

- Gain high-level understanding of systemic approach.
- Understand and apply 4-step systemic planning process.
- Understand related resources.
- Develop desire and determination to start or enhance systemic safety approach within your agency.

Systemic Safety: Definition

The term "systemic safety improvement" means an improvement that is widely implemented based on high-risk roadway features that are correlated with particular crash types, rather than crash frequency.

-- 23 USC 148 (a)(12) Systemic safety improvement

Systemic Safety: Definition

"A proactive safety approach that focuses on evaluating an entire roadway network using a defined set of criteria." -- CALTRANS

Example: Major Fatal Crash Types in Washington by FHWA Focus Area										
	2012		20	13	20)14	2015			
Crash Type	#	%	#	%	#	%	#	%		
Roadway Departure	243	60%	247	62%	252	59%	290	56%		
Pedestrian/Bicycle	87	22%	60	15%	84	20%	100	19%		
Intersection	98	24%	110	27%	131	31%	160	31%		
TOTAL	403		401		429		516			
Source: FHWA - https://rspcb.safety.fhwa.dot.gov/Dashboard/Default.aspx										
	OVERVIE	W STEP:	1 STEP 2	STEP 3	STEP 4	CASE STUDIES	CONCLUSIO	N 11		

Systemic Approach

- Complementary approach to site-specific
 - Proactively identify safety improvements
 - Does not replace reactionary approach
- Primary approach for rural and local roads
 - Can be applicable to urban roads

Systemic Approach

- Crashes alone do not establish prioritization
- Sometimes prioritization is obvious from data (*inferred prioritization*)

Curve ID	Road Name	Scoring	5-year Crash Rate	Fatal or Serious Crash
182	Hawks Prairie Road NE	6.5	1.2	Yes
194	Boston Harbor Road NE	6.0	1.1	No
143	Delphi Road NW	6.0	0.9	No
203	Johnson Point Road NE	5.5	0.4	No
202	South Bay Road NE	5.5	0.2	No
136	Waddell Creek Road SW	5.5	10.3	Yes

Benefits of Systemic Safety Planning

- Proactive program to address severe crashes
 - Seemingly occur at "random" locations
- Greater knowledge of severe crashes
 - Contributing factors and location characteristics
 - Improve planning, design, and maintenance practices
 - Risk management for tort liability
- Magnitude of crash reductions
 - Case by case (more later)

Benefits of Systemic Safety Planning

South Carolina Example

- Systemic intersection improvement program
 - Signing
 - Pavement Marking
 - Signal Enhancements
- Signalized
 - Benefit Cost Ratio 4.1
- Stop-Controlled
 - Benefit-Cost Ratio 12.4

OVERVIEW STEP 1 STEP 2 STEP 3 STEP 4 CASE STUDIES CONCLUSION

Benefits of Systemic Projects:										
Site-Specific Imp	proveme	nts								
Countermeasure	Coverage ¹	Project Costs	Net Safety Benefits	Benefi Cost Rat	•					
Add Left Turn Lanes	14 intersections	\$9,884,000	\$62,386,011	6.3						
High Friction Surface Treatment	100 sites	\$10,000,000	\$498,263,771	49.8						
Reconfigure Intersection	12 intersections	\$9,864,000	\$134,293,525	13.6						
Reduce Intersection Skew and Add Left Turn Lanes	9 intersections	\$9,954,000	\$83,931,637	8.4						
Road Diet Without Resurfacing	100 miles	\$10,000,000	\$631,888,312	63.2						
Road Diet Including Resurfacing and Reconstruction Costs	10 miles	\$10,000,000	\$63,188,831	6.3						
Roundabout	13 intersections	\$9,607,000	\$111,682,769	11.6						
Average	37 sites	\$9,901,286	\$226,519,265	23.0						
1. Assumes one mile, one curve, and one interse	ction are equivalent to a sin	gle site.								
OVERV	STEP 1 STEP 2	STEP 3 STEP	4 CASE STUDIES	CONCLUSION	19					

Countermeasure	Coverage ¹	Project Costs	Net Safety Benefits	Benefit Cost Ratio
Cable Median Barrier	51 miles	\$9,996,000	\$58,006,096	5.8
Centerline and Shoulder Rumble Strips	2,000 miles	\$10,000,000	\$126,771,305	12.7
Ramp Curve Signage	1,000 curves	\$10,000,000	\$2,928,925,502	292.9
Curve Warning Signage (Chevrons)	6,250 curves	\$10,000,000	\$640,014,079	64.0
Low Cost Intersection Improvements - Signal	1,428 intersections	\$9,996,000	\$279,526,340	28.0
Low Cost Intersection Improvements - Stop	1,666 intersections	\$9,996,000	\$168,073,055	16.8
Average	2,066 sites	\$9,998,000	\$700,219,396	70.0
1. Assumes one mile, one curve, and c	ne intersection are equivalent to	a single site.		

Economic Measure	Site-Specific	Systemic
Total Cost	\$9,901,286	\$9,998,000
Total Benefit	\$226,519,265	\$700,219,396
Overall Benefit-Cost Ratio	23.0	70.0

- Curve Radius
- Traffic Volume
- Wet-Weather Crashes
- Friction Data

26

What we mean by "focus crash type"

The crash type that represents the **greatest number of severe crashes** across the roadway system being analyzed and provides the **greatest potential to reduce fatalities and severe injuries**.

- Roadway Departure
- Intersection
- Pedestrian
- Speeding

Task 1: Select Focus Crash Types											
Fatal and Severe Injury Crashes (2007-2011) Percent by Jurisdiction											
Emphasis Area	0.000	ewide 592 mi									
Total Fatal/Serious Injury	100%	63,443									
Pedestrian	19%	11,786									
Bicycle	5%	3,390									
Heavy Vehicle	5%	3,123									
Road Departure	26%	16,668									
Intersection	41%	25,791									
Head-on and Sideswipe	5%	3,071									
	OVERVIEW	STEP 1	STEP 2	STEP 3	STEP 4	CASE STUDIES	CONCLUSION	32			

- Local focus crash types can differ from statewide focus crash types
- Focus crash types can include causal factors from the 4 E's

What we mean by "focus facility"

The facility type on which the focus crash type most frequently occurs.

- Rural, Two-Lane Highways
- Urban, Signalized Intersections
- Horizontal Curves
- Rural, Thru-STOP Intersections

- Crash trees can include all severe crashes or just severe crashes for one focus crash type
 - Narrow crash types to target countermeasures
 - Narrow facility types to identify candidate sites
- Examine total and severe crash categories
 - May reveal different patterns
- Experience suggests 100+ crashes for identifying patterns
 - Increase sample size by:
 - Increasing number of years
 - · Increasing geographic area (region instead of county)
 - · Include minor injuries
 - Note: For smaller or rural jurisdictions, less crash data can be utilized for analysis.

What we mean by "risk factor"

A representation of risk in terms of the observed characteristics associated with the locations where the targeted crash types occurred.

- Volume
- Alignment
- Intersection Control
- Presence of Shoulders

- Minimum of 2 to 3 risk factors is suggested to differentiate between sites
- Many counties use more
 - For example, counties in Washington State used on average 6-7 risk factors
- Combining risk factors may be appropriate
 - Can indicate if a particular crash type is overrepresented
 - Look to literature

Data to Identify Focus Crash/Facility Types

- Crash type
- Crash severity
- Crash location
- Crashes by system
 - State
 - Local
- Crashes by facility type
 - Rural, 2-lane roads (all, segments, curves)
 - Urban, 2-way stop-controlled intersection

- AADT
- Corridor Geometrics
- Crash Types
- Speed

Data Sources

- Crash data
 - Law enforcement
 - State or local database
 - FARS
- Roadway data
 - State or local database
 - Video logs
 - Online aerial imagery
 - Windshield surveys
- Exposure data (AADT)
 - State or local database
 - Traffic counts

Where do these data come from in your jurisdiction?

OVERVIEW STEP 1 STEP 2 STEP 3 STEP 4 CASE STUDIES CONCLUSION

Example: Select Focus Crash Type, Focus Facility Type, and Potential Risk Factors

You work for a **State DOT** and are leading the development of a new systemic program for the **state highway system**. There is a **summary table of severe crashes** by emphasis area by jurisdiction. There is also a **crash tree for severe crashes** on the state system.

Topics of Discussion:

- Identify focus crash type and facility type for new state program
 - How would selection change if you were instead focused on county roads?
- · Identify potential risk factors
 - What factors would you evaluate if you had robust roadway data linked with crash records?
 - What potential risk factors would ideally still be in the database if you had limited variables, and why?

	Young drivers (under 21)	17%	1,105	15%	580			
	Older drivers (over 64)	12%	765	14%	535			
Drivers	Aggressive driving and speeding-related	16%	1,040	13%	515			
Drivers	Drug- and alcohol-related	35%	2,13	37%	1,4_3			
	Distracted Drivers	3%	195	4%	150			
	Unbelted vehicle occupants	40%	2, 2	30%	1 1			
Special	Pedestrian crashes	5%	360	5%	200			
Users	Bicycle crashes	1%	55	1%	20			
Vehicles	Motorcycles crashes	7%	440	6%	220			
venicies	Heavy vehicle crashes	11%	690	15%	565			
	Run Off Road Crashes	50%	.,1.,	46%	1,7.2			
Highwaya	Across Centerline or Across Median Crashes	11%	720	11%	425			
Highways	Intersection crashes	26%	1,730	30%	1,150			
	Work zone crashes	2%	120	2%	95			
Total Severe (Fatal and Life-Changing Injury) Crashes	6,5	65	3,8	90			
	OVERVIEW STEP 1	STEP	2 S	ТЕР 3	STEP 4	CASE STUDIES	CONCLUSION	56

Example: ID Potential Risk Factors

Based on your selection, brainstorm to **identify potential risk factors** you would evaluate if the state maintained a robust data system that is linked with crash records.

Shoulder width/type, lane width, roadside rating

If the statewide database contains a limited number of variables, what potential risk factors would ideally still be in the database, and why?

How would you evaluate risk factors and why?

OVERVIEW STEP 1 STEP 2 STEP 3 STEP 4 CASE STUDIES CONCLUSION

Task 1: Identify Network Elements

- Spot-based (curves, intersections)
- Segments
- Verify selected risk factors

	-		entify Ne			
Corridor	Route Type	Route Number	Start	End	Length (miles)	Average Daily Traffic
144.01	CNTY	89	CSAH-30	CSAH-30	1.4	480
40.04	CSAH	40	New London Corp Limit	CSAH-2	5.9	450
131.01	CNTY	89	CSAH-30	MNTH-23	0.7	145
9.02	CSAH	9	CR-90, Willmar Corp Limit	CSAH-10	5.6	940
5.06	CSAH	5	150th Ave NW, CSAH-29	CSAH-1	10.1	628
31.02	CSAH	31	New London Corp Limit	MNTH-23	1.6	920
8.01	CSAH	8	Renville County Line	Lake Lillian Corp Limit	3.6	750
4.01	CSAH	4	CSAH-8	CSAH-20	6.7	320
2.05	CSAH	2	CSAH-10	MNTH-23	9.8	385
4.04	CSAH	4	CR-98	CSAH-40	2.4	290
38.01	CSAH	38	CSAH-40	CSAH-48	2.1	130
132.01	CNTY	89	CSAH-8	CSAH-8	2.2	190
42.01	CSAH	42	CSAH-7	County Line	0.5	120
9.03	CSAH	9	CSAH-10	CSAH-40, Redwood Street	4.9	1,800
25.01	CSAH	25	CSAH-5	USTH-71	3.2	1.315

Task 2: Conduct Risk Assessment

- Document crash history and patterns
- Document physical and traffic characteristics
- Conduct evaluation of network elements

	Rank	Corridor	ADT Range	Road Departure Density	Access Density	Curve Critical Radius Density	Edge Risk	Totals
	1	144.01	*	*	*	*	*	****
	2	40.04	*	*	*	*	*	****
	3	131.01		*	*	*	*	****
Ī	4	9.02	*	*	*	*		****
ſ	5	5.06	*	*	*	*		****
Ī	6	31.02	*	*	*	*		****
Ī	7	8.01	*	*			*	***
	8	4.01		*	*		*	***
	9	2.05			*	*	*	***
			OVERV	TIEW STEP 1	STEP 2 STE	EP 3 STEP 4	CASE STUDIES C	ONCLUSION 63

Data Driven: Quantitative vs. Qualitative

- Use qualitative ratings when needed:
 - Good, Fair, Not-So-Good (curve radius, roadside, etc.)
 - Number per segment, mile, roadway (curves, driveways, intersections, etc.)
 - High, Medium, Low (traffic volumes, pedestrian volumes, crash frequency, etc.)
- It is important to include the risk factors that are key to your roadway network

Task 3: Prioritize Focus Facility Elements Total the number of risk factors present Assign equal or relative weights Set threshold for high-priority candidates Example Criteria for Relative Weight of Risk Factors Category Higher Lower Confidence Factor overrepresented by X

- Assess risk factors
 - Do selected characteristics represent increased risk?
 - Data-driven (descriptive statistics and CMFs)
- Prioritize locations for further consideration
 - What level of risk deserves treatment?
- Collect additional data as needed
 - Is there sufficient data to conduct risk assessment?
 - Document characteristics of crash locations

Task 2: Evaluate and Screen Countermeasures

- Documented effectiveness
- Implementation and maintenance costs
- Consistency with agency polices, practices, and experiences

Task 3: Select Countermeasures

- · Represent highest priorities
 - Most cost-effective countermeasures addressing targeted crash types
- Provide a range of options for **flexibility**
- Consistent with agency practices and policies

Helpful Hints

- Seek input from stakeholders during screening process
- Remove initial countermeasures that are not feasible
- There is no optimum number of countermeasures
 - Provide at least one alternative
- Determine appropriate number of locations for initial list
 - Goals and funding amounts
 - Identify locations for on-the-shelf projects
 - Implement with typical construction and maintenance projects
- Consider bundling low cost improvements.

Task 1: Create Decision Process

- **Decision process**: set of criteria to identify appropriate countermeasure.
 - Provides consistency in project development
 - Considers multiple locations for which countermeasures are appropriate and affordable
 - E.g., traffic volume, environment, adjacent land use, or cross-section

Cross-section

https://commons.wikimedia.org/wiki/File-Centerline_Rumble_Strip.jpg

OVERVIEW STEP 1 STEP 2 STEP 3 STEP 4 CASE STUDIES CONCLUSION 85

Task 2: Develop Safety Projects

- Apply decision process
- Identify specific countermeasures for each candidate site
- Document decision process and results

Benefit-Cost Analysis 1. Determine if project is sound investment 2. Compare with alternative projects **Typical Measures:** Crashes Travel Time Fuel Use Operating Costs Project 1 Project 2 Project 3 Benefits \$200,000 \$150,000 \$400,000 Costs \$50,000 \$100,000 \$200,000 B/C Ratio (Benefits/Costs) 4.0 1.5 2.0 Net Benefit (Benefits - Costs) \$150,000 \$50,000 \$200,000

Systemic Benefit-Cost Example

- Curve treatments at multiple locations
 - Focus crash type = fatal and serious injury
 - Focus facility type = rural two-lane curves
 - Small curve radius is primary risk indicator
- BCA can support project prioritization

S	Summary of Potential Curves								
	Curve	AADT (vehicles per day)	Length of Curve (miles)	Radius of Curve (feet)					
	1	6,500	0.070	350					
	2	7,500	0.100	500					
	3	5,000	0.060	450					
	4	7,000	0.110	500					
	5	5,500	0.060	250					
	6	7,500	0.190	450					
	7	10,000	0.230	500					
	8	6,000 0.070		250					
	9	8,500	0.170	400					
	10	9,500	0.210	500					
		OVERVIEW STE	P 1 STEP 2 STEP 3 STEP 4	CASE STUDIES CONCLUSION	92				

Sur	nma	ary c	of Sa	fety Perfo	rman	ice
Curve	AADT	Length	Radius	HSM Base SPF (Total Crashes)	CMF	With Curve (Total Crashes)
1	6,500	0.070	350	0.1216	3.11	0.3784
2	7,500	0.100	500	0.2004	2.03	0.4078
3	5,000	0.060	450	0.0802	2.92	0.2339
4	7,000	0.110	500	0.2057	1.94	0.3992
5	5,500	0.060	250	0.0882	4.45	0.3924
6	7,500	0.190	450	0.3807	1.61	0.6111
7	10,000	0.230	500	0.6145	1.45	0.8910
8	6,000	0.070	250	0.1122	3.96	0.4439
9	8,500	0.170	400	0.3861	1.76	0.6799
10	9,500	0.210	500	0.5330	1.49	0.7957
			OVERVIEW	STEP 1 STEP 2 STEP 3	STEP 4 CASE STU	UDIES CONCLUSION 93

				6.3	: BCA F	
Curve	Safety	Travel Time	Fuel Use	Emissions	Total Present Value Benefit	Benefit-Cost Ratio
1	\$53,692	\$132	\$9	\$4	\$53,836	53.84
2	\$60,689	\$143	\$9	\$4	\$60,845	60.85
3	\$34,502	\$82	\$5	\$2	\$34,591	34.59
4	\$60,075	\$140	\$9	\$4	\$60,227	60.23
5	\$59,850	\$138	\$9	\$4	\$60,001	60.00
6	\$88,177	\$213	\$14	\$6	\$88,410	88.41
7	\$130,835	\$311	\$20	\$9	\$131,176	131.18
8	\$67,912	\$156	\$10	\$4	\$68,082	68.08
9	\$97,414	\$237	\$16	\$7	\$97,673	97.67
10	\$114,698	\$277	\$18	\$8	\$115,002	115.00

Case Studies Overview Step 1 Step 2 Step 3 Step 4 CASE STUDIES CONCLUSION 111

Minnesota: Ped Bike Safety Case Study

- Summary
 - Systemic process assisted in the identification of focus crash and facility types
 - Adoption of a set of risk factors
 - Screening and prioritizing of the systems
 - Development of a short-list of safety countermeasures
 - Identification of more than \$13 million worth of pedestrian and bicycle focused safety projects at designated high risk candidate locations

Learning Objectives

- Understand and apply the 4-step systemic safety planning process
- Access and apply available resources for applying the systemic approach

Key Takeaways

- Develop a Systemic Safety Planning Approach
 - Identify data needs and potential risk factors
 - Implement systemic projects
- Promote Systemic Approach
 - Share success stories
- Other Possible Action Items?

Factors Influencing Approach

- Data availability
- Resources
- Established priorities
- State/local agency relationship

