wetlands dominated by needleleaf (coniferous) trees and mixed needleleaf and broadleaf deciduous trees. Upland portions of the study area support both needleleaf and mixed needleleaf-broadleaf forests. Areas of gravel fill in the study area are extensive and were classified as Upland (fill).

For the assessment of wetland functions, the 14 NWI wetland and waters types that occur in the study area were aggregated into a smaller set of 8 wetland functional classes that share the same wetland functions (ABR 2020a). The seven wetland functions assessed were the capacity for flood flow regulation (water storage); sediment, nutrient, and toxicant removal; erosion control and shoreline stabilization; organic matter production and export; avian/mammal habitat suitability; fish habitat suitability; and educational, scientific, recreational, or subsistence use. The wetland functional classes (and the NWI wetland classes within) in the study area ranged from low to high functioning depending on the functional class and the wetland function assessed (Table 2). For waters, across all functions, the Lacustrine Lentic Waters class (the shoreline of Cushman Lake) had the highest average functional score (0.73). The Lower Perennial Stream class ranked slightly lower (0.67), and the other two waters in the study area

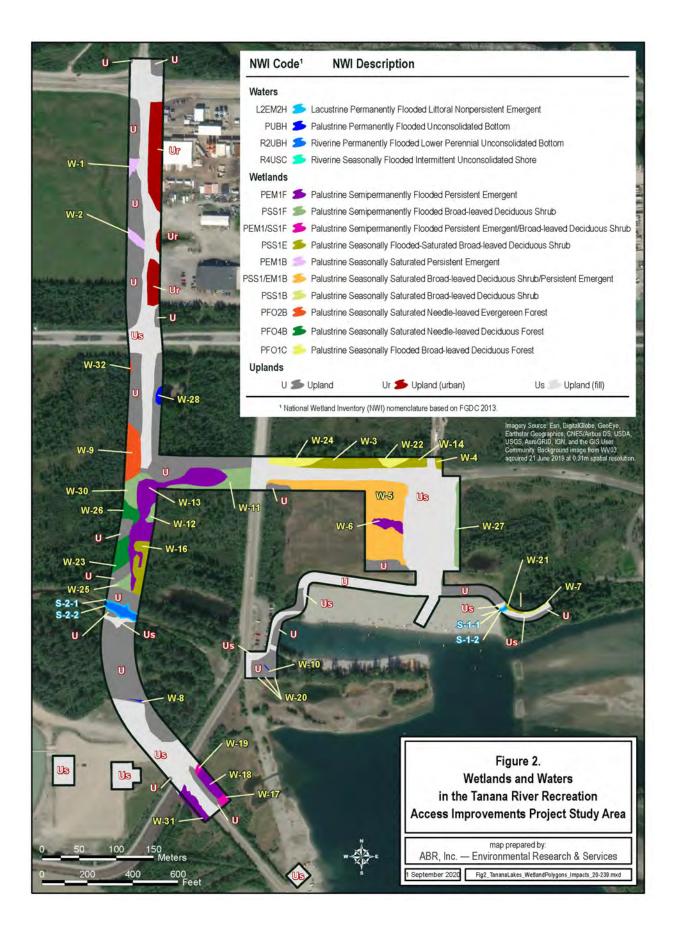

				Percent
NWI Code ^a	NWI Description ^a	Wetland Name	Acres ^b	of Study Area
Waters		Total	0.22	0.96
PUBH	Palustrine Permanently Flooded Unconsolidated Bottom	Subtotal	0.07	0.30
		W-10	0.01	0.04
		W-28	0.04	0.17
		W-8	0.01	0.04
R2UBH	Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom	Stream-2	0.14	0.61
R4USC	Riverine Seasonally Flooded Intermittent Unconsolidated Shore	Stream-1	0.01	0.04
L2EM2H	Lacustrine Permanently Flooded Littoral Nonpersistent	W-20	0.01	0.04
Wetlands		Total	6.09	26.47
PEM1F	Palustrine Semipermanently Flooded Persistent Emergent	Subtotal	1.43	6.21
		W-13	0.99	4.30
		W-18	0.14	0.61
		W-31	0.18	0.78
		W-6	0.13	0.56
PEM1/SS1F	Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub	Subtotal	0.07	0.30
	C	W-17	0.04	0.17
		W-19	0.02	0.09
PSS1F	Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub	Subtotal	0.85	3.69
		W-11	0.37	1.61
		W-12	0.04	0.17
		W-25	0.04	0.35
		W-27	0.16	0.70
		W-30	0.20	0.87
PSS1E	Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub	Subtotal	0.78	3.39
		W-14	0.12	0.52
		W-14 W-16	0.12	1.04
		W-21	0.03	0.13
		W-3	0.35	1.52
		W-4	0.04	0.17
PEM1B	Palustrine Seasonally Saturated Persistent Emergent	Subtotal	0.16	0.70
		W-1	0.07	0.30
		W-2	0.09	0.39

Table 1.Acreages of wetlands and waters by wetland type and name, and acreages of uplands
within the mapping area for planned improvements, Tanana River Recreation Access
Improvements Project, Fairbanks, AK.

NWI Code ^a	NWI Description ^a	Wetland Name	Acres ^b	Percent of Study Area
Wetlands				
PSS1/EM1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent	W-5	1.71	7.43
PSS1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub	W-7	0.05	0.22
PFO2B	Palustrine Seasonally Saturated Needle-leaved Deciduous Forest	Subtotal	0.40	1.74
		W-9	0.21	0.91
		W-32	0.02	0.09
PFO4B	Palustrine Seasonally Saturated Needle-leaved Evergreen Forest	Subtotal	0.34	1.48
		W-23	0.21	0.88
		W26	0.13	0.60
PFO1C	Palustrine Seasonally Flooded Broad-leaved Deciduous Forest	Subtotal	0.32	1.39
		W-22	0.11	0.48
		W-24	0.21	0.91
Uplands		Total	16.70	72.58
Ū	Uplands	n/a	6.38	27.73
Ur	Uplands (urban)	n/a	0.86	3.74
Us	Uplands (fill)	n/a	9.46	41.11

Table 1. Continued.

^a National Wetland Inventory (NWI) annotation based on the FGDC (2013) classification system.
 ^b All values rounded to the nearest 0.01 acre.

Wetland Functional Class and Included NWI Types	Flood Flow Regulation	Sediment/ Nutrient/ Toxicant Removal	Erosion Control & Shoreline Stabilization	Organic Matter Production and Export	Avian and Mammal Habitat Suitability	Fish Habitat Suitability	Education/ Science/ Rec/ Subsist Use	Average Functional Score ^a
Waters								
Lower Perennial Stream R2UBH	0.25	1.00	0.33	1.00	0.33	0.80	1.00	0.67
Intermittent Stream R4USC	0.25	0.75	0.00	0.50	0.00	0.00	1.00	0.36
Lacustrine Lentic Waters L2EM2H	0.75	1.00	0.00	1.00	0.33	1.00	1.00	0.73
Palustrine Lentic Waters PUBH	0.50	0.50	N/A	0.00	0.00	0.20	1.00	0.37
Wetlands								
Semipermanently Flooded Wetlands PEM1F, PEM1/SS1F, PSS1F	0.75	0.66	N/A	1.00	0.75	N/A	1.00	0.83
Seasonally Flooded Wetlands PSS1E, PFO1C	0.75	0.66	N/A	1.00	0.50	N/A	1.00	0.78
Seasonally Saturated Emergent and Shrub Scrub PEM1B, PSS1/EM1B, PSS1B	0.50	0.50	N/A	0.00	0.50	N/A	1.00	0.50
Seasonally Saturated Needle-leaved Forest PFO2B, PFO4B	0.50	0.50	N/A	0.66	0.50	N/A	1.00	0.63

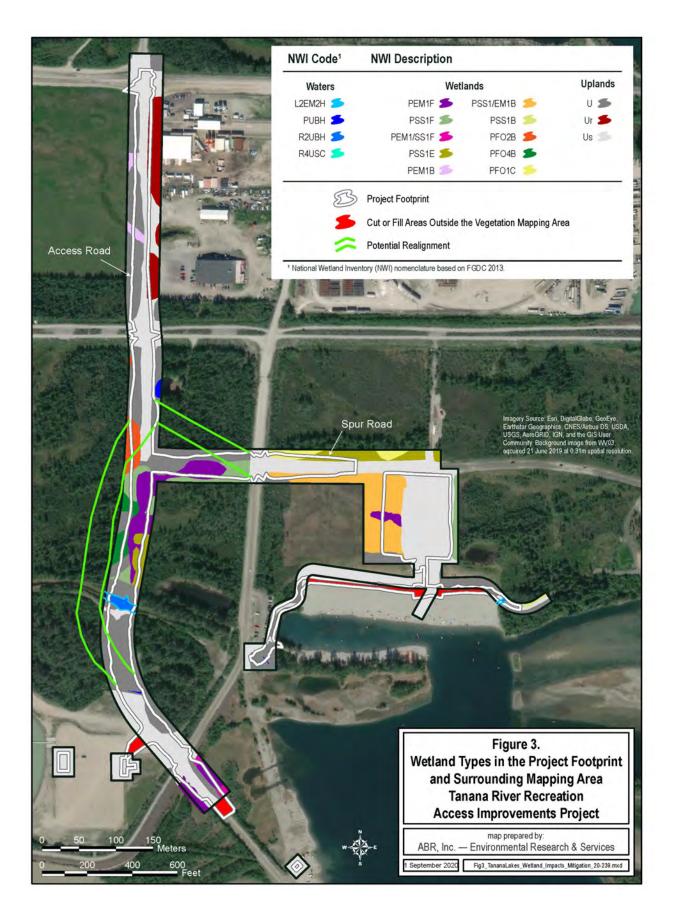
Table 2.Wetland function (functional capacity index) scores for wetlands and waters
functional classes within the mapping area for planned improvements, Tanana River
Recreation Access Improvements Project, Fairbanks, AK.

^a Averages calculated by omitting N/A (null) values.

had low average functional scores (0.36 or 0.37). For wetlands, across all functions, the semipermanently flooded open marsh and meadow wetlands (the Semipermently Flooded Wetland class) had the highest average functional score (0.83). Seasonally flooded shrub and forest wetlands were ranked slightly lower (0.78). Those two functional classes were ranked higher functioning than the seasonally saturated emergent, shrub, and forested wetlands (average functional scores of 0.50 to 0.63).

IMPACTS TO WETLANDS

Impacts on wetlands in the study area as a result of the proposed project improvements will generally fall into several broad categories including (1) direct loss of wetlands from cut and fill work during construction; (2) direct alteration of wetlands in areas adjacent to the new infrastructure from construction activities; and (3) indirect alteration of wetlands adjacent to the new infrastructure from operation and maintenance activities.


Direct loss of wetlands will occur in the study area as a result of cut and fill construction within the project footprint for the new proposed access road to the swim beach and the motorized boat launch, the construction of new trails and parking lots, and upgrades to the swim beach berm. In total, 2.33 acres of wetlands and waters within the project footprint will be lost; this includes 10 wetland and 3 waters types (Table 3, Figure 3). The Palustrine Semipermanently Flooded Persistent Emergent (PEM1F) wetland type is the single most extensive of the wetlands and waters in the footprint, encompassing 0.81 acre or 7.7% of the footprint area. This type was also observed to be used by several breeding bird species of conservation concern during the avian census conducted in June 2020 (see Potential Design Modifications below). The other two semipermanently flooded wetland types combined cover only 0.35 acre or 3.3% of the project footprint; these include Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub (PSS1F) and Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub (PEM1/SS1F). The one seasonally flooded wetland type, Palustrine Seasonally Flooded Broad-leaved Deciduous Forest (PFO1C), occupies 0.03 acre or 0.3% of the project footprint. A single seasonally flooded/saturated wetland type, Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub (PSS1E), also encompasses 0.03 acre or 0.3% of the project footprint. The remaining set of five wetland types in the project footprint are all seasonally saturated types, which combined occupy 1.0 acre or 9.5% of the project footprint. These five

NWI Code and Description	Footprint Acres	% of Project Footprint ^a	Additional Acres Disturbed ^b
Waters			
PUBH, Palustrine Permanently Flooded Unconsolidated Bottom	0.01	0.10	0.06
R2UBH, Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom	0.10	0.91	0.04
R4USC, Riverine Seasonally Flooded Intermittent Unconsolidated Shore	0.01	0.06	<0.01
L2EM2H, Lacustrine Permanently Flooded Littoral Nonpersistent	0.00	0.00	0.01
Wetlands			
PEM1F, Palustrine Semipermanently Flooded Persistent Emergent	0.81	7.70	0.62
PEM1/SS1F, Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub	0.01	0.14	0.05
PSS1F, Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub	0.33	3.17	0.55
PSS1E, Palustrine Seasonally Flooded- Saturated Broad-leaved Deciduous Shrub	0.04	0.34	0.47
PEM1B, Palustrine Seasonally Saturated Persistent Emergent	0.04	0.42	0.12
PSS1/EM1B, Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent	0.66	6.29	1.05
PSS1B, Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub	<0.01	< 0.01	0.05
PFO2B, Palustrine Seasonally Saturated Needle-leaved Deciduous Forest	0.23	2.16	0.41
PFO4B, Palustrine Seasonally Saturated Needle-leaved Evergreen Forest	0.06	0.58	0.28
PFO1C, Palustrine Seasonally Flooded Broad-leaved Deciduous Forest	0.03	0.28	0.29
(outside of mapped area)	0.55	5.21	0.00
Totals	2.88	27.37	3.98

Table 3.Acres of wetland and waters types within the project footprint and disturbance buffers
for planned improvements, Tanana River Recreation Access Improvements Project,
Fairbanks, Alaska.

^a Represents only the acreage of wetlands in the footprint; uplands are not included so the total is less than 100%.

^b Acreage within the various wetland mapping buffers (see Study Area section above) that could be disturbed during construction and use of the new infrastructure.

Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub (PSS1B), and Palustrine Seasonally Saturated Needle-leaved Deciduous Forest (PFO2B), and Palustrine Seasonally Saturated Needle-leaved Evergreen Forest (PFO4B).

Of the four waters types mapped in the study area, one does not occur in the project footprint; this type, Lacustrine Permanently Flooded Littoral Nonpersistent (L2EM2H), occurs only outside the footprint along the eastern shore of Cushman Lake (Figure 3). The three waters types that do occur in the project footprint are not extensive and combined occupy only 0.11 acre or 1.1% of the project footprint (Table 3, Figure 3). The waters types include Palustrine Permanently Flooded Unconsolidated Bottom (PUBH), Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom (R2UBH), and Riverine Seasonally Flooded Intermittent Unconsolidated Shore (R4USC).

The project footprint was finalized after the wetland field survey and mapping work was completed, and some portions of the footprint occur outside the area mapped for wetlands. These unmapped areas combined represent 0.55 acre or 5.2% of the project footprint (Table 3, Figure 3). Inspection of the aerial photography, however, indicates that the majority of these areas are composed of gravel fill and would be classified as Uplands (fill).

Direct alteration of wetlands in the mapping area outside of and adjacent to the project footprint will occur due to disturbance from construction activities. The use and staging of machinery outside of the project footprint during construction will damage wetland vegetation and could potentially compress wetland soils as well. Indirect alteration of wetlands in those areas is likely to occur from use of the new infrastructure. During operation and maintenance of the infrastructure, especially the new access road, fugitive dust deposition will occur and may contribute to the alteration of vegetation in wetlands. In studies along the Dalton Highway in northern Alaska, fugitive dust accumulations were documented to impact vegetation up to 328 feet from the road edge (Walker and Everett 1987; Myers-Smith et al. 2006). Fugitive dust deposition in the study area likely will not be as extensive as along the Dalton Highway (where truck traffic is more common) and can be minimized by keeping the speed limits low. Additional alteration to wetland vegetation may occur in areas outside of the project footprint from impounded drainages, drifted snow that can alter hydrologic patterns, and from snow plowing

and snow dumping activities that can delay plant phenology during spring and contribute additional road gravel, fines, and contaminants to adjacent wetlands.

A total of 3.98 acres of wetlands, including the same 10 wetland types present in the project footprint, occur in the mapping area outside the project footprint (Table 3, Figure 3). The same 3 waters types as in the footprint also occur in the mapping area outside the footprint, along with a fourth waters type, Lacustrine Permanently Flooded Littoral Nonpersistent (L2EM2H), that occurs outside the footprint along the eastern shore of Cushman Lake (Figure 3). The wetland and waters types occurring outside the footprint are likely to be altered from the operation and maintenance activities described above that will be associated with the new infrastructure. Similar proportions of wetland and waters types occur in the most common wetland type in the footprint, Palustrine Semipermanently Flooded Persistent Emergent (PEM1F), is less extensive outside the footprint (Table 3, Figure 3).

DRAINAGE CONSIDERATIONS

The inclusion of culverts with adequate flow capacity at the two drainages in the study area (Stream-1 and Stream-2; Figure 2) that provide surface water connections for wetlands in the TLRA to the navigable Tanana River will be necessary to maintain existing wetland functions or to avoid degradation of existing habitats due to impounded waters. A culvert at Stream-1 would be installed as part of the proposed trail that is to be compliant with the Americans with Disabilities Act (ADA), and a culvert at Stream-2 would be installed as part of the construction of the proposed new access road. Additional culvert(s) should be considered along the proposed access road as it will bisect a number of wetland types, especially in the area just north of Stream-2; Figure 2). Culverts to drain impounded areas north of the swim beach parking lot could also be considered to reduce further habitat degradation. These culvert(s) should be installed at the lowest point(s) along the road to convey any possible water that would otherwise be impounded and to help maintain existing wetland hydrology in the TLRA.

POTENTIAL DESIGN MODIFICATIONS

To avoid and minimize fill in the highest functioning wetlands in the study area, we are recommending small changes to the proposed access road alignment (Figure 3). These changes

would result in reductions in fill in the aggregate wetland functional class (Semipermanently Flooded Wetlands), which is composed of three high-functioning NWI wetland types (Table 2). The design modifications involve re-routing the north-south portion of the access road slightly to the west of the current alignment, constructing the intersection with the spur road to the swim beach farther to the north, and aligning the spur road in a southeasterly direction towards the swim beach. These changes would avoid the need for fill in many Semipermanently Flooded Wetlands in the study area, and would avoid fill completely in PEM1F wetlands (Fresh Sedge Marsh), which comprises the largest area to be filled of the 13 wetland and waters types that occur in the project footprint (Table 3). The single PEM1F wetland in the road corridor portion of study area (see W-13 on Figure 2) was being used during the biological resources survey in June 2020 by two breeding shorebird species (Solitary Sandpiper [Tringa solitaria] and Lesser Yellowlegs [T. flavipes]), and one breeding landbird species (Blackpoll Warbler [Setophaga striata]) that are considered to be of conservation concern, as well as other breeding bird species (ABR 2020b). This is indicative of the high wildlife habitat support function this wetland type provides in that particular area. The PEM1F wetland type also scored high for the other four wetland functions assessed (Table 2). These road realignments likely will also reduce the overall acreage of fill in wetlands because the realigned spur road to the swim beach would be constructed largely in upland white spruce (*Picea glauca*) and paper birch (*Betula neoalaskana*) forest. During the permitting process, these design modifications to avoid fill in high-value wetlands should be well received by federal and state management agencies.

However, there will be cost and design ramifications from implementing these modifications to the proposed access road. For the alternate extension of South Lathrop Street (the longer alignment running north-south depicted in Figure 3), the roadway length would be increased from 2,500 to 2,770 feet, which represents an approximately 10% increase in length and an increase in cost of approximately \$100,000. The alternate alignment would be moved away from portions of PEM1F wetlands that have already been impacted by off-road vehicle tracks, though wetland function is still classified high for those wetlands (Table 2). This design change would also result in the following negative impacts to the roadway design:

- The TLRA entrance station would have to be placed on a curve in the roadway.
- The alternate road design would likely include compound or back-to-back curves.

ABR, Inc.

 Northlake Lane (the east-west running spur road depicted in Figure 3) would either have to be extended to connect with South Lathrop Street (impacting some of the avoided wetlands) or re-aligned; in both cases Northlake Lane would connect on or immediately before/after a curve.

For the alternate Northlake Lane route, the roadway would be extended from 960 to 1,110 feet, representing an increase of about 5% in length and \$10,175 in cost. This cost is unavoidable if South Lathrop Street is shifted to the west as depicted in Figure 3. The design change to Northlake Land would also result in the following negative impacts to the roadway design:

- The intersection with South Lathrop Street would be placed at the base of the ramp to the levee roadway (Saddle Avenue).
- The design change would also require (1) a shift of the entrance station onto the ramp down from the levee, (2) a raising of the roadway grade to level out the section for the entrance station, (3) moving the entrance station south of the Northlake Lane intersection, or (4) eliminating the entrance station completely.

WETLAND MITIGATION OPTIONS

The preliminary project design footprint provided for this report would result in direct impacts to 2.3 acres of wetlands (Table 3). The affected wetlands range from low to high functioning (Table 2). All the wetlands occur within the floodplain of the Tanana River and are connected by surface water, and almost certainly by groundwater as well, to the Tanana River.

The design modifications recommended above for the proposed access road will help to avoid and minimize impacts on the highest functioning wetlands in the TLRA, but additional compensatory mitigation for wetland impacts may be requested during the permitting process. Assuming that mitigation will be required for the project, the available options for mitigating the unavoidable wetland impacts are outlined below. Mitigation is not always required, however, and is project dependent. Decisions regarding compensatory mitigation are usually made early in the permitting process in consultation with a USACE project manager. The USACE project manager assigned to evaluate the Section 404, Clean Water Act (CWA) permit application for the project will have the final authority in determining whether mitigation will be required.

The Alaska District Compensatory Mitigation Thought Process (USACE 2018) is a working document prepared to assist in determining whether mitigation will be required for a project, and to assess whether the proposed mitigation in the wetland permit application is sufficient to offset the proposed impacts. Mitigation is likely to be required for the Tanana River Recreation Access Improvements Project because it meets three of the criteria outlined in USACE (2018), including (1) the project impacts more than 1/10 of an acre of wetlands, (2) fill may be placed within 500 feet of fish bearing waters, and (3) the project is federally funded. Once all measures have been taken to avoid and minimize impacts (see above), compensatory mitigation may be calculated using the current USACE debit/credit calculator (USACE 2016) in conjunction with a suitable functional assessment method such as the one used in this report. Applicants may choose permittee-responsible mitigation in the form of restoration or rehabilitation of a previously disturbed wetland with similar functions within the project watershed, or preservation of a similar set of wetland types within the same region. Other options include the purchase of credits from an existing local mitigation bank or an in-lieu-fee (ILF) option in which monetary mitigation costs are calculated and payed to the USACE.

For the proposed project, there are at least three possible permittee-responsible mitigation options as described below.

- 1. The removal of the extensive infestation of the invasive tree *Prunus padus* (European bird cherry) in the TLRA will help to restore natural riverine wetland function in the area. During the wetland field survey in July 2020, it was recognized that the infestation of *P. padus* was substantially greater than the relatively few plants recorded in the area a decade ago by Heidemann (2010). *P. padus* proliferates easily in Alaska and is especially problematic in riparian areas where it can outcompete and displace native shrub species such as willows and alders (*Alnus* species). Over time, in high density infestations the species may alter riverine wetland functions through reductions in terrestrial invertebrate biomass on the foliage of *P. padus* compared to native species (Roon 2011).
- 2. As noted under Drainage Considerations above, including culverts in the proposed access road will help to (a) maintain hydrology in existing and higher value wetlands that are adjacent to those in the road corridor, and (b) reduce the prevalence of

impounded waters in non-wetland habitats in the study area, which may, over time, alter those non-wetland habitats. The well documented trend of increasing precipitation, and especially rainfall in the snow-free months, in Interior Alaska will maintain high groundwater levels in the TLRA because of connectivity with high water in the Tanana River. This, along with increased direct precipitation, is likely contributing to impounded waters in otherwise non-wetland habitats (ABR 2020a).

3. Consider paving the access road to substantially reduce the prevalence of fugitive dust impacts on adjacent wetland habitats.

Regarding the possible purchase of wetland credits, there is currently a single wetland mitigation bank with available credits in the Interior Alaska region. The Salcha-Delta SWCD maintains the Chena Greenbelt Bank in Fairbanks, which currently has 13.41 wetland credits available for purchase; as of August 2020, a rate of \$15,000 per credit would be charged (Jeff Durham, Salcha-Delta SWCD, pers. comm.). Two additional wetland banks in Interior Alaska maintained by the Salcha-Delta SWCD also may have credits available in the future. This includes the Tanana Watershed Umbrella Stream & Wetland Mitigation Bank – Jarvis Block F, which is located south of Fairbanks, and the Huntsbury Bank near the Fort Wainwright Small Arms Complex in Fairbanks.

Because of the uncertainty surrounding the actual debit:credit ratio that would be determined during the permitting process for any wetland bank transaction for the proposed project, a cost estimate for the purchase of wetland credits is speculative at this time. However, assuming a minimum debit:credit ratio of 1:1 for the preservation of wetlands as indicated in USACE (2018), and using the current rate of \$15,000 per credit in the Chena Greenbelt Bank, the estimated minimum cost to purchase wetland credits to compensate for the 2.3 acres of wetlands lost in the project footprint would be \$34,500. Note that the specific debit:credit ratio used will be determined by the USACE project manager assigned to process the Section 404, CWA permit application for any particular project.

The ILF option has not been commonly used recently in Alaska, but if it is recommended, The Conservation Fund can work with project applicants to develop an appropriate ILF transaction.

LITERATURE CITED

- ABR, Inc.—Environmental Research & Services (ABR). 2020a. Wetland and stream delineation report for the Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020: AK FNSB TANANA(1). Draft report prepared for PND, Engineers, Inc., Anchorage, AK, and Federal Highway Administration, Western Federal Lands Highway Division, Vancouver, WA. 26 pp. + appendices.
- ABR. 2020b. Biological resources survey report for the proposed Tanana River Recreation Access Improvementsn Project: AK FNSB TANANA(1). Draft report prepared for PND, Engineers, Inc., Anchorage, AK, and Federal Highway Administration, Western Federal Lands Highway Division, Vancouver, WA. 32 pp.
- Fairbanks Northstar Borough (FNSB) 2007. Tanana Lakes Recreation Area Master Plan.Prepared by the FNSB Department of Parks and Recreation and USKH Inc., Fairbanks, AK.36 pp.
- Federal Geographic Data Committee (FGDC). 2013. Classification of Wetlands and Deepwater Habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands
 Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.
- Heidemann, M. 2010. Invasive plant management recommendations for the Tanana Lakes Recreation Area. Prepared for the Fairbanks Northstar Borough Department of Parks and Recreation. 20 pp. + appendices.
- Myers-Smith I. H., B. K., Arnesenm, R. M. Thompson, and F. S. Chapin III. 2006. Cumulative impacts on Alaskan arctic tundra of a quarter century of road dust. Ecoscience 13: 503–510.
- Roon, D. A. 2011. Ecological effects of invasive European bird cherry (*Prunus padus*) on salmonid food webs in Anchorage, Alaska streams. M.Sc. Thesis. University of Alaska Fairbanks.
- U.S. Army Corps of Engineers (USACE). 2016. Methodology for assessing functional gains and losses for permittee responsible compensatory mitigation and calculating compensatory mitigation credits and debits for third party mitigation providers in the Alaska District.

Prepared by the USACE in consultation with the Alaska Statewide Interagency Review Team. 12 pp.

- USACE. 2018. Alaska District Compensatory Mitigation Thought Process. [Online] https://www.poa.usace.army.mil/Portals/34/docs/regulatory/2018MitigationThoughtProcess. pdf.
- Walker, D. A., and K. R. Everett. 1987. Road dust and its environmental impact on Alaskan taiga and tundra. Arctic and Alpine Research 19: 479–489.

ADDENDUM TO THE WETLAND IMPACTS AND MITIGATION REPORT FOR THE TANANA RIVER RECREATION ACCESS IMPROVEMENTS PROJECT, FAIRBANKS, ALASKA, 2020: AK FNSB TANANA(1)

DRAFT

Prepared for:

PND Engineers Inc. 1506 W. 36th Ave Anchorage, Alaska 99503

On behalf of:

Federal Highway Administration Western Federal Lands Highway Division 610 E. 5th St Vancouver, Washington 98661

Prepared by: **ABR, Inc.—Environmental Research & Services** P.O. Box 80410 Fairbanks, Alaska 99708-0410

and

P.O. Box 240268 Anchorage, Alaska 99524

December 2020

TABLE OF CONTENTS

INTRODUCTION	1
STUDY AREA	1
METHODS	1
RESULTS AND DISCUSSION	2
WETLANDS AFFECTED	2
IMPACTS TO WETLANDS	3
DRAINAGE CONSIDERATIONS	5
DESIGN MODIFICATIONS	5
WETLAND MITIGATION OPTIONS	5
LITERATURE CITED	6

TABLES

Table 1.	Acreages of wetlands, waters, and uplands types in numbered, mapped polygons in the Tanana Lakes Recreation Access Improvements study area, Fairbanks, Alaska, 2020	.7
Table 2.	Wetland function scores for wetlands and waters functional classes within the mapping area for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.	.9
Table 3.	Acres of wetland and waters types within the project footprint and disturbance buffers for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.	10
	FIGURES	
Figure 1.	Wetland impacts study area for the Tanana River Recreation Access Improvements Project	11
Figure 2.	Wetlands and Waters in the Tanana River Recreation Access Improvements Project study area	12

INTRODUCTION

A wetland impacts and mitigation report was prepared to support wetland permitting and NEPA documentation for the Tanana River Recreation Access Improvements Project in October 2020 (ABR 2020a). The design of the proposed improvements and study area for wetland impacts have evolved since the original report was finalized and this addendum updates the assessment of wetland impacts within the revised study area boundaries. To minimize fill in wetlands, slight alterations in the proposed road alignments have been made. The wetland mitigation options presented in the October 2020 report remain unchanged.

STUDY AREA

The revised study area for wetland impacts is as described in ABR (2020a), but it has been expanded from 23.0 to 31.1 acres. The additional acreage encompasses expansions of the project footprint for the motorized boat launch at the Tanana River and the non-motorized boat launch on Cushman Lake as well as an expansion of the swim beach on Cushman Lake (Figure 1). The majority of the expansion area is composed of upland fill, but the expansion of the swim beach and non-motorized boat launch boundaries now includes seasonally flooded and unvegetated fringe wetlands and open lake water on Cushman Lake. Revisions to the design of the proposed extension of South Lathrop Street involved shifting the road alignment slightly to the west near the intersection with Northlake Lane. Similarly, the road alignment for Northlake Lane was also shifted and curved slightly to the north. Both of these alterations were done to minimize fill in high-value wetlands (see Results and Discussion below).

METHODS

The methods used to assess impacts to wetlands in the study area have not been changed and are as described in ABR (2020a). As noted above, the wetland mitigation options also have not changed and the project design procedures used to avoid and minimize fill in wetlands are the same as those presented in the October 2020 report.

RESULTS AND DISCUSSION

WETLANDS AFFECTED

The revised mapping of wetlands for the proposed project (ABR 2020b) indicates that 16 NWI wetland and waters types occur in the study area (Table 1, Figure 2). This includes 10 wetland and 6 waters types. The waters cover only small portions of the study area and include both lotic (active sloughs) and lentic (impounded) waters. Wetlands include 3 semipermanently flooded wetland types, 1 semipermanently flooded/saturated type, 1 seasonally flooded type, and 5 saturated types. These wetlands include open sedge marshes, grass- and forb-dominated meadows, shrub wetlands dominated by willows (*Salix* species), and forested wetlands dominated by needleleaf (coniferous) trees and mixed needleleaf and broadleaf deciduous trees. Upland portions of the study area support both needleleaf and mixed needleleaf-broadleaf forests. Areas of gravel fill in the study area are extensive and were classified as Upland (fill).

For the assessment of wetland functions, the 16 NWI wetland and waters types that occur in the study area were aggregated into a smaller set of 9 wetland functional classes that share the same wetland functions (ABR 2020b). The seven wetland functions assessed were the capacity for flood flow regulation (water storage); sediment, nutrient, and toxicant removal; erosion control and shoreline stabilization; organic matter production and export; avian/mammal habitat suitability; fish habitat suitability; and educational, scientific, recreational, or subsistence use. The wetland functional classes (and the NWI wetland classes within) in the study area ranged from low to high functioning depending on the functional class and the wetland function assessed (Table 2). For waters, across all functions, the Lacustrine Lentic Waters class (the shoreline of Cushman Lake) had the highest average functional score (0.73). The Lower Perennial Stream class ranked slightly lower (0.67), and the other three waters in the study area had moderate to low average functional scores (0.49, 0.37, and 0.36). For wetlands, across all functions, the semipermanently flooded open marsh and meadow wetlands (the Semipermently Flooded Wetland class) had the highest average functional score (0.83). Seasonally flooded shrub and forest wetlands were ranked slightly lower (0.78). Those two functional classes were ranked higher functioning than the seasonally saturated emergent, shrub, and forested wetlands (average functional scores of 0.50 to 0.63).

Wetland Impacts Addendum

IMPACTS TO WETLANDS

Impacts on wetlands in the study area as a result of the proposed project improvements will generally fall into several broad categories including (1) direct loss of wetlands from cut and fill work during construction; (2) direct alteration of wetlands in areas adjacent to the new infrastructure from construction activities; and (3) indirect alteration of wetlands adjacent to the new infrastructure from operation and maintenance activities.

Direct loss of wetlands will occur in the study area as a result of cut and fill construction within the project footprint for the new proposed access road to the motorized and non-motorized boat launches, the spur road to the swim beach, the construction of new trails and parking lots, and upgrades to the swim beach berm. In total, 2.33 acres of wetlands and waters within the project footprint will be lost; this includes 9 wetland and 5 waters types (Table 3, Figure 3). The Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent (PSS1/EM1B) wetland type is the single most extensive of the wetlands and waters in the footprint, encompassing 0.69 acre or 4.2% of the footprint area. The other three seasonally saturated wetland types combined cover 0.61 acre or 3.7% of the project footprint; these include Palustrine Seasonally Saturated Needle-leaved Deciduous Forest (PFO2B, 0.29 acre), Palustrine Seasonally Saturated Needle-leaved Evergreen Forest (PFO4B, 0.27 acre), and Palustrine Seasonally Saturated Persistent Emergent (PEM1B, 0.05 acre). Three semipermanently flooded wetland types are also relatively common in the project footprint and combined cover 0.73 acre or 4.4% of the project footprint; these include Palustrine Semipermanently Flooded Persistent Emergent (PEM1F, 0.34 acre), Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub (PSS1F, 0.33 acre), and Palustrine Semipermanently Flooded Persistent Emergent/Broadleaved Deciduous Shrub (PEM1/SS1F, 0.06 acre). The one seasonally flooded wetland type, Palustrine Seasonally Flooded Broad-leaved Deciduous Forest (PFO1C), occupies 0.05 acre or 0.3% of the project footprint. A single seasonally flooded/saturated wetland type, Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub (PSS1E), encompasses 0.06 acre or 0.4% of the project footprint.

Of the six waters types mapped in the study area, two do not occur within the project footprint. One of these types, Lacustrine Permanently Flooded Littoral Nonpersistent (L2EM2H), occurs only outside the footprint along the eastern shore of Cushman Lake (Figure

3). The other type, Lacustrine Permanently Flooded Littoral Unconsolidated Sandy Bottom (L2UB2H), represents the waters of Cushman Lake at the end of the middle portion of the swim beach that will be made wheel-chair accessible and compliant with the Americans with Disabilities Act (ADA; Figure 3).

The four waters types that do occur in the project footprint are not extensive and combined occupy only 0.19 acre or 1.1% of the project footprint (Table 3, Figure 3). The waters types include Lacustrine Seasonally Flooded Littoral Unconsolidated Sandy Shore (L2US2C), Palustrine Permanently Flooded Unconsolidated Bottom (PUBH), Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom (R2UBH), and Riverine Seasonally Flooded Intermittent Unconsolidated Shore (R4USC).

Direct alteration of wetlands in the mapping area outside of and adjacent to the project footprint will occur due to disturbance from construction activities. The use and staging of machinery outside of the project footprint during construction will damage wetland vegetation and could potentially compress wetland soils as well. Indirect alteration of wetlands in those areas is likely to occur from use of the new infrastructure. During operation and maintenance of the infrastructure, especially the new access roads, fugitive dust deposition will occur and may contribute to the alteration of vegetation in wetlands. In studies along the Dalton Highway in northern Alaska, fugitive dust accumulations were documented to impact vegetation up to 328 feet from the road edge (Walker and Everett 1987; Myers-Smith et al. 2006). Fugitive dust deposition in the study area likely will not be as extensive as along the Dalton Highway (where truck traffic is more common) and can be minimized by keeping the speed limits low. Additional alteration to wetland vegetation may occur in areas outside of the project footprint from impounded drainages, drifted snow that can alter hydrologic patterns, and from snow plowing and snow dumping activities that can delay plant phenology during spring and contribute additional road gravel, fines, and contaminants to adjacent wetlands.

A total of 5.05 acres of wetlands, including the same nine wetland types present in the project footprint, occur in the mapping area outside the project footprint (Table 3, Figure 3). The same four waters types that are present in the footprint also occur in the mapping area outside the footprint. As noted above, there are two waters types, Lacustrine Permanently Flooded Littoral Nonpersistent (L2EM2H) and Lacustrine Permanently Flooded Littoral Unconsolidated Sandy

Bottom (L2UB2H) that occur only outside the project footprint (Table 3, Figure 3). The wetland and waters types occurring outside of and adjacent to the footprint are likely to be altered from the construction, operation, and maintenance activities described above that will be associated with the new infrastructure. Roughly similar proportions of wetland and waters types occur in the mapping area outside the project footprint as occur inside the footprint. However, two wetland types, Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub (PSS1E) and the high-functioning Palustrine Semipermanently Flooded Persistent Emergent (PEM1F), are notably more extensive outside the footprint (Table 3, Figure 3). Similarly, one waters type, Lacustrine Seasonally Flooded Littoral Unconsolidated Sandy Shore (L2US2C), is also notably more common outside the project footprint.

DRAINAGE CONSIDERATIONS

The drainage considerations discussed in ABR (2020a) to help maintain existing wetland hydrology in the Tanana River floodplain areas surrounding the proposed project do not need to be changed as a result of the revisions to the project improvement plans.

DESIGN MODIFICATIONS

To minimize fill in the highest functioning wetlands in the study area, the alignment for the South Lathrop Street extension has been shifted slightly to the west, and the alignment for the extension of Northlake Lane has been shifted and curved slightly to the north (Figure 3). This will result in reductions in fill in the aggregate wetland functional class (Semipermanently Flooded Wetlands), which is composed of three high-functioning NWI wetland types (Table 2). These design modifications will reduce the fill in high-functioning PEM1F wetlands by more than 50%, from 0.81 acre as noted in ABR (2020a) to 0.34 acre (Table 3). Previously, in the October 2020 report, PEM1F wetlands represented the greatest wetland area to be filled of the 13 wetland and waters types that occurred in the project footprint at that time. Overall, because of the current design modifications, fill in wetlands has been reduced in the project footprint from 2.88 acres as noted in ABR (2020a) to 2.33 acres (Table 3).

WETLAND MITIGATION OPTIONS

The wetland mitigation options discussed in ABR (2020a) are still applicable to the revised design plans for the project improvements. One of those mitigation options was to pave the

proposed access roads to reduce the prevalence of fugitive dust impacts on adjacent wetland habitats. As part of the revised design plans for the project, the extension of South Lathrop Street will be paved and this will help reduce fugitive dust. However, the extension of Northlake Lane will not be paved, so there will be fugitive dust effects from the use of that access road to the swim beach.

LITERATURE CITED

- ABR, Inc.—Environmental Research & Services (ABR). 2020a. Wetland impacts and mitigation report for the Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020: AK FNSB TANANA(1). Draft report prepared for PND, Engineers, Inc., Anchorage, AK, and Federal Highway Administration, Western Federal Lands Highway Division, Vancouver, WA. 20 pp.
- ABR, Inc.—Environmental Research & Services (ABR). 2020b. Addendum to the wetland and stream delineation for the Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020: AK FNSB TANANA(1). Draft report prepared for PND, Engineers, Inc., Anchorage, AK, and Federal Highway Administration, Western Federal Lands Highway Division, Vancouver, WA. 14 pp. + appendix.
- Myers-Smith I. H., B. K., Arnesenm, R. M. Thompson, and F. S. Chapin III. 2006. Cumulative impacts on Alaskan arctic tundra of a quarter century of road dust. Ecoscience 13: 503–510.
- Walker, D. A., and K. R. Everett. 1987. Road dust and its environmental impact on Alaskan taiga and tundra. Arctic and Alpine Research 19: 479–489.

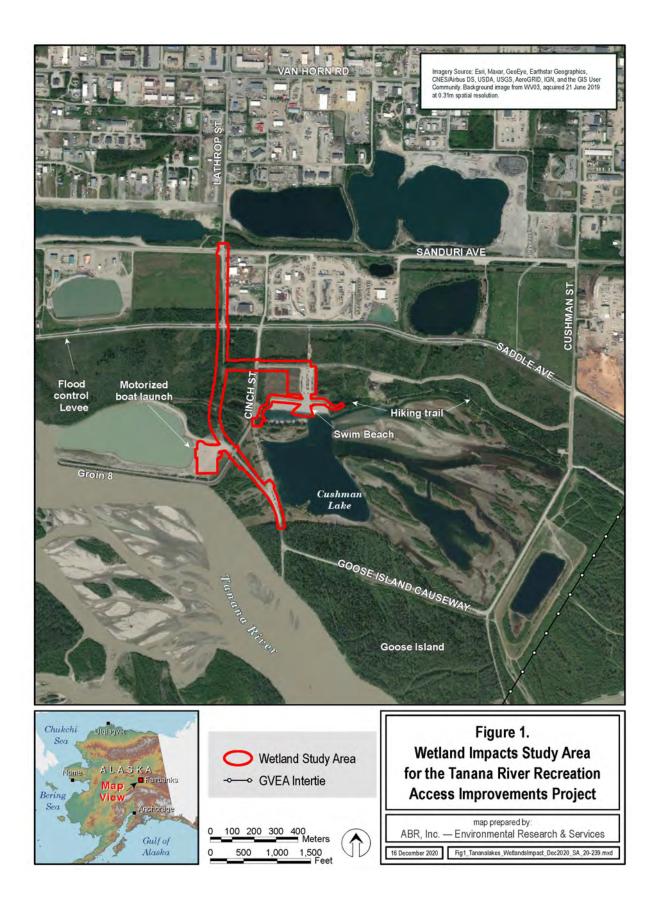
NWI_Code ^a	NWI Description ^a	Wetland Name	Acres ^b	% of Study Area
Waters		Total	0.93	3.00
L2UB2H	Lacustrine Permanently Flooded Littoral Unconsolidated Sandy Bottom	W-37	0.32	1.04
L2US2C	Lacustrine Seasonally Flooded Littoral Unconsolidated Sandy Shore	W-34	0.20	0.65
		W-36	0.15	0.49
L2EM2H	Lacustrine Permanently Flooded Littoral Nonpersistent Emergent Marsh	W-20	0.01	0.02
		W-38	0.03	0.11
PUBH	Palustrine Permanently Flooded Unconsolidated Bottom	W-10	0.01	0.02
		W-28	0.04	0.13
		W-8	0.01	0.03
R2UBH	Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom	Stream-2	0.15	0.48
R4USC	Riverine Seasonally Flooded Intermittent Unconsolidated Shore	Stream-1	0.01	0.04
Wetlands		Total	6.45	20.78
PEM1F	Palustrine Semipermanently Flooded Persistent Emergent	W-13	0.99	3.18
		W-18	0.18	0.58
		W-31	0.18	0.57
		W-6	0.13	0.41
PSS1F	Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub	W-11	0.37	1.18
		W-12	0.04	0.14
		W-25	0.08	0.26
		W-27	0.16	0.50
		W-30	0.21	0.69
PEM1/SS1F	Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous Shrub	W-17	0.16	0.50
		W-19	0.02	0.08
		W-33	0.07	0.23

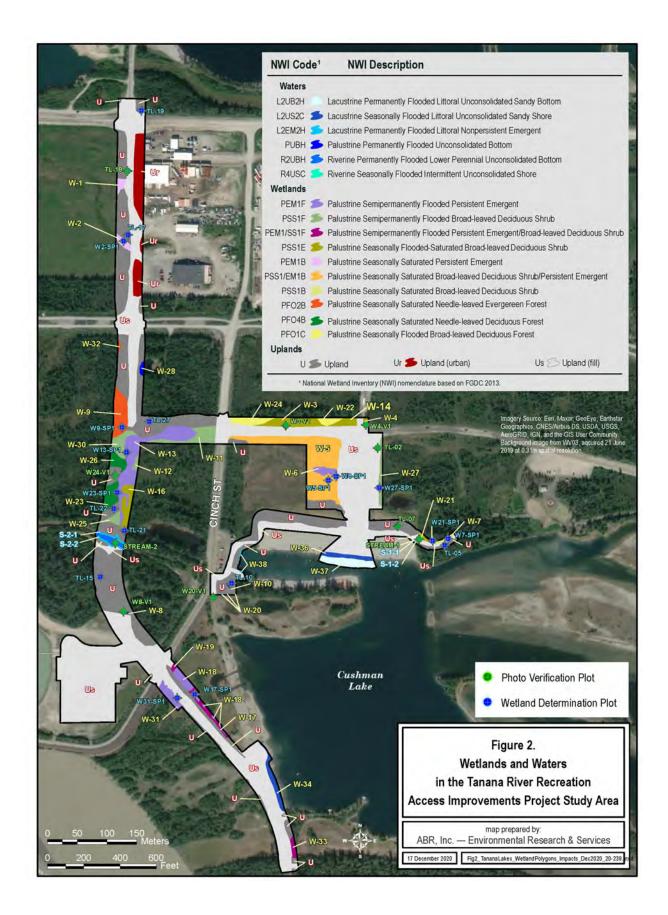
Table 1.	Acreages of wetlands, waters, and uplands types in numbered, mapped polygons in the Tanana Lakes Recreation Access
	Improvements study area, Fairbanks, Alaska, 2020.

Tab	le 1.	Continued.
-----	-------	------------

NWI_Code ^a	NWI Description ^a	Wetland Name	Acres ^b	% of Study Area
Wetlands (cont.	-			
PSS1E	Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub	W-14	0.12	0.39
		W-16	0.24	0.76
		W-21	0.05	0.16
		W-3	0.35	1.14
		W-4	0.04	0.12
PEM1B	Palustrine Seasonally Saturated Persistent Emergent	W-1	0.07	0.24
		W-2	0.09	0.28
PSS1/EM1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent	W-5	1.71	5.50
PSS1B	Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub	W-7	0.05	0.16
PFO2B	Palustrine Seasonally Saturated Needle-leaved Deciduous Forest	W-32	0.02	0.07
		W-9	0.42	1.36
PFO4B	Palustrine Seasonally Saturated Needle-leaved Evergreen Forest	W-23	0.24	0.77
		W-26	0.16	0.50
PFO1C	Palustrine Seasonally Flooded Broad-leaved Deciduous Forest	W-22	0.11	0.34
		W-24	0.21	0.67
Uplands		Total	23.66	76.22
U	Uplands		7.82	25.20
Ur	Uplands (urban)		0.86	2.78
Us	Uplands (fill)		14.97	48.23
Grand Total	-		31.05	100.00

^a National Wetland Inventory (NWI) annotation based on FGDC (2013) classification system. ^b All values rounded to the nearest 0.01 acre.


I I /				r	5	-,	, , ,	
Wetland Functional Class	Flood Flow Regulation	Sediment/ Nutrient/ Toxicant Removal	Erosion Control & Shoreline Stabil.	Organic Matter Production and Export	Avian and Mammal Habitat Suitability	Fish Habitat Suitability	Education/ Science/ Rec/ Subsist Use	Overall FCI score
Waters	<u>H</u>	01	<u>p</u>			H	<u> </u>	
Lower Perennial Stream R2UBH	0.25	1.00	0.33	1.00	0.33	0.80	1.00	0.67
Intermittent Stream R4USC	0.25	0.75	0.00	0.50	0.00	0.00	1.00	0.36
Lacustrine Lentic Waters L2EM2H	0.75	1.00	0.00	1.00	0.33	1.00	1.00	0.73
Lacustrine Sandy Shoreline L2UB2H, L2US2C	0.75	0.75	0	0.5	0	0.4	1.00	0.49
Palustrine Lentic Waters PUBH	0.50	0.50	N/A	0.00	0.00	0.20	1.00	0.37
Wetlands								
Semipermanently Flooded Wetlands PEM1F, PEM1/SS1F, PSS1F	0.75	0.66	N/A	1.00	0.75	N/A	1.00	0.83
Seasonally Flooded Wetlands PSS1E, PFO1C	0.75	0.66	N/A	1.00	0.50	N/A	1.00	0.78
Seasonally Saturated Emergent and Shrub Scrub PEM1B, PSS1/EM1B, PSS1B	0.50	0.50	N/A	0.00	0.50	N/A	1.00	0.50
Seasonally Saturated Needle-leaved Forest PFO2B, PFO4B	0.50	0.50	N/A	0.66	0.50	N/A	1.00	0.63


Table 2.Wetland function (Functional Capacity Index) scores for wetlands and waters functional classes within the mapping area
for planned improvements, Tanana River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.

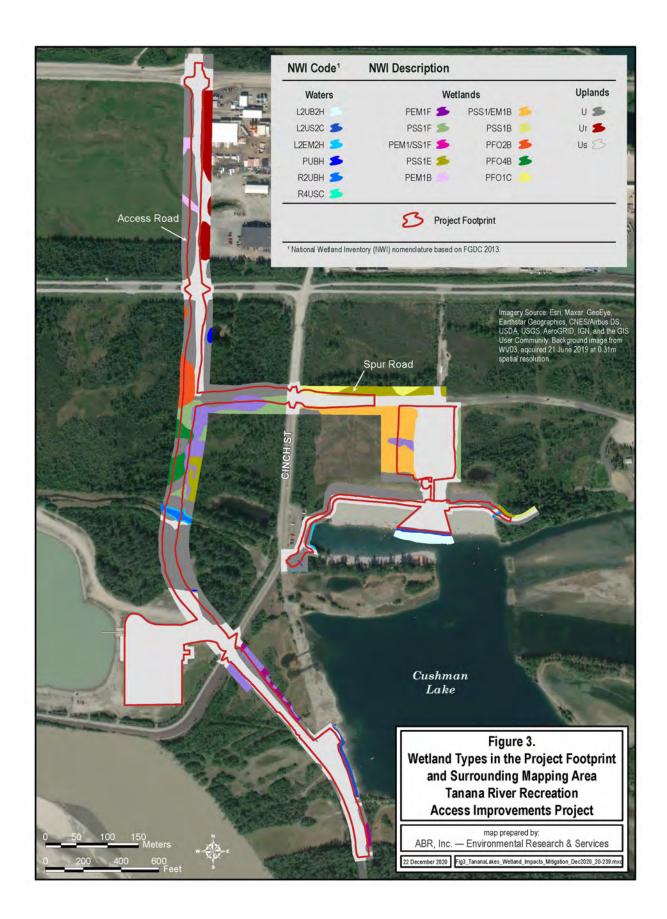

NWI Code and Description	Footprint Acres	% of Project Footprint ^a	Additional Acres Mapped ^b
Waters			
L2UB2H, Lacustrine Permanently Flooded Littoral Unconsolidated Sandy Bottom	0	0	0.32
L2US2C, Lacustrine Seasonally Flooded Littoral Unconsolidated Sandy Shore	0.09	0.52	0.27
L2EM2H, Lacustrine Permanently Flooded Littoral Nonpersistent Emergent Marsh	0	0	0.04
PUBH, Palustrine Permanently Flooded Unconsolidated Bottom	0.01	0.05	0.05
R2UBH, Riverine Permanently Flooded Lower Perennial Unconsolidated Bottom	0.08	0.50	0.07
R4USC, Riverine Seasonally Flooded Intermittent Unconsolidated Shore	0.01	0.04	0.01
Wetlands			
PEM1F, Palustrine Semipermanently Flooded Persistent Emergent	0.34	2.08	1.12
PSS1F, Palustrine Semipermanently Flooded Broad-leaved Deciduous Shrub	0.33	2.00	0.53
PEM1/SS1F, Palustrine Semipermanently Flooded Persistent Emergent/Broad-leaved Deciduous			
Shrub	0.06	0.34	0.19
PSS1E, Palustrine Seasonally Flooded-Saturated Broad-leaved Deciduous Shrub	0.06	0.39	0.73
PEM1B, Palustrine Seasonally Saturated Persistent Emergent	0.05	0.32	0.11
PSS1B, Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub	0	0	0.05
PSS1/EM1B, Palustrine Seasonally Saturated Broad-leaved Deciduous Shrub/Persistent Emergent	0.69	4.17	1.02
PFO2B, Palustrine Seasonally Saturated Needle-leaved Deciduous Forest	0.29	1.78	0.15
PFO4B, Palustrine Seasonally Saturated Needle-leaved Evergreen Forest	0.27	1.63	0.13
PFO1C, Palustrine Seasonally Flooded Broad-leaved Deciduous Forest	0.05	0.31	0.26
Total	2.33	14.13	5.05

Table 3.	Acres of wetland and waters types within the project footprint and disturbance buffers for planned improvements, Tanana
	River Recreation Access Improvements Project, Fairbanks, Alaska, 2020.

^a Represents only the acreage of wetlands in the footprint; uplands are not included so the total is less than 100%.
 ^b Acreage within the wetland mapping area that could be disturbed during construction and use of the new infrastructure.

