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Equitable Traffic Crash Prediction 
Framework To Support Safety  
Improvement Grants Allocation
By Zihang Wei, Zihao Li,  Mihir Mandar Kulkarni, and Ximin Yue

On December 16, 2021, the National Highway Traffic Safety Administration 

(NHTSA) announced the release of nearly $260 million in highway safety grants 

as part of the Bipartisan Infrastructure Law.1 These grants aim to enhance traffic 

safety across all 50 states. Due to limited funding, it is crucial to allocate these 

grants optimally for maximum social benefit.2 However, current approaches to grant allocation 

lack clear criteria and primarily rely on previous crash data and available funding.3
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For future allocation, an accurate crash prediction model is 
essential as a reliable decision-support tool. Previous studies have 
explored various models, including safety performance functions, 
Bayesian multivariate poison lognormal models, loglinear 
regression models, and negative binomial models to predict crash 
occurrences and identify candidate sites for safety improvement.4-8 
Recently, with advancements in AI algorithms and increased 
number of crash datasets, machine learning and deep learning 
algorithms have been applied for accurate crash prediction and 
safety improvement planning.9, 10 However, these models can lead 
to inequality issues, as disadvantaged groups may experience 
lower prediction performance compared to advantaged groups.11, 12 
Directly applying imbalanced models for grant allocation may 
exacerbate social inequality.13 Few studies have focused on model 
equality in traffic safety and grant allocation. Therefore, this study 
proposes an equitable traffic crash prediction framework to support 
grant allocation, ensuring equal performance for all groups.14

In this study, we quantitatively evaluate the equality of a traffic 
crash prediction model based on North Carolina census tracts. 
The study utilizes crash data from the Highway Safety Information 
System (HSIS) and sociodemographic data from the U.S. Census 
Bureau. Ideally, besides improved overall prediction performance, 
the traffic crash prediction model should perform equally well 
across different census tract groups, such as high-income and 
low-income areas. Statistically, the distribution of model prediction 

errors for these sensitive groups should be similar, indicating 
unbiased performance. In order to addressing the inequality issue 
in safety grant allocation, an equitable traffic crash prediction 
framework is proposed in this study. The results show that by incor-
porating the Synthetic Minority Oversampling Technique (SMOTE) 
with the attentive interpretable (TabNet) model, the proposed 
framework improves both model equality and overall prediction 
performance.15, 16 The SMOTE is applied to resolve the training data 
imbalance issue. It is important to note that this framework does 
not generate the safety grant allocation plan directly, but it serves as 
an equitable and effective decision-support tool for allocation.

Data and Methodology

Data Preparation
This section presents the study’s framework and data preparation 
process. Figure 1 depicts the proposed equitable traffic crash 
prediction framework. The input data comprises two parts: (1) crash 
data from the highway safety information system (HSIS), which 
includes accident, occupant, roadway, and vehicle information; 
and (2) sociodemographic data from the U.S. Census Bureau. The 
variables are selected and processed to create census tract level data 
for the crash prediction model’s input (yellow block in Figure 1). 
The goal of the crash prediction models is to forecast the number 
of severe crashes in the upcoming year based solely on previous 

Figure 1. Data description and flow chart of proposed framework (notes: # indicates the number of).
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Model equality is assessed by comparing three group pairs (high/
low-income, urban/rural, and aging/non-aging) using Wasserstein 
Distance (WD) to determine if prediction error distributions 
differ between the groups. Detailed information about each step is 
discussed in the following sections.

HSIS crash data
Four years of crash data (2015-2018) are collected from the HSIS, 
including accident, occupant, roadway, and vehicle information. 
The crash data is processed through the following steps. Firstly, the 
four types of information are combined for each individual crash 

(a) Percentage of low-income households for each census tract.

(b) Percentage of urban area for each census tract. 

(c) Percentage of senior citizens of each census tract.

Figure 2. Maps presenting the distribution of North Carolina census tracts in terms of (A) Percentage of low-income households, (B) Percentage of urban 
area, (C) Percentage of senior citizens. 

year’s input variables. Severe crashes are chosen for allocating safety 
improvement grants due to their higher social costs compared to 
minor crashes, impacting healthcare, productivity, and quality 
of life. Five models are tested: (1) current practice (using the 
previous year’s severe crash count as the prediction for the next 
year), (2) XGBoost learning model, (3) XGBoost learning model 
with SMOTE, (4) TabNet learning model, and (5) TabNet learning 
model with SMOTE. SMOTE is applied to improve model equality 
by reducing data biases. Model evaluation includes assessing 
overall performance through root mean square error (RMSE) and 
mean absolute error (MAE), reflecting average prediction errors. 
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case. Secondly, feature cleaning and selection are performed on the 
combined dataset. Crash-related features such as severity, alcohol 
use, involvement of bikes and pedestrians, older driver involvement 
(65 years and over), over-speeding, airbag use, ejections, gender 
distribution of drivers, terrain type, and urban/rural classification 
are selected and cleaned. The data from step 2 is then aggregated 
into census tract level, resulting in the input variables (see Figure 
1). The final dataset for model training includes crash-related 
variables from all North Carolina census tracts for 2015, 2016, and 
2017, along with the number of severe crashes in the following year 
(i.e., 2016, 2017, and 2018) as the target variable. Severe crashes are 
defined as those leading to death, serious injury, or minor injury.

Sociodemographic data
The sociodemographic data of North Carolina is included as 
additional data to the HSIS crash data, collected from the American 
Community Survey (ACS) 5 year estimates.18 The socio-demo-
graphic data reflects the social economic characteristics of different 
census tracts. The purpose of using the sociodemographic data is 
twofold: (i) to identify patterns and factors that can be associated 
with severe crash occurrences, and (ii) to use these features to 
define sensitive census tract groups. The socio-demographic related 
features used in this study and their definitions are the following. 

 Total population: The total population of a census tract.
 Urban area percentage: The percentage of urban land area 

among total land area of a census tract. To get urban land 
area percentage of each census tract, GIS map of the urban 
area in the U.S. is collected from U.S. Census Bureau.18 The 

percentage of urban land area can be obtained by overlaying 
it with the GIS map of 2020 census tracts.19

 Senior citizen population percentage: The percentage of 
senior citizen population (65 years and older) among total 
population of a census tract.

 Low-income household percentage: The percentage of 
low-income household (annual income less than $50,000) 
among total household of a census tract.20

Based on three sensitive demographic features (i.e., low-income 
household percentage, urban area percentage, and senior citizen 
percentage), census tracts are grouped into three sensitive group 
pairs including high-income/low-income, urban/rural, and aging/
non-aging census tracts by the following thresholds, and detailed 
geographical distribution is presented as Figure 2.

 High-income census tracts (Low-income household 
percentage less than 30 percent)

 Low-income census tracts (Low-income household 
percentage greater than 30 percent)

 Urban census tract (Urban percentage greater than  
50 percent)

 Rural census tracts (Urban percentage less than 50 percent)
 Aging census tracts (Senior citizen population percentage 

greater than 15 percent)
 Non-aging census tracts (Senior citizen population 

percentage less than 15 percent)

Figure 3. TabNet Architecture.16 
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Methodology

TabNet Model Description
The crash dataset applied in this study is a typical tabular data 
whose columns represent observations and columns represent 
features. Tree-based models (e.g., random forest and XGBoost) 
are popular and powerful technique for modeling tabular data. 
However, tabular data requires time-consuming feature engineering 
that require domain knowledge. Therefore, the TabNet model is 
introduced, which integrate the powerful representation ability 
from deep learning and the interpretability from tree-based model. 
The architecture of TabNet is shown in Figure 3. By adopting three 
key modules (i.e., attentive transformer, mask self-attention, and 
feature transformer) to determine the most important features at 
each decision step (17), the TabNet model can automate feature 
engineering and improve model performance. In this study, the 
traditional method and XGBoost model, a widely used tree-based 
model, are selected as candidates to compare with the prediction 
performance and model equality of TabNet.

Performance and equality evaluation metrics 
Three metrics are introduced to evaluate model performance and 
model equality. In terms of prediction performance, root mean 
square error (RMSE) and mean absolute error (MAE) are used. The 
RMSE is sensitive to extreme error and the MAE focuses more on 
average error. Smaller values of these two metrics indicate better 
performance.

                     Σi
N
=1(yi-ŷl)2

RMSE =     __________ (1)                                              N

                     Σi
N
=1|yi-ŷl|MAE =     __________ (2)                                              N

Where yi is the actual value of observation i, ŷl is the predicted 
value of observation i, and N is the total number of observations.

One way to evaluate model equality is directly comparing the 
values of RMSE and MAE of different sensitive groups. However, 
the RMSE and MAE only provide information on the overall 
performance and cannot provide detail information on the 
prediction error distribution difference. Ideally, the distribution of 
the model prediction error should be similar between two group in 
each sensitive group pair (i.e., high/low income; urban/rural; aging/
non-aging), which indicates that the model performance does not 
bias toward one specific group. Therefore, the Wasserstein distance 
(WD) is involved to measure the similarity of two probability 
density functions (PDFs). Larger WD value indicates that the 
difference between two distributions is more significant. 

W D (μ1,μ2) = ∫∞
-∞|F1(x) – F2(x)|dx (3)

Where μ1 and μ2 is probability measures on . F1 is the PDF of  
μ1 and F2 is the PDF of μ2. 

In general, two criteria can be applied to detect the model 
inequality issue: (1) significant differences in RMSE and MAE 
between two sensitive groups, and (2) larger WD value. 

SMOTE
Model inequity arises from two sources: (1) model bias and (2) 
dataset bias. Model bias occurs when the model becomes overfitted 
to one group, prioritizing overall performance while minimizing the 
cost function during training. Dataset bias occurs when the training 
data primarily consists of samples from a specific group, leading 
to a biased model. To address data imbalance in the training set, 
this study employs SMOTE, a statistical method that increases the 
number of samples in minority groups to match the majority group 
(16). As shown in Figure 4, The minority groups are oversampled 
by creating synthetic samples in the feature space defined by the 
instance and its K nearest neighbors. The detailed steps of creating a 
synthetic minority sample are as followed: (1) select a sample instance 
Xi  d and its K nearest neighbors in the minority groups, where d 
is the feature dimension; (2) randomly select a neighbor Xj  d from 
the K nearest neighbors; and (3) create the synthetic minority sample 
as Xs = Xi + γ|Xj –Xi|, where γ . The above steps are repeated 
until the number of samples in each minority group is matched with 
that in the majority group. Since this study has selected three binary 
sensitive variables, during the oversampling process, each sample 
group is uniquely defined by a combination of these three variables 
such as a sample group consisting of all rural, low-income, and aging 
census tracts. Thus, there are a total of 23=8 groups.

Figure 4. Illustration of the SMOTE oversampling process.21

Results and Discussions

The data from 2015 and 2016 serve as the training set, while the 
data from 2017 is used for testing. The performance and equality 
evaluation results of state-of-the-art models and the proposed 
model are presented. The models compared include the traditional 
method, XGBoost learning model, XGBoost learning model with 
SMOTE, TabNet learning model, and the proposed TabNet learning 
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model with SMOTE (see Table 1). RMSE and MAE are used to 
assess overall model performance, and these metrics are separately 
calculated for two groups in each sensitive group pair to evaluate 
model equality. The WD metric is used solely for evaluating model 
equality. The traditional method performs the poorest in terms 
of overall model performance, with the highest RMSE and MAE 
values. AI-based XGBoost and TabNet models improve overall 
performance with lower RMSE and MAE values. However, these 
AI-based models can exacerbate biases, worsening model equality. 
For example, the WD value for high-income/low-income census 
tracts increases from 0.81 to 0.88 and 1.26 when using these 
AI-based models, indicating a larger difference in prediction error 
distributions between the two income groups. To address model 
equality, oversampling is applied to the training set. For both 
XGBoost and TabNet learning models, applying oversampling 
decreases WD values for all three sensitive census tract group 
pairs, except for a slight increase in the WD value for the aging/
non-aging pair with the TabNet model. This demonstrates the 
effective alleviation of model biases through oversampling. Overall, 
the proposed model (TabNet learning model with oversampling) 
achieves the best overall model performance with RMSE and 
MAE values of 3.75 and 2.65. Furthermore, compared to the 
traditional method, the proposed model successfully improves 
model equality within each sensitive group pair. The WD values 
for low-income/high-income, urban/rural, and aging/non-aging 
census tracts are 0.75, 0.60, and 0.25, respectively, all smaller 
than those of the traditional method. In summary, the proposed 
model effectively addresses model biases while enhancing overall 
prediction performance.

The proposed model significantly enhances overall prediction 
performance for next year’s severe crash numbers (see Table 1). 
To further demonstrate its capability, Figure 5 illustrates the 
geographical distribution of prediction performance improvement 
across census tracts. Improvement is measured by relative changes 
in absolute prediction errors (i.e., positive changes indicate 

Figure 5. Geographical distribution of the improvement in prediction performance obtained by the proposed model compared with the traditional method.

Table 1. Overall and Conditional Performance comparison of different 
approaches.

Models RMSE  

(cases/year)

MAE  

(cases/year)

WD 

(cases/year)

Traditional Method

All 4.13 3.01 -

High Income (Low Income) 3.47(4.29) 2.39(3.18) 0.81

Rural (Urban) 4.37(3.86) 3.32(2.70) 0.65

Aging (Non-Aging) 4.13(4.13) 3.07 (2.94) 0.38

XGBoost

All 3.82 2.72 -

High Income (Low Income) 2.92(4.02) 2.05(2.89) 0.88

Rural (Urban) 3.91(3.73) 2.93(2.49) 0.56

Aging (Non-Aging) 3.74(3.92) 2.70(2.73) 0.42

XGBoost with SMOTE

All 3.76 2.69 -

High Income (Low Income) 2.92(3.95) 2.09(2.85) 0.81

Rural (Urban) 3.88(3.63) 2.90(2.47) 0.50

Aging (Non-Aging) 3.71(3.83) 2.70(2.67) 0.36

TabNet 

All 3.91 2.76 -

High Income (Low Income) 3.00(4.12) 2.17(2.91) 1.26

Rural (Urban) 4.04(3.78) 2.93(2.57) 0.99

Aging (Non-Aging) 3.83(4.02) 2.76(2.74) 0.16

TabNet with SMOTE*

All 3.75 2.65 -

High Income (Low Income) 2.96(3.93) 2.06(2.81) 0.75

Rural (Urban) 3.84(3.66) 2.89(2.40) 0.60

Aging (Non-Aging) 3.65(3.88) 2.67(2.63) 0.25

* The proposed framework
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(a) low/high-income (traditional method) (b) low/high-income (proposed model)

(c) rural/urban (traditional method) (d) rural/urban (proposed model)

(e) aging/non-aging (traditional method) (f) aging/non-aging (proposed model)

Figure 6. Comparison of prediction error distributions between low-income and high-income census tract for (a) traditional method and (b) proposed 
method; Comparison of prediction error distributions between rural and urban census tract for (c) traditional method and (d) proposed method; 
Comparison of prediction error distributions between aging and non-aging census tract for (e) traditional method and (f) proposed method.
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improvement). Figure 5 highlights that the proposed model 
improves prediction performance for the majority of census tracts. 
Among 2484 census tracts, only 764 exhibit reduced prediction 
performance, while 1096 benefit from improved prediction 
performance with the proposed model.

Figure 5 demonstrates the overall prediction performance 
improvement achieved by the proposed model. In Figure 6, the 
distributions of model prediction errors are compared within 
each sensitive group pair for the traditional method and the 
proposed model. This comparison highlights that the proposed 
model not only enhances model performance but also improves 
model equality (see Figure 6 (b), (d), and (e)) compared to the 
traditional method (see Figure 6 (a), (c), and (e)). Model equality is 
improved when the prediction error probability density functions 
(PDFs) of the two groups in each sensitive group pair become 
more similar. For instance, the traditional method exhibits a 
significant performance advantage in high-income census tracts 
compared to low-income census tracts. However, applying the 
proposed model reduces the difference in prediction error distri-
butions between these two groups, indicating an improvement in 
model equality. Similar improvements are observed for the other 
two sensitive group pairs.

Conclusions

Traffic crash prediction model is a vital supportive tool for 
governors to allocate safety improvement grants. The traditional 
method directly uses the number of severe crashes in previous 
year as reference to allocate next year’s safety improvement grants. 
However, this method cannot accurately represent the number 
of crashes in next year due to the time varying nature of crash 
occurrences. AI-based crash prediction models can improve the 
overall prediction performance while, the issue of equality in 
AI-based crash prediction models has been neglected. Applying 
model with biases for the allocation of safety improvement grants 
may exacerbate social inequality. Therefore, in order to facilitate 
safety grants allocation, this study purposes an equitable framework 
for predicting the number of severe crashes happened in next 
year by incorporating oversampling technique with AI-based 
models. The HSIS crash data and sociodemographic data from 
North Carolina are utilized as a study case. Specially, this study 
applies XGBoost model and TabNet model to improve the overall 
model performance. However, albeit the improved performance, 
these models increase the model inequality. In order to alleviate 
the inequality issue, this study applies the SMOTE to balance the 
training dataset, thereby reducing dataset bias. The results show 
that for both XGBoost and TabNet learning models, the SMOTE 
can improve the model equality. Moreover, the proposed framework 
of TabNet learning model with SMOTE is proven to improve the 
overall prediction performance as well as the model equality within 

three sensitive group pairs including low-income/high-income, 
rural/urban, and aging/non-aging census tracts.

To enhance the robustness and comprehensiveness of this 
study, there are several directions for future research. Firstly, while 
this study attempts to improve model equality by oversampling the 
training dataset, further efforts can be made to redesign the cost 
function for model training. Secondly, more sensitive variables, 
such as race and education level, should be incorporated, beyond 
the three variables considered in this study. Finally, integrating 
other datasets with HSIS data may further improve the model’s 
overall performance and equality. itej
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