

Outline

- CFL Hydraulics Team
- Upcoming FHWA hydraulics publications
- 2D modeling guidance
- Q/A Open discussion

CFL Hydraulics Team

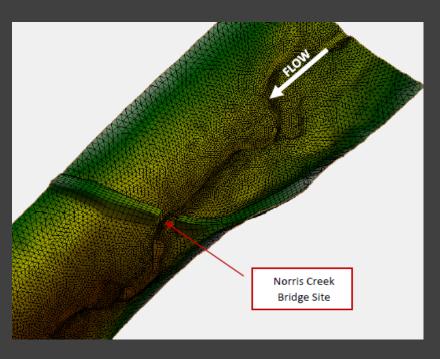
- Luis Calderón PE Hydraulics Team Lead
- Aaron Estep PE Hydraulic Engineer
- Amanda Peters El Hydraulic Engineer
- Trevor Moulton El Hydraulic Engineer

Upcoming Publication Updates

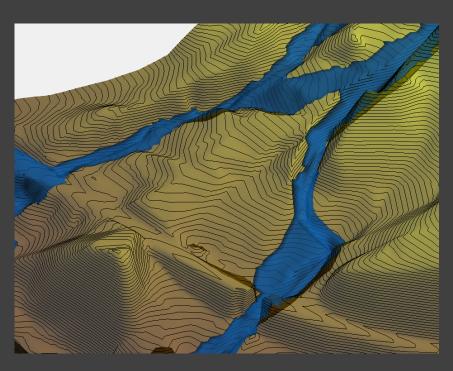
- HDS-2 Highway Hydrology and Course NHI 135067 Practical Highway Hydrology
- HEC-19 Evolving Topics in Hydrology
- HEC-16 Highways in the River Environment: Roads, Rivers, and Floodplains
- HEC-18, HEC-23
- Schedule TBD

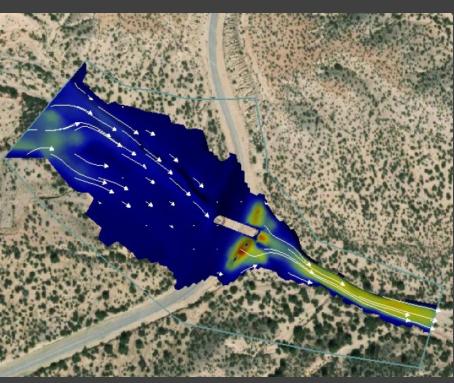
Upcoming Tech Briefs

- Hydraulic Considerations for Deep Abutment Foundations
- Schedule TBD


- Pre-EDC HEC Reference documents, FESWMS
- EDC-4 (2017-2018)
- EDC-5 (2018-2019)
- Fully implemented

- Bridges and scour
- Culverts (riverine, cross drainage)
- Bank protection
- Low water crossings



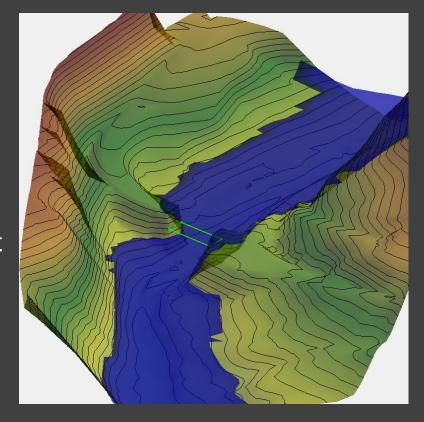

Sierra National Forest, CA

Sequoia National Park, CA

Elephant Butte State Park, NM

2D Hydraulic Modeling for Highways in the River Environment

Table 2.1. 1D versus 2D modeling

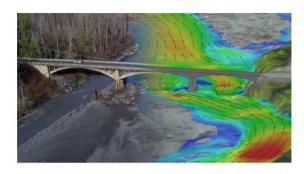

Hydraulic Variables	1D Modeling	2D Modeling
Flow direction	Assumed by user	Computed
Flow paths	Assumed by user	Computed
Channel roughness	Assumed constant between cross sections	Roughness values at individual elements used in computations.
Ineffective flow areas	Assumed by user	Computed
Flow contraction and expansion through bridges	Assumed by user	Computed
Flow velocity	Averaged at each cross section	Computed at each element
Flow distribution	Approximated based on conveyance	Computed based on continuity and momentum
Water Surface Elevation	Assumed constant across entire cross section	Computed at each element

CFL A/E SOW 2D Guidance

- SRH-2D default: Bridges, Scour (Standard SOW)
- Exceptions discussed and agreed during scoping/PDP
- Other hydraulic elements: A/E recommends approach, discussed and agreed to during scoping/PDP.
- Hydraulic survey limits adjusted as needed (availability of topo data, national map, FLMAs)

FHWA 2D Modeling Resources

- 2D Hydraulic Modeling for Highways in the River Environment – FHWA HIF-19-061
- 2D Users Forum
- NHI 135095 Two-Dimensional Hydraulic Modeling of Rivers at Highway Encroachments (Inperson or virtual)


FHWA 2D Modeling Resources

- 2D Hydraulic Modeling for Highways in the River Environment
- 2D Modeling Fundamentals
- Data and Model Development
- Review and Calibration
- Model Results

Publication No. FHWA-HIF-19-061 October 2019

Two-Dimensional Hydraulic Modeling for Highways in the River Environment

Reference Document

U.S. Department of Transportation

Federal Highway Administration

Q/A

Is StreamStats sufficient for us to get drainage flows for a project site?

Q/A

- Standard errors
- Gage network density
- FFA vs. Regression
- Watershed changes (e.g. wildfire)
- Options:
 - Confidence limits/prediction intervals
 - Gage comparisons, similar watersheds
 - Rainfall-runoff models
 - Indicators: e.g. bankfull flow
 - Site history/Engineering judgment

Questions?

- luis.calderon@dot.gov
- **720-963-3720**