Median Barriers

Median barriers are longitudinal barriers that separate opposing traffic on a divided highway and are designed to redirect vehicles striking either side of the barrier. Median barriers significantly reduce the number of cross-median crashes, which are attributed to the relatively high speeds that are typical on divided highways. AASHTO’s Roadside Design Guide (RDG) recommends guidelines for the use of median barriers on high-speed, fully controlled-access roadways for locations where the median is 30 ft in width or less and the average daily traffic (ADT) is greater than 20,000 vehicles per day (vpd). For locations with median widths greater than 50 ft and where the ADT is less than 20,000 vpd, a median barrier is optional. For locations where the median is between 30 and 50 feet, the RDG suggests an analysis to determine the cost effectiveness of median barrier installation. Median barriers can be cable, metal-beam, or concrete.

- **Cable barriers** are flexible barriers, made from steel cables mounted on weak steel posts, resulting in less occupant impact force as it absorbs energy from the crash, capturing or redirecting the vehicle. Due to larger deflection, median width is an important consideration. These barriers are more adaptable to slopes typically found in medians. Cable barriers tend to require more frequent maintenance and repair than other barrier types.
- **Metal-beam guardrails** are considered semi-rigid barriers, where the W-beam or box-beam is mounted to steel or timber posts. When impacted, they are designed to deform and deflect, absorbing some of the crash energy and redirecting the vehicle. Metal-beam guardrails often do not require maintenance after minor impacts. They deflect less than cable barriers, so they can be located closer to objects where space is limited.
- **Concrete barriers** are usually rigid and result in little to no deflection. They redirect rather than absorb energy from the impact. Rigid concrete barriers seldom require repair or maintenance. Some agencies have used portable concrete barriers as median barriers. These barriers require repositioning after an impact but are typically less maintenance than a post mounted barrier.

To reduce cross-median crashes, transportation agencies should review their head-on crash history on divided highways to identify hot spots. Agencies should also consider implementing a systemic approach to median barrier placement based on cross-median crash risk factors. Potential risk factors include:

- Traffic volumes.
- Vehicle classifications.
- Median crossover history.
- Crash incidents.
- Vertical and horizontal alignment.
- Median terrain configurations.

To reduce cross-median crashes, transportation agencies should review their head-on crash history on divided highways to identify hot spots. Agencies should also consider implementing a systemic approach to median barrier placement based on cross-median crash risk factors. Potential risk factors include:

- Traffic volumes.
- Vehicle classifications.
- Median crossover history.
- Crash incidents.
- Vertical and horizontal alignment.
- Median terrain configurations.

1 Fatality Analysis Reporting System.