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Foreword 

Estimating the number of accidents that may result for a given highway design is a matter of great interest 
to the highway engineering community. Numerous studies have been performed in this area (see McGee 
et al. and references cited therein) with the aim of determining the effects of different design elements 
and their relative importance. Since safety is a primary consideration in highway design, the safety 
consequences of highway design features have been and will remain a matter of continuing interest. 

The present study was undertaken in connection with the development of the Interactive Highway Safety 
Design Model (IHSDM). The IHSDM is envisioned as a set of tools to assist the highway designer. In 
particular it is expected to include an Accident Analysis Module that will relate accidents to highway 
variables along segments and at intersections. Rural roadways tend to have high accident rates, and 
adequate models for these roadways are especially desirable. This study focuses on segments of rural 
two-lane roads and on three- and four-legged intersections on such roads, stop-controlled on the minor 
leg or legs. 

The study makes use of Highway Safety Information System (HSIS) data for two States, Minnesota and 
Washington. Accident data (including both severity and type), traffic data, lane and shoulder width data, 
and some alignment data are available in HSIS files. Data were also obtained from photologs and, in the 
case of Minnesota, construction plans. These data include horizontal and vertical alignments, 
channelization, driveways, and Roadside Hazard Rating. The latter is a measure of sideslope and clear 
zone proposed by Zegeer et al. (1987). 

The analysis and modeling on the data sets have been performed with SAS software. SAS includes a 
variety of procedures for summarizing univariate and multivariate statistics and for modeling the 
relationship between a variable such as number of accidents and covariates such as traffic volumes and 
highway design variables. 

Accident models are typically of Poisson and generalized linear form. The number of accidents in in a 
given space-time region is regarded as a random variable that takes values 0, 1, 2, ... with probabilities 
obeying the Poisson distribution. A characteristic feature of this distribution is that the variance, or mean 
squared deviation of this variable, is equal to its mean. The mean number of accidents is assumed to be 
an exponential applied to a suitable linear combination of highway variables. Thus the model falls under 
the heading of a generalized linear model. The exponential function guarantees that the mean is positive. 

More recently negative binomial models, a variant of the Poisson, have been used in accident modeling. 
Such models generalize the Poisson form by permitting the variance to be overdispersed, equal to the 
mean plus a quadratic term in the mean whose coefficient is called the overdispersion parameter. When 
this parameter is zero, a Poisson model results. When it is larger than zero, it represents variation above 
and beyond that due to the highway variables present in the model. Such variation is due to accident-
related factors pertaining to drivers, vehicles, and location not encompassed by the highway variables. 
The LIMDEP software package, or SAS-based programs, can be used to develop negative binomial 
models. 

In addition, Shaw-Pin Miaou has developed an "extended" negative binomial model that permits variables 
with multiple values along a roadway to be treated in disaggregate form, value by value, rather than in 
aggregate form, by averages over the whole roadway. Highway segments are not truly homogeneous 
even if shoulder widths, lane widths, speed limits, and the like stay constant along them. Other variables, 
such as horizontal and vertical alignments, are subject to variation within the typical segment. The 
extended negative binomial model aims to capture the effect of such inhomogeneities. 

In the following chapters the literature is reviewed; the data collection methodology is described in detail; 
the data analysis is presented; accident models of Poisson, negative binomial, and extended negative 
binomial type are exhibited; and validation and additional analyses are performed. The modeling chapter 
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includes logistic modeling of accident severities on the Minnesota data. The last chapter presents the final 
models (obtained earlier in Tables 27 and 35) in the form of equations and exhibits associated Accident 
Reduction Factors. Two appendices offer additional information about the Minnesota population and the 
final model equations in metric form, respectively. 

Some of the results in this report are to be found in the article by Vogt and Bared (1998). 
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Literature Review 

This chapter surveys the modeling literature pertaining to highway segments and intersections and 
reviews variables used in past studies. It also includes a discussion of artificial neural networks. 

Segment Models 

Miaou et al. (1993) used a model of Poisson type to estimate accidents along highway segments. 
Although the model was applied to truck accidents, it is applicable to other vehicles on a highway. 
Poisson regression provides one of the most suitable models because vehicle accidents are discrete rare 
events and accident counts are nonnegative integers. Accidents are usually positively skewed because of 
the high proportion of highway segments without accidents. Poisson regression models provide an easy 
linkage to probability, as opposed to other commonly used models such as multiple linear regression. The 
form of the model is: 

 

For the i-th segment 

x1i = Average daily traffic per lane (in thousands of vehicles) 

x2i = Horizontal curvature (in degrees per hundred feet) 

x3i = x2i* horizontal curve length (in miles) 

x4i = Deviation of stabilized outside shoulder width per direction from 12 ft (in feet) 
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x5i = Percent trucks in traffic stream. 

The estimated value of i is always non-negative and is represented by a loglinear function of 
explanatory variables xji related to geometry, traffic, and other highway characteristics. With respect to the 
underlying Poisson assumption that the mean equals the variance, the model for two-lane rural segments 
is not very satisfactory since the estimated ratio of variance to mean, 1.36, is not close to one. A negative 
binomial regression model was proposed to allow for overdispersion, with variance equal to mean plus 
an extra term of the form K( i )2. The quantity K is the overdispersion parameter. The regression 
coefficients in the negative binomial model are similar to those of the Poisson model. However, the 
negative binomial allows for additional variance representing the effect of omitted variables. 

Poisson and negative binomial modeling techniques are believed to be robust and quite suitable for 
accident modeling. One weakness of the above model, though, is the minuscule frequency of truck 
accidents, since they constitute a very small proportion of total accidents, even though the highway 
sample of 14,731 lane-miles extending over a 5-year period is large. Another weakness may be ascribed 
to a highly significant variable, truck ADT (Average Daily Traffic). This variable was acquired from the 
Highway Performance and Monitoring System (HPMS), a separate data source that was integrated with 
the original data. Whether the values of truck ADT were sufficiently local to represent the truck traffic on a 
given segment adequately is not known. 

The report of Luyanda et al. utilized a variety of multivariate statistical techniques to investigate 
relationships between the major factors of rural highway conditions and accident occurrences. Cluster 
analysis, discriminant analysis, factor analysis, and linear regression were applied in stepwise fashion. 
Highway segments were divided into three groups: multi-lane segments, two-lane segments in flat and 
rolling terrain, and two-lane segments in hilly terrain. Comparisons were made between groups and within 
groups. Within the multi-lane segments, the significant variables identified by discriminant analysis were 
different from those identified by stepwise regression. For the other two groups, the R2 values were 
disappointingly low, 0.23 and 0.07, respectively. The report should be regarded as exploratory because of 
uncertainties in accident location and the small sample size. Although the results of the discriminant 
analysis seem to be reliable, they do not give a safety evaluation, but rather a classification by grouping. 
The assumption of linearity in the regression analysis is simplistic and should be refined. Moreover, 
highway segments and intersections were not differentiated to permit classification of accidents into 
segment accidents or intersection accidents. 

The reports of Zegeer et al. (1986), Mak (1987), and Zegeer et al. (1991) applied regression techniques 
to develop accident models for two-lane roads. The model for cross-section safety on two-lane highways 
proposed by Zegeer et al. (1986) is: 
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The accidents considered in this model are single vehicle accidents, head-on accidents, and same and 
opposite direction sideswipe accidents. 

A quadratic model for accidents on bridges was developed by Mak (1987): 

 

Zegeer et al. (1991) developed a model for accidents on horizontal curves: 
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The last-mentioned study, Zegeer et al. (1991), reviewed data base characteristics, determined the 
important variables through a preliminary analysis, and then proceeded to model building. The preliminary 
analysis made use of several multiple linear regression models to identify significant or "important" 
variables. The authors reported that a linear accident rate model was much better than a log-linear model. 
For a nonlinear model they adopted and reparametrized an existing model. This model was a hybrid, with 
both linear and nonlinear components. Although the required statistical assumptions were not fully stated, 
use of the least-squares method was based on the assumption that the residuals would follow a normal or 
log-normal distribution. Because accident distributions are skewed to the right, normality is not a tenable 
assumption. 

Arguing that previous efforts were not sufficiently successful in attributing accidents to individual 
geometric elements and traffic characteristics, Kuo-Liang and Chin-Lung (1988) explored a technique that 
purported to remove the assumptions of normality and linearity. Their model was developed for two-lane 
rural roads. A technique called Automatic Interaction Detection (AID) was used to group roadway 
segments by selected or created categories of explanatory variables. These categories of variables 
maximize the difference between group sums of squares. Then a model was developed by the Multiple 
Analysis Classification (MAC) technique of the following form: 

 

where 

Yij...n = the score of unit n that falls in category i of predictor A, category j of predictor B, etc 

Y = grand mean of the dependent variable 

Ai= the effect of membership in the i-th category of predictor A 

Bj = the effect of membership in the j-th category of predictor B 

... 

Eij...n = error term for this unit. 

This method, though in part innovative, is still a variation on simple linear regression and accounts for 
only 33% of the total variance. The low predictive power may also be due to the lack of a horizontal 
alignment variable and small sample size. 

Durth (1989) used risk analysis to perform highway safety evaluation. This is quite different from 
conventional approaches to accident analysis and modeling. The method is well-known in the fields of 
nuclear power plants and chemical factories. Based on research in Germany from 1986, the claim is 
made that risk analysis can be successfully applied to traffic safety. A risk model relies on diverse 
information in modular and hierarchical form from different branches of sciences (medicine, mechanical 
engineering, civil engineering, psychology, etc.). It reconstructs known dependencies and identifies 
relationships that need to be verified. Although the method may be promising, the report of Durth does 
not clearly describe the substance of the research. Nor does it indicate how to develop the stated 
dependencies and how to verify them practically. 

Kulmala and Roine (1988) developed models for Finnish roads. They assumed a Poisson error 
distribution and intended their models to be used for prediction. Their typical model form was: 
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where 

A = total number of fatal and injury accidents on a segment 

S = exposure in vehicle-kilometers 

xi = explanatory variables such as surface width in meters, percentage of the segment length for which 
passing sight distance exceeds 300 meters, percentage of heavy vehicles, average curvature, and an 
interaction variable (pavement and speed limit). 

This multiplicative Poisson regression model is comparable to that of Miaou et al. (1993). 
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SEGMENT VARIABLES 

Average Daily Traffic (ADT) 

ADT is one of the most significant variables in predicting accidents, yet it is not controllable. Many models 
have used traffic exposure as a dependent variable although its relationship with accident counts is not 
fully linear. In general, it is recommended to use ADT as an independent variable for greater accuracy 
because it interacts with other controllable variables, and it measures the effect of traffic flow intensity 
(Hauer, 1994). 

Lane Width, Shoulder Width, and Shoulder Type 

Modeling approaches vary from study to study, and techniques of data collection and analysis likewise 
vary. Thus the effect of lane width and shoulder width on accident frequency has some variation in 
different studies. Generally it has been found that accident rates decrease when lane and shoulder widths 
increase. The report by Zegeer et al. (1986) on the effect of cross-section for two-lane rural roads 
indicated that a paved shoulder widening of 2 feet per side reduces accidents by 16%, while reports of 
Miaou et al. (1993) and Zegeer et al. (1986) found reductions of 8% and 6.6%, respectively. The latter 
two reports take into account horizontal curvature and curve length as explanatory variables, while the 
former does not explicitly include horizontal alignment. Luyanda et al. (1983) showed that shoulder type, 
an amalgam that includes width and surface type, is a significant variable but did not define this variable 
in detail. The synthesis of Jorgensen (1978) reported a negative relationship between accidents and 
shoulder width for two-lane rural highways on the basis of studies done primarily in the 1950's and 1960's. 
Variation of shoulder width for Interstate Highways and other freeways exists mostly along the inside 
shoulder, and older reports indicate that accidents increase as the inside shoulder width increases, 
contrary to the findings of Miaou et al. (1993). The increase of accidents with inside shoulder width may 
be due to emergency parking on wider shoulders or to insufficient accident history in the older studies. 

Horizontal and Vertical Alignment 

Horizontal and vertical alignment can be expressed in alternative ways to capture the effect of individual 
curves (disaggregate) or a sequence of curves (aggregate). Examples of measures of horizontal 
curvature are as follows: 

 

 

https://www.fhwa.dot.gov/publications/research/safety/98133/ch02_02.cfm
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where L is the segment length in miles and {i} is the absolute horizontal angle between the i-th and 
(i+1)-th tangents, in degrees. Here AC is aggregate and {i} is disaggregate. Vertical grade variables 
can be expressed similarly. Researchers have used both aggregate explanatory variables (Polus, 1980; 
Kulmala and Roine, 1988) and disaggregate ones (Miaou et al. 1993; Zegeer et al., 1991) in the modeling 
process, although aggregate variables are not directly helpful to designers who are improving individual 
curves. Nevertheless, aggregate variables are useful as surrogates in evaluating alignment safety. In 
most of the referenced reports, the results confirm the common sense opinion that sharper and longer 
curves result in more accidents, regardless of whether the statistical techniques applied are multiple 
linear regression or generalized linear models. 

Roadside and Terrain Condition 

When roadside features such as slopes, guardrails, trees, poles, etc. are considered separately, the 
portion of accident rates explained by roadside features is weak. The reports by Graham and Harwood 
(1982) and Zegeer et al. (1986) indicate this drawback. Zegeer et al. (1991) reported that mountainous 
terrain type has a negative effect on safety. Zegeer et al. (1987), as noted in Chapter 1, packaged the 
roadside variables in a subjective measure called Roadside Hazard Rating based on visual evaluation of 
clear zone and sideslope. Roadside Hazard Rating takes numerical values from one to seven. This 
measure "indicates the accident damage likely to be sustained by errant vehicles on a scale from one 
(low likelihood of an off-road collision or overturn) to seven (high likelihood of an accident resulting in a 
fatality or severe injury)." On a segment length with variable hazards, an average or middle value is 
assigned. 

Speed 

Various attempts have failed to find relationships between accidents and speed, whether the latter is 
design speed, posted speed, or operating speed. One of the few models where speed is considered 
comes from Finland (Kulmala and Roine, 1988). A report of Fridstrøm et al. (1995) indicates that a 
change in posted speed lowered fatal accidents in Denmark. 

Driveways 

The influence of driveway accidents was highlighted by two studies (Fee et al., 1970; McGuirk and 
Staterly, 1976). Driveway density and driveway spacing were found to be significant safety factors. 
McGuirk and Staterly (1976) developed a linear model for accident rates Y: 

  

where X is driveway spacing. Figure 1, illustrating the relationship of accidents to 
driveway density, appears in Cirillo (1992), and was taken from the report of Fee et al. (1970). 
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Figure 1. Accident rates on non-interstate highways for selected highway types by 
number of business per mile (Cirillo, 1992). 

Intersection Models 

The methodology and statistical techniques used in a series of three reports (Lau and May, 1989; Lau 
and May, 1988; Naclerio et al., 1989) on signalized and unsignalized intersections are of interest to 
intersection modelers. Accident prediction models were developed to identify locations where accident 
experience was more frequent or more severe than normal, and to evaluate the safety consequences of 
alternative improvements. Factors and highway characteristics reported in the California data base were 
included in the model: accident data, traffic volumes, intersection features, and control types. However, 
variables such as degree of horizontal curvature and rate of vertical curvature, believed to be important, 
were not included. Unlike other partial studies, these models encompass all types of intersections, and 
the methodology addresses the successive stages of planning, design, and site improvement. 

Three types of accident severity were modeled separately: fatal, injury, and property damage only. 
Collision types such as angle, rear-end, etc., that may further explain the cause of accidents were missing 
from the model. A nonparametric statistical modeling technique known as the Classification Regression 
Tree (CART) was used to group intersections by significance of prediction. The response variable was 
number of accidents per year, with traffic volume used only as an explanatory variable. The CART 
technique has particular applicability to categorical and discontinuous variables. However, the 
classification obtained was not sufficiently detailed to reveal the effect of individual highway factors. For 
injury accidents, nine groups of signalized intersections were identified, and eight groups were identified 
for property damage only accidents. The model for fatal accidents was not reliable, with a correlation 
coefficient of only 0.009. As a starting point for the analysis of relationships, intersections are categorized 
by highway functional classification into groups that are assumed to perform differently. The potential for 
application to optimization, i.e., to help the designer choose highway characteristics that will minimize the 
expected number of accidents, was noted but no application was made. Another caveat of this 
methodology is implied in its tendency to produce a grouping not much different from the existing 
conventional State grouping. 
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Hauer et al. (1988) developed accident prediction models for signalized intersections by maneuver 
patterns (15 defined conflict patterns) before the occurrence of accidents. Each pattern involved at most 
two conflicting flows. A typical model form is as follows: 

 

where 

• E(m) = expected number of accidents for maneuver pattern m 
• F1 = traffic flow of turning movement 1 
• b1 = power of F1 
• F2 = traffic flow of turning movement 2 
• b2 = power of F2. 

Equations were derived for each of the 15 pre-accident patterns to compute the expected number of 
accidents. These equations can also be used to estimate the kinds of accident caused by traffic flow 
patterns. Their design consequences are limited because they are based exclusively on traffic flow 
variables, and these are uncontrollable. Unlike traffic flow patterns, physical elements such as 
channelization and alignment are manageable safety improvements. On the other hand, the models are 
negative binomial in form. This form, as the authors indicate, has the attractive feature that it can be 
modified by empirical Bayesian techniques to incorporate actual experience at an individual intersection. 

Garber and Srinivasan (1991) used traffic flow (left-turn volumes) movements as explanatory variables for 
predicting accidents during peak-hours and otherwise. Besides safety evaluations, these models are 
favorable for improvements such as installing left turn lanes and adding protected phasing. Despite high 
R2 values, the simple linear regression models used in this study are inadequate for discrete events such 
as accidents that have a very low mean and are not normally distributed. Moreover, these models predict 
accidents for elderly drivers, a small segment of the driver population. 

Intersection Variables 
Traffic Flow 

Traffic flows (ADT) have often been used as measures of exposure or as explanatory variables in 
modeling accidents at intersections. Many accident studies have used intersection accident rates in the 
form of accidents per million entering vehicles (Kuciemba and Cirillo, 1992). This type of rate has been 
used for safety performance evaluations and safety comparisons even though it does not take into 
account the magnitude of conflicting movements. Another common way to measure intersection accident 
rates is in accidents per unit time. McDonald (1966) exhibited a model relating accident frequency 
(accidents per year) to a product of powers of the cross-road and major road entering ADT. 

 

where 

• N = number of accidents per year 
• Vm = major road ADT in vehicles per day 
• Vc = cross-road ADT in vehicles per day. 

Leong (1973) proposed comparable but simpler models of the form: 
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A method for handling exposure measures developed by Surti (1965) was applied by Hakkert and 
Mahalel (1978). The latter authors proposed that accident frequency is linearly related to an exposure 
measure X, called index flow, calculated as the sum of the products of the flows at each of 24 conflict 
points defined by Surti. The model for urban intersections is as follows: 

 

Hauer et al. (1988), as already noted, used traffic flows for each conflict pattern to predict accidents, 
found different functional forms and coefficients for different patterns, and addressed the short- comings 
of simple models of intersection accidents in terms of flows. The need for detailed models by pattern is 
presumably greater for signalized intersections than it is for stop-controlled minor roads with low traffic. 

Control Type 

The safety effect of converting to all-way stop was contradictory in two papers (Lovell and Hauer, 1986; 
Persaud, 1986). Lovell and Hauer affirmed the benefit of converting to four-way stop, while Persaud 
rejected its effectiveness. King and Goldblatt (1975) concluded that signalization reduces right-angle 
accidents but increases rear-end accidents, with no significant change in total accident-related disutility. 

Sight Distance and Alignment 

Three reports relate intersection sight distance (ISD) to accidents (David and Norman 1975; Wu, 1973; 
Moore and Humphreys, 1975). David and Norman reported that an increase in sight radius reduces the 
number of accidents. Sight radius was defined to be an average of all intersection sight distances at 50 
feet from the intersection. Thus sight radius is not equivalent to the ISD defined in the AASHTO Design 
Manual, the so-called "Green Book." Wu cited the safety effect of clear vision and poor vision at both rural 
and urban signalized intersections. Clear and poor vision are qualitative descriptors as opposed to 
precise quantitative measures of ISD. Bared and Lum (1992), in a presentation on the safety 
effectiveness of intersection design elements, concluded that sight distance and other alignment variables 
are important at intersections. Among others, Urbanik et al. (1989) affirmed the significance of sight 
distance on crest vertical curves at intersections. Intersection sight distance will be indirectly considered 
in this study by surrogate variables: horizontal curvature, vertical curvature, and Roadside Hazard Rating. 

Artificial Neural Networks 

Artificial neural network applications have recently received considerable attention. The methodology of 
modeling, or estimation, is somewhat comparable to statistical modeling (Smith, 1993). Neural networks 
should not, however, be heralded as a substitute for statistical modeling, but rather as a complementary 
effort (without the restrictive assumption of a particular statistical model) or an alternative approach to 
fitting non-linear data. 

A typical neural network (shown in Figure 2) is composed of input units X1, X2, ... corresponding to 
independent variables (in our case, highway or intersection variables), a hidden layer known as the first 
layer, and an output layer (second layer) whose output units Y1, ... correspond to dependent variables 
(expected number of accidents per time period). 
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Figure 2. A Typical neural network. 

In between are hidden units H1, H2, ... corresponding to intermediate variables. These interact by means 
of weight matrices W(1) and W(2) with adjustable weights. The values of the hidden units are obtained from 
the formulas: 

 

One multiplies the first weight matrix by the input vector X = (X1, X2, ...), and then applies an activation 
function f to each component of the result. Likewise the values of the output units are obtained by 
applying the second weight matrix to the vector H = (H1, H2, ...) of hidden unit values, and then applying 
the activation function f to each component of the result. In this way one obtains an output vector Y= (Y1, 
Y2, ...). 

The activation function f is typically of sigmoid form and may be a logistic function, hyperbolic tangent, 
etc.: 

 

Usually the activation function is taken to be the same for all components but it need not be. 

Values of W(1) and W(2) are assumed at the initial iteration. The accuracy of the estimated output is 
improved by an iterative learning process in which the outputs for various input vectors are compared with 
targets (observed frequency of accidents) and an average error term E is computed: 
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Here 

N = Number of highway sites or observations 

Y(n) = Estimated number of accidents at site n for n = 1, 2, ..., N 

T(n) = Observed number of accidents at site n for n = 1, 2, ..., N. 

After one pass through all observations (the training set), a gradient descent method may be used to 
calculate improved values of the weights W(1) and W(2), values that make E smaller. After reevaluation of 
the weights with the gradient descent method, successive passes can be made and the weights further 
adjusted until the error is reduced to a satisfactory level. The computation thus has two modes, the 
mapping mode, in which outputs are computed, and the learning mode, in which weights are adjusted to 
minimize E. Although the method may not necessarily converge to a global minimum, it generally gets 
quite close to one if an adequate number of hidden units are employed. 

The most delicate part of neural network modeling is generalization, the development of a model that is 
reliable in predicting future accidents. Overfitting (i.e., getting weights for which E is so small on the 
training set that even random variation is accounted for) can be minimized by having two validation 
samples in addition to the training sample. According to Smith (1993), the data set should be divided into 
three subsets: 40% for training, 30% to prevent overfitting, and 30% for testing. Training on the training 
set should stop at the epoch when the error E computed on the second set begins to rise (the second set 
is not used for training but merely to decide when to stop training). Then the third set is used to see how 
well the model performs. The cross-validation helps to optimize the fit in three ways: by limiting/optimizing 
the number of hidden units, by limiting/optimizing the number of iterations, and by inhibiting network use 
of large weights. 

The major advantages and disadvantages of neural networks in modeling applications are as follows: 

Advantages 

· There is no need to assume an underlying data distribution such as usually is done in statistical 
modeling. 

· Neural networks are applicable to multivariate non-linear problems. 

· The transformations of the variables are automated in the computational process. 

Disadvantages 

· Minimizing overfitting requires a great deal of computational effort. 

· The individual relations between the input variables and the output variables are not developed by 
engineering judgment so that the model tends to be a black box or input/output table without analytical 
basis. 
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 The sample size has to be large. 

The disadvantages appear to outweigh the advantages, particularly in view of the black box effect. 
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Data Collection 

This chapter discusses the populations on which the study is based and how samples were selected from 
these populations, how sample data were collected, and the limitations on the quality of the sample data. 
Table 1 gives a list of the chief variables collected. 

The Populations and Sample Selection 

The States for which data were obtained are Minnesota and Washington. Both of these States are 
included in the Highway Safety Information System (HSIS), and both States have relatively well-
maintained data bases. In addition, data for recent years (1985 through 1994 for Minnesota and 1993 
through 1995 for Washington) were available, or became available in the course of the study. For 
Washington a shortcoming was the unavailability of a separate intersection file. 

The populations from which the samples were drawn were rural segments of two-lane roads and rural 
three- and four-legged intersections of two-lane roads stop-controlled on the minor road. The roads had 
to be present in State and HSIS databases, and thus the segment road or major road was always a State 
highway. Roads with unusually low traffic were not included, and other reasonable constraints were 
imposed. Samples were picked from the population in part randomly and in part systematically. Since the 
purpose of this study was not to summarize the population of each State, but rather to obtain insight into 
the effects of different variables, observations were selected with some view to achieving variety in traffic 
volumes, roadway width, and terrain. 

Minnesota Segments 

The sample of Minnesota segments was prepared as follows: 

i) HSIS files of homogeneous segments of State roads for two time periods, 1985-1987 and 1988-1989, 
were obtained and the constraints below were imposed. 

• rural two-lane, two-way, paved road 
• 17 feet < surface width 24 feet 
• left and right shoulder width differing by 2 feet or less 
• average of left and right shoulder width 12 feet 
• segment length > 0.1 mile 
• segment present in both time periods with characteristics unchanged 
• 5-year average daily traffic (ADT) > 5 vehicles 
• 5-year average daily commercial traffic > 5 vehicles 

ii) The resulting population consisted of 3,308 segments. Some statistics, derived from HSIS data, on this 
population are presented in Appendix 1. Median values of ADT, segment length, surface width, and 
shoulder width were obtained for the population and used to classify segments by high versus low ADT, 
high versus low segment length, high versus low surface width, and high versus low shoulder width. The 
population was then divided into 16 bins on the basis of whether each of the four variables was high or 
low. The resulting bins varied in size from 13 segments to 679 segments. Thirteen segments were 
randomly selected from each bin, along with a hundred other segments randomly selected from the 
remaining population as a whole, and these formed a pilot study sample of 308 segments. 

iii) The pilot study sample was eventually enlarged by the addition of 416 more segments so that all 
members of the six smallest bins were included in the sample. The sizes of these six bins ranged from 13 
segments to 45 segments. The selection method for the final sample was equivalent to exhaustion of the 
first six bins, a random choice of 45 segments from each of the remaining bins, and a random choice of a 
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hundred additional segments from the remaining bins without regard to bin membership. The resulting 
sample consisted of 724 segments. 

iv) For each of these segments an attempt was made to obtain photolog data (signage, Roadside Hazard 
Rating, driveways, intersections, speed limits) at FHWA and in Minnesota and to extract vertical and 
horizontal alignments along the segments as they were in the years 1985-1989 from construction plans in 
Minnesota. After much investigation and double-checking, relatively complete data could be acquired for 
619 segments. These constituted the final sample. The remaining segments were removed because 
photologs or construction plans were unavailable or were seriously incomplete, because significant 
regrading or realignment had been done in the time period 1985-1989, or in a few cases because 
photologs revealed that the segments were not two-lane roads. One segment was removed because the 
ADT was 22,710 vehicles per day, substantially higher than that of all others roads in the study. 

Minnesota Intersections 

The samples of Minnesota intersections were prepared as follows: 

i) HSIS files of intersections with main line a State road for two time periods, 1985-1987 and 1988-1989, 
were obtained and the constraints below were imposed. 

• rural environment 
• main line a U.S. trunk highway or Minnesota trunk highway 
• main line and cross-street two-lane, two-way road 
• stop sign on minor road, thru on main line 
• 17 feet < surface width 24 feet 
• intersection present in both time periods with characteristics unchanged 
• number of legs three or four 
• main line has two legs 
• main line does not change direction at intersection by more than 45  
• traffic data on major and minor roads obtained in 1982 or later 
• three-legged intersections of types tee or wye 
• four-legged intersections of types right angle or skewed crossing 

ii) The resulting populations consisted of 949 three-legged intersections and 1,156 four-legged 
intersections. See Appendix 1 for statistics concerning these two populations. Median values of main line 
ADT and minor road ADT were obtained for each population and used to classify intersections by high 
versus low major road ADT, and high versus low minor road ADT. Each population was then divided into 
four bins numbered 00 to 11, based on whether each of the two variables was high or low. 1 means high, 
0 low, and the first number refers to major road ADT, the second to minor road ADT. The resulting bins 
had the sizes shown below. 
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Table.  Minnesota Intersections. 

 

iii) Initially pilot study samples of 25 intersections were chosen randomly from within each of the eight 
bins. Examination of photologs showed that intersections in three of the bins failed to satisfy the 
constraints in disproportionately large numbers. So 10, 5, and 7 extra intersections were chosen 
randomly from the bins 3-legged 10, 3-legged 11, and 4-legged 10, respectively. Thereafter in the course 
of ensuing months an additional 100, then 160, and then 200 intersections were chosen randomly from 
the 3-legged bins in equal numbers; while an additional 100, and then 160 were chosen likewise from the 
4-legged bins. The total sample of 3-legged intersections consisted of 100 + 10 + 5 + 100 + 160 + 200 = 
575 intersections. The total sample of 4-legged intersections consisted of 100 + 7 + 100 + 160 = 367 
intersections. 

iv) For each of these intersections an attempt was made to obtain photolog data (signage, Roadside 
Hazard Rating, driveways, turning lane/bypass lane data, speed limits) at FHWA and in Minnesota, and to 
extract vertical and horizontal alignments for curves any portion of which were within 764 feet of an 
intersection along the main line from construction plans in Minnesota. The information was for the 
intersections as they were in the years 1985-1989. Relatively complete data could be acquired for 389 
three-legged intersections and 327 four-legged intersections. The remainder were eliminated because 
photologs showed that they did not satisfy the constraints, or plans were unavailable for them, or the 
intersections had significant construction during 1985-1989. 

Washington Segments 

The sample of Washington State segments was prepared as follows: 

i) HSIS files of homogeneous segments of State roads for the years 1993 and 1994 were obtained and 
the constraints below were imposed: 

• rural two-lane, two-way, paved road 
• 17 feet < surface width 24 feet 
• left and right shoulder width differing by 2 feet or less 
• average of left and right shoulder width 12 feet 
• segment length > 0.1 mile 
• segment present in both time periods with characteristics unchanged 
• 2-year average daily traffic (ADT) > 5 vehicles 
• no vertical curves of zero length with change of grade of 1% or more 
• no horizontal curves of zero length with angular change of 1  or more 

Unlike Minnesota, horizontal and vertical alignment data were available for Washington State in separate 
HSIS Horizontal and Vertical Curve files. 
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ii) The resulting population consisted of 6,144 segments. Median values of ADT, segment length, surface 
width, and shoulder width were obtained for this population. The median segment length was 0.36 miles 
(considerably lower than Minnesota's median of 0.5695 miles). The segments were classified by high 
versus low ADT, high versus low segment length, high versus low surface width, and high versus low 
shoulder width, with the medians as the division points except for segment length for which 0.600 miles 
was used. The population was then divided into 16 bins on the basis of whether each of the four variables 
was high or low. The resulting bins varied in size from 87 segments to 913 segments. 

iii) 61 segments were picked randomly from each of the 16 bins, for a total of 976 segments. An additional 
25 segments were picked for which the TERRAIN variable had the value "mountainous." 

iv) On the basis of videotape reviews, further examination of alignment variables, and an enlargement of 
the time frame to include the year 1995, the sample was reduced to a total of 712 segments. Some 
segments were eliminated because the videotapes showed that they did not meet the constraints (e.g., 
the environment was urban or the number of lanes had changed) or the alignment data contained 
anomalies such as a significant difference between the outgoing grade of one vertical curve and the 
incoming grade of the next. Others were omitted because in Washington State, unlike Minnesota, most 
segments begin and end with an intersection. After 250 feet were removed from one or both ends of 
segments in such cases, it was found that a significant number of segments no longer met the 
requirement that their length was greater than 0.1 miles. In addition, 1995 HSIS Washington State files 
became available at a relatively late stage of the study and the sample was further trimmed when the 
requirement was imposed that the segment also be present in the 1995 files with chief characteristics 
unchanged. 

Washington Intersections 

There are no HSIS intersection files for Washington State nor does the State maintain separate 
intersection files. Washington State videotapes were, however, accompanied by logs indicating the 
locations and names of all cross-streets along each State route. Since ADT data for county and local 
roads were not readily available, it was decided to note intersections of State roads found in the 
videotapes and satisfying the same constraints as the Minnesota data. This was not done for all 
Washington State videotapes, but only for ones being reviewed to extract data for the segment sample. A 
total of 431 intersections were reviewed by this method. 

The Washington State Department of Transportation provided a log of intersections for which it had ADT 
data on the cross-streets. The intersections in this log were intersections on State roads together with 
intersections in the Highway Performance Monitoring System. In addition, by inspecting HSIS road files, 
the Project Team was able to match major and minor State roads in some other cases to get ADT data. 
However, for some of the intersections no reliable estimate of cross-street ADT could be obtained. In 
addition, inspection of videotapes showed that some of the intersections failed to satisfy the intersection 
constraints imposed in Minnesota (e.g., they were not rural). When traffic, alignment, and roadway data 
were assembled, and incomplete observations removed, the resulting data sets, "opportunity" samples 
rather than a random samples, consisted of 181 three-legged intersections and 90 four-legged 
intersections. 

How Data were Collected 

Data were extracted from HSIS data files for Minnesota and Washington, from photologs for Minnesota 
and videotapes for Washington, and from construction plans at the Minnesota Department of 
Transportation. In addition, weather data for the state of Minnesota were acquired from the Midwest 
Climate Center. A number of small-scale investigations were also done that made use of other data 
provided by personnel at the respective Departments of Transportation. 
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HSIS data are stored in SAS databases. The needed data elements were extracted and assembled into 
SAS data sets representing the study populations with identifiers for each population bin. Random 
numbers were used to prepare SAS data sets representing the study samples (with the exception of the 
Washington intersections). Other sample data were recorded manually on specially prepared data sheets 
from photologs, videotapes, and plans. These were entered into SAS data sets that were merged with the 
HSIS data to obtain the full sample data sets. 

Numerous data checks were done at each stage. Second and sometimes third viewings of photologs, 
videotapes, and plans occurred, as well as consistency checks on SAS data base entries and some 
checks on the HSIS files themselves. Variables such as Roadside Hazard Rating were determined by two 
and sometimes three different individuals to minimize subjectivity. 

HSIS Data 

Accident data, traffic data, vertical and horizontal alignment data for Washington State, and other 
geometric data were extracted from HSIS files. These data were used in part to constrain the populations 
so that segments were on two-lane paved rural roads where segment lengths, surface widths, shoulder 
widths, ADT, and commercial ADT fell within prescribed ranges, while intersection geometries were three-
legged or four-legged with all legs two-lane and two-way rural roads. 

The data elements for the samples are those shown in Table 1. In the case of Washington State vertical 
and horizontal alignment data were obtained from HSIS files, but for Minnesota they were obtained from 
construction plans. 

Minnesota Photologs 

Photologs for the State of Minnesota were examined at FHWA's Turner-Fairbank Highway Research 
Center. In some cases photologs were not available at FHWA, but were found and examined at the 
Minnesota Department of Transportation (MNDOT) in Saint Paul, Minnesota. The photologs were used to 
verify HSIS data (e.g., rural environment, two lanes, stop sign on minor road), to determine Roadside 
Hazard Rating, to count driveways and intersections within a segment, to determine channelization at 
intersections, and to note posted regulatory and advisory speeds when seen. 

Minnesota Construction Plans 

Construction plans obtained in the Plan Office of MNDOT provided horizontal and vertical alignment data 
as well as the angle between legs at intersections. Location of plans was an arduous task, requiring that 
true beginning and ending mileposts of a segment or reference point of an intersection be matched up to 
the correct stations, that a control section be determined from a separate book, that a card file of projects 
by segment be consulted to discover any projects and project numbers, and then that the corresponding 
project plan sheets be recovered and verified. Plans were then copied and were examined in detail at a 
later time. 

Washington Videotapes 

Videotapes for the State of Washington's roadways were purchased from the Washington Department of 
Transportation and were reviewed at PRAGMATICS. Like the Minnesota photologs, the videotapes were 
used to verify the correctness of the HSIS data and to obtain Roadside Hazard Rating, speeds, numbers 
of driveways, and channelization. In addition, they were used to estimate the angle between legs at an 
intersection. 
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Weather Data 

Weather data were acquired for Minnesota intersections. The Midwestern Climate Center (MCC) in Illinois 
provided a listing of the nine Climate Districts in Minnesota, each of which is relatively homogeneous in its 
weather conditions. Weather data for each District are available based on averages of reports from local 
weather stations, many of which are run by volunteers. In Northern Minnesota the stations are sparser 
than elsewhere in the State. The percentages of dry, wet, snow/slush, and ice/pack snow days, 
respectively, for each year from 1985 to 1989 by Climate District were provided at a nominal charge. 
PRAGMATICS, Inc. staff attached these to segments and intersections falling within the corresponding 
Climate District. 

Modeling of the Minnesota data did not show the weather to be significant, possibly because the weather 
variable could not be localized to a level below the Climate District. Consequently, weather data were not 
acquired for Washington State. 

Miscellaneous Investigations 

Aerial photographs were consulted in both Minnesota and Washington for possible use in estimating 
horizontal alignment, intersection angles, and intersection channelization. The Photogrammetric Unit of 
MNDOT provided contact prints for 12 out of 20 requested intersections at a scale of 1" = 100'; the other 
eight were not available. Washington State provided a few sample prints of aerial photographs at a scale 
of 1" = 2,000'. Curvatures and angles could be readily made out from the Washington photos, but 
channelization at intersections was not readily ascertainable. Since the information could be obtained in 
other ways, not all intersections and segments were available in aerial photographs, and the cost was 
high in Washington State, it was decided not to acquire such photos for the full samples. 

Minnesota has nine Highway Districts. Each Highway District Office was queried for information about a 
sample of intersections (channelization installation dates, age of stop signs on minor roads). Age of stop 
signs is thought to be related to reflectivity and visibility. All nine Districts responded and provided some 
information, including sketches of the intersections. In all cases the channelization (turning and/or 
acceleration lanes) was installed prior to 1985, but exact installation dates were not available. Likewise 
the dates of stop sign installations were not generally available, but the District Offices indicated that stop 
signs were replaced on a 10-year schedule. 

Queries were also made in Minnesota about traffic data and commercial traffic data, as well as the 
availability of traffic data on county roads, and in both Minnesota and Washington about underreporting of 
accidents. Results are reported below. 

  

Table 1. Variables collected in the study 

    
MINNESOTA SEGMENTS 

    
Variable 

Meaning Units Source 

  
  

m_sysnbr Route number     
HSIS 
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Identifiers 

true_beg true beg. Milepost miles HSIS 

true_end true end milepost miles HSIS 

beg_sta beg. Station hundreds of feet Plans 

end_sta end station hundreds of feet Plans 

Traffic ADT Average daily traffic vehicles per day HSIS 

com_avg Average daily heavy vehicle 
traffic 

vehicles per day HSIS 

  
  
  
  
Miscellaneous 

LW lane width feet HSIS 

SHW Shoulder width feet HSIS 

RHR Roadside Hazard Rating 1, 2, 3, 4, 5, 6, 7 Photologs 

nodrwy, 
noint 

Number of driveways, number 
of intersections 

    
Photologs 

shl_typ Shoulder type     
HSIS 

light yes or no if lighting/no lighting     
Photologs 

terrain flat, rolling, or mountainous     
Photologs 

Weather dd, wd, ss, 
ips 

Number of dry, wet, 
snow/slush, ice/packsnow days 

days per year MCC 

  
  
Horizontal 
alignment 

pc{i} beg. Station of curve no. I hundreds of feet Plans 

pt{i} end station of curve no. i hundreds of feet Plans 

DEG{i} degree of curve, curve no. I degrees per 100 
ft 

Plans 

dir{i} Direction, left or right, curve no. 
i 

    
Plans 

  b{i} beg. Station of curve no. I hundreds of feet Plans 
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Vertical 
alignment 

e{i} end station of curve no. I hundreds of feet Plans 

g{i} grade no. i (prior to curve no. i) percent Plans 

Variables explicitly used in models are in capital letters; 1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 1. Variables collected in the study (continued) 

  
  

  
MINNESOTA SEGMENTS, continued 

  Variable   
Meaning 

Units Source 

  
  
Speed 

advspd advisory speed miles per hour Photologs 

regspd Regulatory speed miles per hour Photologs 

speed posted speed (accident sites only) miles per hour HSIS 

  
  
  
  
  
  
Accident 
data 

TOTACC total number of non-intersection 
accidents in 1985-9, 1990-3 

    
HSIS 

fatal, 
injury, 
nonincap, 
possinj, 
injunk, 
propdam 

no. of fatal, injury, 
non-incapacitating, possible injury, 
injury unknown, and property 
damage only non-intersection 
accidents 

    
HSIS 

rearend, 
sswipe, 
leftturn, 
rorleft, 
rtangle, 
riteturn, 
rorright, 
headon, 
sswipopp, 
other, 
unknown 

no. of rearend, sideswipe, left turn, 
run-off-road left, right angle, right 
turn, run-off-road right, headon, 
sideswipe opposite, other, and type 
unknown accidents 

    
HSIS 
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Table 1. Variables collected in the study (continued) 

    
MINNESOTA THREE-LEGGED AND FOUR-LEGGED INTERSECTIONS 

Variable Meaning Units Source 

  
  
Identifiers 

int_synb Route number     
HSIS 

refpnt nominal milepost of intersection center miles HSIS 

true_sta station of intersection center hundreds of 
feet 

Plans 

  
Traffic 

int1 average daily traffic on major road vehicles per 
day 

HSIS 

int2 average daily traffic on minor road vehicles per 
day 

HSIS 

  
  
  
Miscellaneous 

RHRI Roadside Hazard Rating within ±250 ft 
on major road 

1, 2, 3, 4, 5, 6, 
7 

Photologs 

ND number of driveways within ±250 ft on 
major road 

    
Photologs 

light yes or no if lighting or no lighting     
Photologs 

terrain flat, rolling, or mountainous     
Photologs 

Weather dd, wd, 
ss, ips 

number of dry, wet, snow/slush, 
ice\packsnow days 

days per year MCC 

  
  
Horizontal 
Alignment on 
major road 

pc{i} beg. station of curve no. i (if any 
portion of curve is within ±764 ft of 
intersection center along major road) 

hundreds of 
feet 

Plans 

pt{i} end station, curve no. i hundreds of 
feet 

Plans 

DEG{i} degree of curve, curve no. I degrees per 
hundred feet 

Plans 
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dir{i} direction, left or right, curve no. I     
Plans 

  
  
Vertical 
alignment on 
major 
Road 

b{i} beg. station of curve no. i (if any 
portion of curve is within ±764 ft of 
intersection center along major road) 

hundreds of 
feet 

Plans 

e{i} end station of curve no. I hundreds of 
feet 

Plans 

g{i} grade no. i (prior to curve no. i) percent Plans 
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Table 1. Variables collected in the study (continued) 

  
  

  
MINNESOTA THREE-LEGGED INTERSECTIONS ONLY 

Variable Meaning Units Source 

  
Angle 

angle angle between increasing direction of major 
road and third leg 

degrees Plans 

dir_ang direction of third leg (left or right ) from 
increasing dir. of major road 

    
Plans 

  
  
  
  
Channelization 

tlml yes or no whether a right turn lane does or 
does not exist on major road 

    
Photologs 

tlcs yes or no whether a right turn/acceleration 
lane does or does not exist on the minor 
road 

    
Photologs 

bypass yes or no whether a bypass lane does or 
does not exist on the major road (opposite 
the minor road) 

    
Photologs 
  

  
  

  
MINNESOTA FOUR-LEGGED INTERSECTIONS ONLY 

  
  
Angle 

l_angle angle between increasing direction of major 
road and left leg of minor 

degrees Plans 

r_angle angle between increasing direction of major 
road and right leg of minor 

degrees Plans 

  
  
  
  
Channelization 

tlml1 yes or no whether a right turn lane does or 
does not exist along increasing direction of 
major road 

    
Photologs 

tlml2 yes or no whether a right turn lane does or 
does not exist along decreasing direction of 
major road 

    
Photologs 

l_tlcs yes or no whether a right turn/acceleration 
lane does or does not exist on the left leg of 
the minor road 

    
Photologs 
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r_tlcs yes or no whether a right turn/acceleration 
lane does or does not exist on the right leg 
of the minor road 

    
Photologs 

  

Table 1. Variables collected in the study (continued) 

  
  

  
WASHINGTON SEGMENTS 

    
Variable 

  
Meaning 

Units Source 

  
  
Identifiers 

rte_nbr Route number     
HSIS 

begmp beg. Milepost miles HSIS 

endmp end milepost miles HSIS 

Traffic ADT average daily traffic vehicles per 
day 

HSIS 

com_avg average daily heavy vehicle traffic vehicles per 
day 

HSIS 

  
  
  
  
Miscellaneous 

LW lane width feet HSIS 

SHW shoulder width feet HSIS 

RHR Roadside Hazard Rating 1, 2, 3, 4, 5, 6, 
7 

Photologs 

nodrwy number of driveways     
Photologs 

noint number of intersections     
Photologs 

light yes or no if lighting or no lighting     
Photologs 

terrain flat, rolling, or mountainous     
Photologs 
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Horizontal 
alignment 

pc{i} beg. milepost of curve no. I miles HSIS 

pt{i} end milepost of curve no. i miles HSIS 

rad{i} radius of curve, curve no. I feet HSIS 

dir{i} direction, left or right, curve no. I     
HSIS 

  
Vertical 
alignment 

b{i} beg. milepost of curve no. I miles HSIS 

e{i} end milepost of curve no. I miles HSIS 

g{i} incoming grade no. I percent HSIS 

h{i} outgoing grade no. I percent HSIS 

   
  

  
WASHINGTON SEGMENTS, continued 

    
Variable 

  
Meaning 

Units Source 

  
  
  
Speed 

advspd advisory speed miles per hour Photologs 

regspd regulatory speed miles per hour Photologs 

spd_limt posted speed miles per hour HSIS 

hspd{i} speed on horizontal curve no. I miles per hour HSIS 

vspd{i} speed on vertical curve no. I miles per hour HSIS 

  
  
  
  
Accident 
data 

TOTACC total number of non-intersection 
accidents in 1993-5 

    
HSIS 

fatal, 
injury, 
nonincap, 
possinj, 
injunk, 
propdam 

no. of fatal, injury, 
non-incapacitating, possible injury, 
injury unknown, and property 
damage only non-intersection 
accidents 

    
HSIS 

RORACC   
number of run-off-road accidents 

    
HSIS 
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Table 1. Variables collected in the study (continued) 

  
  

  
WASHINGTON THREE-LEGGED AND FOUR-LEGGED INTERSECTIONS 

Variable Meaning Units Source 

  
  
Identifiers 

rte_nbr Route number     
HSIS 

arm accumulated milepost of intersection 
center 

miles HSIS 

  
Traffic 

ADT1 average daily traffic on major road vehicles per 
day 

HSIS 

ADT2 average daily traffic on minor road vehicles per 
day 

HSIS 

  
  
  
Miscellaneous 

RHRI Roadside Hazard Rating within ±250 
ft on major road 

1, 2, 3, 4, 5, 6, 
7 

Photologs 

ND number of driveways within ±250 ft on 
major road 

    
Photologs 

light yes or no if lighting or no lighting     
Photologs 

terrain flat, rolling, or mountainous     
Photologs 

  
  
Horizontal 
Alignment on 
major road 

pc{i} beg. milepost of horizontal curve no. i 
(if any portion of curve is within ±764 
ft of intersection center along major 
road) 

miles HSIS 

pt{i} end milepost, curve no. i miles HSIS 

rad{i} radius of curve, curve no. I feet HSIS 

dir{i} direction, left or right, curve no. I     
HSIS 

  
  

b{i} beg. milepost of vertical curve no. i (if 
any portion of curve is within ±764 ft 
of intersection center along major 
road) 

miles HSIS 
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Vertical 
alignment on 
major 
Road 

e{i} end milepost of vertical curve no. i miles HSIS 

g{i} grade no. I percent HSIS 

   
  

  
WASHINGTON THREE-LEGGED AND FOUR-LEGGED INTERSECTION, continued 

Variable   
Meaning 

Units Source 

  
Speed on 
major road 

advspd advisory speed miles per hour Photologs 

regspd regulatory speed miles per hour Photologs 

ap_spd posted approach speed miles per hour HSIS 

  
  
  
  
  
  
  
  
  
  
Accident 
data 

TOTACC number of intersection accidents or 
intersection-related accidents 
occurring within ±250 feet of 
intersection on major road during 
1985-9, 1990-3 

    
HSIS 

fatal, 
injury, 
nonincap, 
possinj, 
injunk, 
propdam 

no. of fatal, injury, 
non-incapacitating, possible injury, 
injury unknown, and property 
damage only accidents 

    
HSIS 

rearend, 
sswipe, 
leftturn, 
rorleft, 
rtangle, 
riteturn, 
rorright, 
headon, 
sswipopp, 
other, 
unknown 

no. of rearend, sideswipe, left turn, 
run-off-road left, right angle, right 
turn, run-off-road right, headon, 
sideswipe opposite, other, and type 
unknown accidents 

    
HSIS 

RORACC number of run-off-road accidents     
HSIS 
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Table 1. Variables collected in the study (continued) 

  
  

  
WASHINGTON THREE-LEGGED INTERSECTIONS ONLY 

Variable Meaning Units Source 

  
Angle 

angle angle between increasing direction of 
major road and third leg 

degrees Photologs 

dir_ang direction of third leg (left or right ) from 
increasing dir. of major road 

    
Photologs 

  
  
  
  
Channelization 

tlml yes or no whether a right turn lane does 
or does not exist on major road 

    
Photologs 

tlcs yes or no whether a right 
turn/acceleration lane does or does not 
exist on the minor road 

    
Photologs 

bypass yes or no whether a bypass lane does or 
does not exist on the major road 
(opposite the minor road) 

    
Photologs 
  

  
  

  
WASHINGTON FOUR-LEGGED INTERSECTIONS ONLY 

  
  
Angle 

l_angle angle between increasing direction of 
major road and left leg of minor 

degrees Photologs 

r_angle angle between increasing direction of 
major road and right leg of minor 

degrees Photologs 

  
  
  
  
Channelization 

tlml1 yes or no whether a right turn lane does 
or does not exist along increasing 
direction of major road 

    
Photologs 

tlml2 yes or no whether a right turn lane does 
or does not exist along decreasing 
direction of major road 

    
Photologs 

l_tlcs yes or no whether a right 
turn/acceleration lane does or does not 
exist on the left leg of the minor road 

    
Photologs 

r_tlcs yes or no whether a right 
turn/acceleration lane does or does not 
exist on the right leg of the minor road 

    
Photologs 
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Limitations on Data Quality 

As noted, numerous checks were performed on the data. Examples of such checks were repeated 
reviews of plans and photologs, comparisons of values of multiple variables for consistency (for example, 
radius of curvature versus degree of curve), use of computer programs to flag unusually large values of 
variables, and to confirm that ordering was preserved (beginning milepost comes earlier than end 
milepost for each curve). However, the accuracy of the data was limited by a number of inherent factors 
discussed below. 

Accident Data 

Accident data were obtained from HSIS files. 

Segment accidents were required to be "non-intersection" accidents, i.e., accidents that did not occur at 
intersections and were not intersection related. Intersection accidents were accidents at intersections in 
the database and all intersection-related accidents occurring within ± 250 feet of an intersection in the 
database. In the Minnesota data, a variable called "INTERSE" was used in the segment database to 
exclude accidents with the values "intersection" or "intersection-related" and in the intersection databases 
to include accidents with precisely these values. In Washington a variable called "LOC_TYPE" was used 
in the segment database to eliminate all accidents coded as: at intersection and related, intersection 
related but not at intersection, at intersection but not related, driveway within intersection. Likewise, 
"LOC_TYPE" was used to retain precisely these accidents when they were within 250 feet of the 
intersection under study. Accidents occurring on the minor road at an intersection approach were typically 
coded to the major road at the intersection. 

Severities were also recorded for each accident, while accident types (run-off-road, etc.) were recorded 
for Minnesota. In the case of Washington, accident types were not recorded since the accident file has 
elaborate subcategories that differ significantly from those of Minnesota. An exception was made in the 
case of run-off-road accidents. A Washington State variable called "V1EVENT2" in the HSIS file was used 
to estimate whether an accident was of run-off-road type: If the accident was a single vehicle accident in 
which the vehicle struck an appurtenance or other object, overturned, ran into a ditch or river or over an 
embankment (these are categories in the file), it was taken to be a run-off-road accident. 

Underreporting of accidents was a matter of some concern. In both States during the time periods under 
consideration, accidents involving either injuries or property damage of $500 or more had to be reported. 
In Minnesota the reporting threshold rose to $1,000 as of August 1, 1994. The amount of any 
underreporting is a matter of speculation (one source in Minnesota thought there might be one minor 
unreported accident for each reported one because accident-prone drivers wish to avoid both penalties 
for intoxication and insurance premium increases). 

The reliability of the reported accident characteristics depends on the acumen of the reporting officer or 
official and witnesses as well as on the comparability of variables between the two States. 

Traffic Data 

The HSIS traffic variables in Table 1, ADT and com_avg, derive from Minnesota and Washington traffic 
count data. 

ADT data for the Minnesota segments appear to have been reliably estimated on a timely basis. Two 
multi-year data sets, 1985-1987 and 1988-1989, and four annual data sets, 1990, 1991, 1992, and 1993, 
were available for this study. The traffic data in these sets seem to have been based on measurements 
and calculations, e.g., interpolation and/or extrapolation both along roads and in time. The HSIS 
Guidebook dated October 1993 notes that traffic data on major roads are collected on a two-year cycle, 
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and on minor rural roads on a four-year cycle, and that growth factors are applied for the years in which 
measurements are not made. 

According to MNDOT manual counts, including detailed classification of vehicle types, are done at about 
a thousand sites around the State. In a manual count a person stands at the roadside and counts and 
classifies every vehicle that passes over a 16-hour period (from 6 AM to 10 PM on a weekday). One 
hundred of the sites, the major ones, are counted every 2 years; and another 900 every 6 years. Every 2 
years estimates are produced of ADT and commercial ADT throughout the State. Count locations do not 
exist on every segment but are averaged from those of adjacent segments along relatively homogeneous 
roads. A count might be done once in, say, 6 miles in some places. 

The vehicle types that are summarized under the variable com_avg in Table 1 are heavy vehicles, 
defined as those with two or more axles and six or more tires. On roads with low traffic, about 25% of the 
heavy vehicle traffic consists of five-axle semis, usually with 18 wheels; on roads with high traffic about 
75% is five-axle semis. A twin trailer (cab + tractor + trailer + another trailer) with perhaps five or six axles, 
along with most three-axled trucks without tractors, would be counted as a heavy vehicle but not a semi. 
The variable com_avg is thought not to be as accurate as ADT. 

Minnesota intersection traffic data are somewhat less reliable than segment traffic data. The intersection 
files from Minnesota give traffic counts for both the major and minor roads, along with the year in which 
these data were acquired. Not only are the years quite variable from intersection to intersection, varying 
from 1976 to 1992, but very few of them appear to have been updated between the 1985-1989 time 
period files and the 1990-1993 time period files. Traffic counts had been made only once in the years 
from 1987 to 1993 and annual files just repeated the value of an earlier year. In other cases no traffic 
counts had been made since 1986 or earlier. 

In view of this unreliability, efforts were made to determine a growth rate factor that could be used to 
update traffic counts to the time periods of interest. MNDOT personnel reported that population growth 
rates did not relate in a simple fashion to traffic flow (so traffic counts on an intersection could not be 
updated from one year to the next by a population growth multiplier). Sometimes traffic counts will be 
higher when new development and construction is going on and then will ease off when the buildings and 
houses are occupied. A program was written to extract a growth rate by least squares from traffic data for 
segments near the intersection and thereafter use the year of intersection traffic count to extrapolate to an 
ADT for the years 1987 and mid-1991. The Minnesota intersection traffic variables used in the modeling 
and validation below, ADT1 and ADT2, were derived from int1 and int2 by means of this program. 

Washington State traffic data became available at a relatively late stage of this study but only for 
segments and for some intersections along segments. The traffic data were based on upstream traffic 
counts, but in some cases the count stations were rather far upstream, 10 or more miles. The Project 
Team considered averaging a downstream count and an upstream count when the upstream count was 
at a significant distance, but decided against it in order to maintain conformity with HSIS files. The chief 
concern with these data, apart from the distance of count stations, is that routes, alternate routes, and 
each half of certain divided highways have similar labels and considerable programming is required to 
ensure that a count lies on a route of interest rather than a related one. According to the HSIS 
Washington Guidebook, a small number of the count stations are permanent and a large number of 
others are used for 72-hour counts every second or third year. The counts for com_avg are considered to 
be less reliable than the overall counts, in part because they are based on fewer stations. Washington 
State Department of Transportation personnel observed that the truck counts are done on weekdays, that 
com_avg is based on this figure, and that it might be better to take the weekday figure and add 10% to 
20% to get the overall weekly value. It was also noted that the percentage of truck traffic on a road can 
vary from 4% to 17% at different times of year, chiefly because of seasonal variation in the non-truck 
traffic. 
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Alignment Data 

Horizontal and vertical alignment data came from construction plans in the case of Minnesota and from 
HSIS horizontal and vertical curve files in the case of Washington. 

The Minnesota plans varied in age from a few years prior to 1985 to approximately 1920. Special effort 
was made to determine that these plans showed the latest alignment or realignment and that no 
realignment was done during the time periods under study. Nonetheless it is possible that some roads 
were realigned and that plans were never conveyed to the Minnesota Plan Office. The Plan Office plans 
are primarily Federal aid projects, and State and County aid projects sometimes do not get recorded at 
the State Plan Office. In addition to location problems (discussed below), problems sometimes arose 
because of illegibility of markings on the plan and inconsistencies between alternative measures (e.g., 
radius versus degree of curve, or beginning and end of curve versus length of curve) written on the plan. 
These were typically resolved by a judgment as to which number was most plausible. A few horizontal 
curves had spiral transitions at beginnings and/or ends. These were not recorded but a judgment was 
made as to a beginning and endpoint for a single idealized horizontal curve. A very small fraction, 2% or 
less, of vertical curves were represented in the plans as angle points, where the grade changes without a 
transition, typically a small change. Our initial understanding was that no such transitions occurred on 
Minnesota major roads and these points were edited so that a transition curve of 50 feet was introduced. 
Later, visiting Minnesota engineers reported that angle points do occasionally occur on main roads. 

The Washington State alignment data were represented by a Horizontal Curve file and a Vertical Curve 
file. Many segments and intersections were eliminated from the sample because of anomalies in the 
values in these files, but the ones that remained also had minor anomalies. Because of rounding errors in 
the original Washington data (not enough significant digits kept) some curves appeared to overlap, and 
editing had to be done to restore plausible beginning and ending points for curves. In addition in some 
cases there were small differences between the ending grade of one vertical curve and the beginning 
grade of the next. When the intervening stretch was treated as a straightaway during the modeling, its 
grade was taken to be the average of the two neighboring grades. A few angle points occurred for both 
horizontal and vertical curves with small grade changes or small angle change. Curve lengths were 
adjusted to 50 feet for these exceptional cases. 

Location Uncertainties 

Minnesota data compilation was hampered by the fact that HSIS files, Minnesota photologs, and 
Minnesota construction plans use three different ways of measuring distance: true mileposts, nominal 
mileposts, and control stations. HSIS variables begmp and endmp and true_beg and true_end refer 
respectively to nominal beginning and ending mileposts and true beginning and ending distances of 
segments. Both the Minnesota photologs and the Minnesota accident data are keyed to nominal 
mileposts rather than true distances, and the primary usage of true_beg and true_end is to calculate 
segment length. The milepost of an accident in the accident files is nominal rather than true distance, and 
the tenths of a mile shown on Minnesota photologs are nominal mileposts not true distance. This was 
confirmed by MNDOT personnel and by comparison of photologs with the Minnesota List-Trumile-File for 
Trunk Highways. This latter book, a print-out of a file (our copy was dated September 1, 1988) obtained in 
Minnesota, had a listing of all State highways along with reference posts (i.e., nominal mileposts), true 
distances, and control stations, most of the entries effective as of 1977 (but with some updates as recent 
as 1983). 

Control stations, used in the construction plans, are local numbers, in hundreds of feet, and may be 
equated to nominal mileposts by use of the just mentioned file. Many plans contain station adjustments 
(places where a gap in the stations occurs) and converting back and forth between the various units is an 
art. This conversion is especially difficult for intersections. The intersection reference point, the nominal 
milepost of the intersection center, is sometimes not adequately tied to construction plans or to features 
on the photologs: station numbers of nearby landmarks are occasionally either wrong or absent, and 
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interpolation adds a further source of error. Plans, sometimes of ancient vintage, do not show an 
intersection or expected landmark, or else are ambiguous (two or more intersections or landmarks shown 
in the plan are plausible candidates for the sought after one). This is particularly true of three-legged 
intersections since these are the least well-marked, least documented, and least significant data class. 

Linking a particular intersection to its photolog and to a particular site on a plan involves a comparison 
among four different numbers: the reference point for the intersection, the distance recorded on the 
photolog, the true distance recorded by the State, and the station number in the construction plans. 
Sometimes discrepancies occur among these numbers: the intersection may be at a slightly different 
point than expected in the photolog, or it may be several hundred feet away from its expected location in 
the plan. When the plan does not show an intersection in the near vicinity of the expected spot, an 
identifiable landmark must be found to verify locations and in some cases this is quite difficult. 

For Washington State data, distances are measured in ARM's (accumulated route miles). The ARM is a 
true milepost, used in all of the HSIS files: roadway, traffic, accident, and alignment. Only the videotapes 
are in nominal mileposts, but a logbook permits unambiguous translation back and forth. Discrepancies 
were rare, perhaps because Washington Department of Transportation personnel had already resolved 
them. The only issue of concern was rounding errors, noted above. 

A final caveat with respect to location concerns the accident data. MNDOT indicated that the accident 
data reviewers attempt to locate a nearby physical feature mentioned in the police report. They then 
determine the reference point for that feature and add an adjustment, typically a few hundred feet, to get 
to the accident site. The reviewers aim to get within 50 feet of the true accident site. They also assign a 
reliability code to their estimate. 

Time Uncertainties 

HSIS traffic and roadway data, the Minnesota construction plan data, and the photolog data are all 
supposed to apply to the time intervals under consideration. Rural areas might be expected to change 
more gradually than urban and suburban areas. However, some variables such as traffic data are based 
on averages of discrete observations that may not be representative. Others, including Minnesota 
intersection traffic data discussed above, may be out of date. Photolog years in Minnesota vary from 1987 
to 1990 and in Washington from 1993 to 1995; changes in the number of driveways, speed limits, 
channelization, etc., may have occurred before or after the photolog was obtained. 

For validation of the Minnesota model, 1990-1993 data were used. Since construction plans and 
photologs for the new time period were unavailable, some variables could not be re-measured. So it was 
assumed that these were generally unchanged. 

Miscellaneous Limitations 

Data acquired from the photologs were subject to various limitations. Minnesota photologs in reels and 
CD-ROMs offered a larger visual field than the videotapes acquired from Washington State. On the other 
hand, the latter were accompanied by audio that indicated signage and roadside features and gave the 
numbers on sometimes otherwise unreadable speed limit signs. The Washington voice-over also 
provided intersecting street and route names and was accompanied by a written log. In both cases some 
effort was required to verify that minor roads had stop signs, to determine channelization, and to assess 
whether a driveway had been seen along the road. Driveways, for example, can sometimes be mistaken 
for footpaths. In addition, for Washington State the photologs were used to estimate angle of intersection 
between major and minor roads, and limited visibility along minor roads made this difficult. 

Roadside Hazard Rating was determined from the photologs. Different observers would not always agree 
on the value of this subjective variable (values of two, and sometimes three, independent observers were 
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averaged, and photologs were re-inspected in some cases). The hazard rating sometimes varied 
substantially along a segment. With regard to intersections, it was more difficult to arrive at values in the 
vicinity of Washington State intersections since the roadsides at these intersections tended to be less 
rural than their Minnesota counterparts (small town streets rather than country roads), and the proper 
rating to assign to a roadside business or residence was not always evident. 

Weather data collected by the Midwest Climate Center, as already noted, were limited by the fact that 
they were not sufficiently local. 

The treatment of intersections along a segment was not quite consistent between Minnesota and 
Washington. In Minnesota very few segments began or ended at an intersection, and for the few that did 
(thought to be less than 5%) no attempt was made to remove, say, 250 feet from the segment and 
shorten it by omitting the intersection vicinity. In Washington most of the segments began and/or ended 
with an intersection, and all such segments were shortened by removal of 250 feet at each end where an 
intersection was encountered. On the other hand, no internal intersections were removed from the 
segments in either State. In Washington 95% of the segments contained no internal intersections, but in 
Minnesota more than half of the segments contained at least one intersection. This means that in 
Minnesota accidents along segments are more likely to include accidents that happened near 
intersections (although they would not be intersection-related or at an intersection). 

It should also be noted that some desirable variables were omitted from the study altogether, e.g., 
superelevations, alignments on minor roads, actual speeds, and sight distances. To some extent the 
latter are represented in, or can be reconstructed from, horizontal and vertical alignment as well as 
Roadside Hazard Rating, but a direct unambiguous measurement is lacking. Also excluded, of course, 
are detailed information about drivers and vehicles on the road; accident circumstances such as time of 
day, week, and year; and weather at the time and place of an accident. To some extent demographic 
conditions such as ages of drivers and law enforcement practices are incorporated in the STATE variable 
(see below). 

SUMMARY 
Limitations on Data Quality 

Minnesota and Washington State data were constrained to lie on rural two-lane roads with segment 
length 0.1 miles or longer with both segments and intersections having reasonable bounds on ADT. Other 
reasonable constraints were also imposed, including relatively complete and consistent data for the time 
periods of interest. Many observations from the original populations were lost when these constraints 
were imposed, but good-sized samples remained. The Washington intersection samples, "opportunity" 
samples, were smaller than the other samples and it is not known how representative they are of the 
population of Washington State intersections. 

Data collected include: accident counts, exposure and ADT, lane and shoulder widths, Roadside Hazard 
Rating, number of driveways, horizontal and vertical alignments, commercial traffic percentage, weather 
(in Minnesota), intersection angles and channelization, and speed limits. These data are often estimates 
based on averages and are subject to some uncertainties in location and time. ADTs are based on 
observations at selected sites, interpolation, and/or extrapolation, and are particularly crude estimates in 
the case of intersections. In view of the importance of ADT in the modeling, the crudity of these estimates 
should serve as a caution. 

Driver and vehicle characteristics were not collected, nor were such design variables as sight distances 
and minor road alignments. 

Despite shortcomings in quality and completeness, the data obtained provide a relatively diverse and 
comprehensive basis for analysis and modeling. 
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Analysis 

To analyze the data acquired for the segments and intersections, a variety of new variables were 
developed based on the originally collected variables. It has already been noted that the traffic variables 
used for modeling the Minnesota intersections were obtained from the original variables by applying 
growth factors from nearby segments. There was significant variation in the number and size of vertical 
and horizontal curves from segment to segment and from one intersection to the next. Thus aggregate 
variables were developed for vertical and horizontal alignment to summarize alignment data and permit 
direct comparison of one observation with another. Other variables were developed for such items as 
exposure, driveway density, and intersection density. A speed variable was developed from the multiple 
speed variables collected. 

For both the new variables and the old, univariate statistics were compiled showing their distributions in 
each data set. In preparation for the modeling effort, bivariate comparisons were also done to reveal 
correlations between variables and to clarify relationships among variables. 

In this chapter we discuss the new variables and exhibit and review the univariate and bivariate statistics 
for both old and new variables. See the Index of Variables, at the beginning of this report, for a 
comprehensive listing of variables used in the modeling. 

New Variables 
Accident Variables 

Accident data for all data sets includes information on severities. So, in addition to the variable TOTACC 
for all non-intersection accidents along a segment and all intersection accidents within 250 feet of an 
intersection, a variable, INJACC, excluding property damage only accidents was introduced. INJACC 
counts fatal accidents and the various types of injury accidents (fatal + injury + non-incapacitating + 
possible injury). In the case of Minnesota some logistic modeling of severities was also done to determine 
the probability that an accident is severe. This made use of a severity variable Y defined on an accident 
database developed at the same time as the Minnesota segment and intersection data sets. This variable 
had value 1 if an accident was in one of the first two classes (fatal or injury) and value 0 otherwise (non-
incapacitating, possible injury, or property damage only). 

Run-off-road accidents are described by the variable RORACC. In Minnesota this is the sum of run-off-
road left accidents and run-off-road right accidents. In Washington it was obtained indirectly from the 
HSIS variable V1EVENT2, as explained earlier. 

Traffic Variables 

A variable seg_lng, representing segment length in miles, is used to develop an exposure variable EXPO 
for segments. Seg_lng is obtained from true_beg and true_end in Minnesota and from begmpr and 
endmpr in Washington data (begmpr and endmpr are begmp and endmp with 250 feet removed if the 
segment begins or ends at an intersection). The variable EXPO is then given by: 

 

The units of EXPO are millions of vehicle-miles (MVM). 

The Minnesota and Washington intersection traffic variables are ADT1 and ADT2. These represent 
estimated average daily traffic on the major and minor road, respectively. As noted already, for Minnesota 
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these variables are derived by applying growth factors to the Minnesota traffic variables, which tend to be 
somewhat out of date. In addition, a variable CINDEX, conflict index, is used for Minnesota intersection 
accident severity modeling. CINDEX is defined to be the ratio of average daily traffic entering the 
intersection from the minor road to average daily traffic entering the intersection from both minor and 
major road. CINDEX is given by: 

 

Commercial traffic is represented in both segment and intersection databases by the variable T: 

 

Horizontal Alignment Variables 

For horizontal curves DEG{i}, the degree of curve in degrees per hundred feet, is an important variable. It 
was present in the Minnesota data, while in the Washington data it had to be computed from the familiar 
formula: 

 

where the radius is in feet. 

Various criteria were considered to determine how horizontal curves that were not entirely within a 
segment would be treated. One possible approach was to restrict attention to horizontal curves whose 
midpoints lie in the segment. This possibility was explored. However, the approach ultimately adopted 
was to regard a horizontal curve as eligible if any portion of it overlapped the segment. Variables 
associated with individual eligible horizontal curves are: 

 

where seg_lngh is the segment length increased by adding on any portions of horizontal curves that fall 
outside the segment. These dimensionless weights are two different ways of taking into account the fact 
that horizontal curves may lie partly inside a segment and partly outside (or can even properly contain the 
segment). If two-thirds of the curve is inside, WH{i} has a numerator equal to two-thirds the numerator of 
whm{i} while the latter has a denominator equal to the denominator of WH{i} plus one-third the curve 
length plus lengths of portions of any other horizontal curve that lie outside. These weights are 
intrinsically non-negative, summing to a number less than or equal to 1. 
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Although in the final model for segments the variable WH{i} appears explicitly and each horizontal curve 
makes a separate contribution, in general the curves have to be aggregated in some fashion. The 
following aggregate variables are used in some segment models: 

 

For the study of horizontal curves at intersections, each intersection was treated as a segment extending 
± 250 feet along the major road from the intersection center or sometimes ± 764 feet. Two hundred fifty 
feet (or approximately 75 meters) is a typical length of an acceleration lane onto the major road, while 764 
feet (approximately 233 meters) is a typical distance required for a vehicle turning onto a major road from 
a minor leg to achieve reasonable speed. Horizontal curves were considered eligible if they met this 
artificial segment. Aggregate variables of the following form were considered: 

 

where the sum is over the corresponding curves. HI and HEI (E for extended) are the unweighted 
averages of the degrees of curvature of the corresponding curves. 

Vertical Alignment Variables 

Vertical alignment variables are subject to some of the same considerations as horizontal alignment 
variables. 

 

Figure 3.  A vertical curve. 

A basic variable associated with each vertical curve is V{j}: 
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with units of percent per hundred feet. Change of grade g{j} equals g{j} - g{j+1} for the Minnesota data 
and g{j} - h{j} for the Washington data and l{j} is the length of the curve in hundreds of feet. Likewise a 
weight is associated with each individual curve that meets a segment, namely WV{j}: 

 

The aggregate variables VC, VM, VMC, and VMCC were used for segment models: 

 

Crest curves are vertical curves for which the grade decreases (positive to negative, positive to less 
positive, negative to more negative), and crests of type I are crests for which the grade changes sign. The 
last three variables are unweighted averages of the V{j} variable, and their denominators equal seg_lng 
plus the length of portions of the corresponding curves that lie outside the segment. The units of the 
denominators are miles. Variables for sag curves, for vertical curves with grade increases, and for sags of 
type III (with sign change) were also considered separately in Minnesota, but were not as significant as 
the crest variables. 

For intersections three vertical variables were considered: 

 

These sums are over the stipulated vertical curves, and hence VCI, VI, and VEI are unweighted averages 
of V{j} for each type of curve. 

Complementary to vertical curves are sections of uniform grade and these also were used in the 
modeling for Minnesota and Washington segments. On such sections there is a constant absolute grade 
GR{k}. In Minnesota this was readily obtainable, but in Washington there were cases where h{k-1} and 
g{k} did not agree. Although other options were considered, for simplicity the segment section from e{k-1} 
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to b{k} was treated as if it were of uniform grade with absolute grade GR{k} = |(h{k-1}+g{k})/2|. In addition 
to GR{k}, each such section had a variable WG{k}: 

 

A composite variable GR was defined: 

 

where the sum is over all uniform grade sections overlapping with the segment. 

Angle Variables 

An angle variable DEV, representing the average deviation from 90 , was defined by: 

 

Two more angle variables are also used. DEV15 is a variable discovered empirically that seems to be 
negatively correlated with accidents on four-legged intersections. Another intersection angle variable 
considered in this study, suggested by E. Hauer, is HAU: 

 

The variable HAU is a signed variable. See Figures 4 and 5 below. For a three-legged intersection with 
the angle to the right of the increasing direction, HAU is positive when the angle is larger than 90 , as in 
4(a), and HAU is negative when the angle is smaller than 90 , as in 4(b). If the angle is to the left of the 
increasing direction (see Figure 5), 180  minus the angle becomes the new angle and HAU is defined as 
((180 - angle) - 90) = (90 - angle), as above. For four-legged intersections, as in 4(c), it is the average of 
the two three-legged values (and thus 90  cancels out). Figure 5 illustrates the calculation of HAU in a 
variety of cases. It is thought that turns from the far lane of the major road may be less accident prone in 
situation 4a) than in situation 4b), so that positive values of HAU correspond to fewer accidents. 
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Figure 4.  Intersection angle geometries. 
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Figure 5.  Examples of calculation of the angle variable HAU. 
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Miscellaneous Variables 

Some other segment variables included in the study are TOTWIDTH, DD, INTD, STATE, and SPD: 

 

SPD is an amalgam of advisory and posted speeds seen on some roads together with HSIS speeds. 
Advisory and regulatory speeds, if seen on photologs, were given preference. However, photolog speeds 
were not collected for some Minnesota segments, were missing for others even when the photolog was 
searched a few miles outside the segment, and had multiple values in some cases when seen (i.e., 
changes in speed along a direction, different speeds in opposing directions, a difference between 
regulatory and advisory speed). Minnesota HSIS speeds were for accident sites only (at the same 
segment or a nearby one). For Washington data, a posted speed variable was obtained from the HSIS 
roadway file, together with speeds for each horizontal and vertical curve from the HSIS alignment files. 
Averaging these to achieve a single number could not be done without some subjectivity. 

Other intersection variables are RT and SPDI: 

  

SPDI is an amalgam of 
mainline speeds observed at 
intersections, averaged by 
approach where possible. 

Finally, two weather 
variables NONDRYP and 

SNP were devised for use with the Minnesota data: 

  

 
 

Univariate Statistics 

Tables 2 through 7 indicate the behavior of the chief variables on the six data sets: segments, three-
legged intersections, and four-legged intersections in both Minnesota and Washington. It is instructive to 
make comparisons among these tables and in the case of Minnesota to compare the sample data with 
the population data in Appendix 1. 
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Minnesota versus Washington 

Accidents tend to be more serious in Washington State than in Minnesota for segments and intersections, 
and the accident rate (accidents per MVM) on segments is much higher in Washington than in Minnesota. 
The accident rates appear to be comparable in the two States on intersections, but this may be somewhat 
misleading since the conflict index is lower for Washington than Minnesota. There also appears to be a 
higher percentage of run-off-road accidents in Washington. (This may be due to the indirect method 
employed to count Washington run-off-road accidents.) 

There is more traffic in Washington on segments and major intersection approaches, and a higher density 
of driveways. Both of these suggest that the Washington data sets are less rural than those of Minnesota. 
Annual exposure (MVM per year) is about the same on average in both States, and this is accounted for 
by the fact that segment lengths are shorter on average in Washington. 

Roadside Hazard Rating tends to be higher in Washington, with steeper grades. Washington averages for 
horizontal and vertical alignment are the same as or higher than Minnesota's, but Washington tends to 
have fewer curves than Minnesota both on segments and in the vicinity of intersections. This may reflect 
historical differences in highway design practice and/or in the principles used to label roadway segments 
as segments. Likewise, Minnesota appears to have more angular variation at intersections than 
Washington (perhaps due in part to data shortcomings), and more turning lanes on the major road. 
Minnesota has wider shoulders than Washington, but Washington has more that are paved. These 
differences may also reflect design considerations and history. 

Segments versus Intersections 

Accidents at intersections tend to be more serious than those on segments, and accidents at 
intersections are more frequent (if an intersection is regarded as a segment 500 feet long), other things 
being equal. ADT rises as one goes from segments to major roads of three-legged intersections to major 
roads of four-legged intersections. The tables also show that three-leggeds tend to have more horizontal 
curvature than four-leggeds, but that vertical alignment tends to be about the same in three-leggeds and 
four-leggeds. 

Minnesota Sample versus Population 

The Minnesota samples are quite comparable in the distribution of severities and the percentage of run-
off-road accidents to their counterparts in the Minnesota populations represented in Appendix 1. With 
respect to segments, we can also compare ADT, commercial vehicle percentage, and lane width and find 
that they are quite similar between the sample and the population. Shoulder width and shoulder type 
between sample and population are also similar although there seems to be a slight tendency for the 
population of segments to have less shoulder width (albeit more of it paved) than the sample does. 
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Table 2. Summary Statistics: 619 Segments, Minnesota State 

Two-Lane Rural Roads, 1985 -1989 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

  
Total Number of Accidents 
(TOTACC) 

0 58 1 2.74 1694 36.3 

Total Number of Injury Accidents 
(INJACC) 

0 23 0 0.99 614 
(36.25%) 

58.3 

Total Number of Run-Off-Road 
Accidents (RORACC) 

0 15 0 0.88 547 
(32.29%) 

61.6 

Severity: Fatal = K 
Injury = A 
Non-incap= B 
Poss-inj = C 
Prop-dam = P 

  
  

  
  
  

  
  

  
  

  
32 (1.9%) 
89 (5.2%) 

256 
(15.1%) 

237 
(14.0%) 

1080 
(63.7%) 

  

  
Accident Rate (0.6656 
TOTACC/MVM) 

0 9.32 0.44 0.70     
36.3 

Injury Accident Rate (0.2413 
INJACC/MVM) 

0 4.66 0 0.25     
58.3 

Average Daily Traffic = ADT 208 15,162 1,866 2,402     
  

  
Segment Length = seg_lng 
(miles) 

0.1 8.237 0.659 1.14     
  

  
Exposure over five years = EXPO 
(MVM) 

0.13 68.32 2.25 4.11     
  

  
Commercial Vehicle Percentage 
= T (%) 

1.90 26.86 9.87 10.45     
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Lane Width = LW (feet) 

10 12 12 11.54     
  

  
Shoulder Width = SHW (feet) 

0 12 8 7.08     
0.3 

Shoulder Type None 
Gravel or Stone 
Composite 
Paved 

    
  

  
  

  
  

  
2 (0.3%) 

341 
(55.1%) 

35 (5.7%) 
241 

(38.9%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 2. Summary Statistics: 619 Segments, Minnesota State (continued) 

Two-Lane Rural Roads, 1985 -1989 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

Roadside Hazard Rating = RHR 
= 1 
2 
3 
4 
5 
6, 7 

1 6 2 2.14 174 
(28.1%) 

248 
(40.1%) 

141 
(22.8%) 

48 (7.8%) 
6 (1%) 

2 (0.3%), 
0 

  

Driveway Density = DD 0 100 3.73 6.58     
22.5 

Intersection Density = INTD 0 22.7 1.14 2.60     
31.7 

Light Yes 
No 

    
  

  
  

  
  

  
5 (0.8%) 

614 
(99.2%) 

  

  
Terrain Flat 
Rolling 

    
  

  
  

  
  

  
249 

(46.2%) 
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Mountainous 
Missing (not noted) 

28 (4.5%) 
1 (0.2%) 

341 
(55.5%) 

  
Degree of Curve = H = 
3WH{i}DEG{i} 

0 7.50 0.078 0.51     
33.4 

Crest Curve Grade rate = VC = 
3WV{i}(|∆g{i}|/l{i}) (crests only) 

0 0.89 0.037 0.067     
16.5 

Absolute Grade = GR = 
3WG{i}GR{i} (%) 

0 4.46 0.24 0.38     
1.9 

Speed = SPD (mph) 20 55 55 48.7     
  

  
Snow Percentage = SNP 

22.9 36.9 32.5 29.4     
  

  
Non-dry Percentage = 
NONDRYP 

41.0 56.6 45.5 47.4     
  

1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 3. Summary Statistics: 712 Segments, Washington State 

Two-Lane Rural Roads, 1993 -1995 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

  
Total Number of Accidents 
(TOTACC) 

0 29 1 2.40 1706 37.6 

Total Number of Injury Accidents 
(INJACC) 

0 13 0 1.11 790 
(46.31%) 

53.8 

Total Number of Run-Off-Road 
Accidents (RORACC) 

0 19 1 1.39 993 
(58.21%) 

48.6 

Severity: Fatal = K 
Injury = A 
Non-incap = B 

  
  

  
  
  

  
  

  
  

  
39 (2.3%) 
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Poss-inj = C 
Prop-dam = P 

130 
(7.6%) 

381 
(22.3%) 

240 
(14.1%) 

916 
(53.7%) 

  
Accident Rate (1.0228 
TOTACC/MVM) 

0 33.60 0.649 1.096     
37.6 

Injury Accident Rate (0.4736 
INJACC/MVM) 

0 9.65 0 0.495     
53.8 

Average Daily Traffic = ADT 159 17,766 2,239 3,352     
  

  
Segment Length = seg_lng 
(miles) 

0.1 13.233 0.554 0.75     
  

  
Exposure over three years = 
EXPO (MVM) 

0.04 22.4 1.31 2.34     
  

  
Commercial Vehicle Percentage 
= T (%) 

1.55 52.22 11.73 13.04     
  

  
Lane Width = LW (feet) 

9 12 11 11.37     
  

  
Shoulder Width = SHW (feet) 

0 10 5 5.01     
0.8 

Shoulder Type Missing or other 
Gravel or Stone 
Composite 
Paved 

    
  

  
  

  
  

  
8 (1.1%) 

72 
(10.1%) 

230 
(32.3%) 

402 
(56.5%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m 
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Table 3. Summary Statistics: 712 Segments, Washington State (continued) 

Two-Lane Rural Roads, 1993 -1995 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

Roadside Hazard Rating = RHR 
= 1 
2 
3 
4 
5 
6 
7 

1 7 3 3.67 38 (5.3%) 
152 

(21.4%) 
181 

(25.4%) 
109 

(15.3%) 
128 

(18.0%) 
73 

(10.3%) 
31 (4.4%) 

  

  
Driveway Density = DD 

0 85.07 6.12 10.12     
18.1 

Intersection Density = INTD 0 17.3 0 0.12     
97.5 

Light Yes 
No 

    
  

  
  

  
  

  
21 (2.9%) 

691 
(97.1%) 

  

  
Terrain Flat 
Rolling 
Mountainous 

    
  

  
  

  
  

  
157 

(22.1%) 
485 

(68.1%) 
70 (9.8%) 

  

  
Degree of Curve = H = 
3WH{i}DEG{i} 

0 30.55 0.319 1.028     
36.7 

Crest Curve Grade rate = VC = 
3WV{i}(|∆g{i}|/l{i}) (crests only) 

0 1.997 0.026 0.068     
36.8 

Absolute Grade = GR = 
3WG{i}GR{i} (%) 

0 6.92 0.494 0.92     
13.1 

Speed = SPD (mph) 21.9 55 55 50.5     
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1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 4. Summary Statistics: 389 Three-Legged Intersections, Minnesota State 

Two-Lane Rural Roads, 1985 - 1989 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

  
Total Number of Accidents 
(TOTACC) 

0 39 0 1.35 524 51.9 

Total Number of Injury Accidents 
(INJACC) 

0 17 0 0.59 229 
(43.70%) 

69.9 

Total Number of Run-Off-Road 
Accidents (RORACC) 

0 4 0 0.12 45 
(8.59%) 

90.7 

Severity: Fatal = K 
Injury = A 
Non-incap = B 
Poss-inj = C 
Prop-dam = P 

  
  

  
  
  

  
  

  
  

  
8 (1.5%) 
26 (5.0%) 

84 
(16.0%) 

111 
(21.2%) 

295 
(56.3%) 

  

  
Accident Rate (TOTACC per 
million entering vehicles) 

0 3.08 0 0.16     
51.9 

Accident Rate (0.269 TOTACC 
/YEAR) 

0 7.8 0 0.269     
51.9 

Injury Accident Rate (0.118 
INJACC/YEAR) 

0 0.8 0 0.118     
69.9 

Average Daily Traffic on Major 
Road = ADT1 

201 19,413 2,313 3,687     
  

  
Average Daily Traffic on Minor 
Road = ADT2 

4.5 4,206 240 413     
  

  
Conflict Index = CINDEX 

0.002 0.442 0.049 0.077     
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Angular Deviation from 90° = 
DEV (degrees) 

0 90 0 13.4     
50.6 

Roadside Hazard Rating = RHRI 
= 1 
2 
3 
4 
5 
6,7 

1 5 2 2.11 98 
(25.2%) 

184 
(47.3%) 

74 
(19.0%) 
32 (8.2 

%) 
1 (0.3%) 
0 (0.0%) 

  

  
Number of Driveways = ND 

0 9 1 1.26     
37.5 

1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 4. Summary Statistics: 389 Three-Legged Intersections, Minnesota State (continued) 

Two-Lane Rural Roads, 1985 - 1989 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

Light Yes 
No 

    
  

  
  

  
  

  
1 (0.3%) 

388 
(99.7%) 

  

  
Terrain Flat 
Rolling 
Missing (not noted) 

    
  

  
  

  
  

  
115 

(29.6%) 
28 (7.2%) 

246 
(63.2%) 

  

  
Degree of Curve = HI = 
(1/n)3DEG{i} 

0 29 0 1.21     
54.0 

Crest Curve Grade Rate = VCI = 
(1/m)3(|∆g{i}|/l{i}) 
(crests only) 

0 4.39 0 0.14     
52.7 

Speed = SPDI (mph) 22.5 55 55 52.7     
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Turning Lanes on Main Road 
None 
Right Turn 
Bypass Lane 
Both 

    
  

  
  

  
  

  
216 

(55.5%) 
119 

(30.6%) 
8 (2.1%) 

46 
(11.8%) 

  

  
Right Turn/Acceleration Lane on 
Minor Leg Yes 
No 

    
  

  
  

  
  

  
8 (2.1%) 

381 
(97.9%) 

  

  
Snow Percentage = SNP 

22.9 36.9 28.4 29.1     
  

  
Non-dry Percentage = 
NONDRYP 

41.0 55.6 46.7 47.5     
  

1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 5. Summary Statistics: 181 Three-Legged Intersections, Washington State 

Two-Lane Rural Roads, 1993 - 1995 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

  
Total Number of Accidents 
(TOTACC) 

0 9 0 1.02 184 58.6 

Total Number of Injury Accidents 
(INJACC) 

0 7 0 0.470 85 
(46.20%) 

72.4 

Total Number of Run-Off-Road 
Accidents (RORACC) 

0 5 0 0.204 37 
(20.11%) 

85.1 

Severity: Fatal = K 
Injury = A 
Non-incap = B 
Poss-inj = C 
Prop-dam = P 

  
  

  
  
  

  
  

  
  

  
2 (1.1%) 
12 (6.5%) 

37 
(20.1%) 
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34 
(18.5%) 

99 
(53.8%) 

  
Accident Rate (TOTACC per 
million entering vehicles) 

0 1.00 0 0.135     
58.6 

Accident Rate (0.339 
TOTACC/YEAR) 

0 3 0 0.339     
58.6 

Injury Accident Rate (0.157 
INJACC/YEAR) 

0 2.333 0 0.157     
72.4 

Average Daily Traffic on Major 
Road = ADT1 

897 15,995 4,838 5,780     
  

  
Average Daily Traffic on Minor 
Road = ADT2 

4 7,529 196 573     
  

  
Conflict Index = CINDEX 

0.0003 0.366 0.020 0.052     
  

  
Angular Deviation from 90° = DEV 
(degrees) 

0 55 0 8.93     
95.6 

Roadside Hazard Rating = RHRI = 
1 
2 
3 
4 
5 
6, 7 

1 6 3 3.3 7 (3.9%) 
39 

(21.5%) 
51 

(28.2%) 
61 

(33.7%) 
21 

(11.6%) 
2 (1.1%), 
0 (0.0%) 

  

  
Number of Driveways = ND 

0 12 1 1.486     
37.0 

1 mi = 1.61 km, 1 ft = 0.3048 m 
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Table 5. Summary Statistics: 181 Three-Legged Intersections, Washington State (continued) 

Two-Lane Rural Roads, 1993 - 1995 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

Light Yes 
No 

    
  

  
  

  
  

  
35 

(19.3%) 
146 

(80.7%) 

  

  
Terrain Flat 
Rolling 
Mountainous 

    
  

  
  

  
  

  
42 

(23.2%) 
124 

(68.5%) 
15 (8.3%) 

  

  
Degree of Curve = HI = 
(1/n)3DEG{i} 

0 22.2 0 1.22     
68.0 

Crest Curve Grade Rate = VCI = 
(1/m)3(|∆g{i}|/l{i}) 
(crests only) 

0 4.32 0 0.16     
68.0 

Speed = SPDI (mph) 23.75 55 55 52.1     
  

Turning Lanes on Main Road 
None 
Right Turn 
Bypass Lane 
Both 

    
  

  
  

  
  

143 
(79.0%) 

12 (6.6%) 
12 (6.6%) 
14 (7.7%) 

  

Right Turn/Acceleration Lane on 
Minor Leg Yes No 

    
  

  
  

  
  

4 (2.2%) 
177 

(97.8%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m 
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Table 6. Summary Statistics: 327 Four-Legged Intersections, Minnesota State 

Two-Lane Rural Roads, 1985 - 1989 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

  
Total Number of Accidents 
(TOTACC) 

0 16 1 1.51 494 39.8 

Total Number of Injury Accidents 
(INJACC) 

0 9 0 0.77 253 
(51.2%) 

59.9 

Total Number of Run-Off-Road 
Accidents (RORACC) 

0 2 0 0.092 30 (6.1%) 92.4 

Severity: Fatal = K 
Injury = A 
Non-incap = B 
Poss-inj = C 
Prop-dam = P 

  
  

  
  
  

  
  

  
  

  
18 (3.6%) 
40 (8.1%) 
96 (19.4%) 
99 (20.0%) 

241 
(48.8%) 

  

  
Accident Rate (TOTACC per 
million entering vehicles) 

0 2.87 0.201 0.323     
39.8 

Accident Rate (0.302 
TOTACC/YEAR) 

0 3.2 0.2 0.302     
39.8 

Injury Accident Rate (0.155 
INJACC/YEAR) 

0 1.8 0 0.155     
59.9 

Average Daily Traffic on Major 
Road = ADT1 

174 14,611 2,620 2,238     
  

  
Average Daily Traffic on Minor 
Road = ADT2 

6.9 3,414 192 308     
  

  
Conflict Index = CINDEX 

0.003 0.637 0.103 0.142     
  

  
Angular Deviation from 90° = 
DEV(degrees) 

0 75 0.6 9.9     
37.6 
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Roadside Hazard Rating = RHRI 
= 1 
2 
3 
4 
5 
6, 7 

1 6 2 2.02 97 (29.7%) 
157 

(48.0%) 
51 (15.6%) 
16 (4.9%) 
5 (1.5%) 

1 (0.3%), 0 
(0.0%) 

  

  
Number of Driveways = ND 

0 6 0 0.62     
67.6 

1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 6. Summary Statistics: 327 Four-Legged Intersections, Minnesota State (continued) 

Two-Lane Rural Roads, 1985 - 1989 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

Light Yes 
No 

    
  

  
  

  
  

  
1 (0.3%) 

326 
(99.7%) 

  

  
Terrain Flat 
Rolling 
Missing (not noted) 

    
  

  
  

  
  

  
166 

(50.8%) 
20 (6.1%) 

141 
(43.1%) 

  

  
Degree of Curve = HI = 
(1/n)3DEG{i} 

0 9 0 0.49     
59.9 

Crest Curve Grade Rate = VCI = 
(1/m)3(|∆g{i}|/l{i}) 
(crests only) 

0 2.94 0.025 0.152     
48.0 

Speed = SPDI (mph) 30 55 55 54.0     
  

  
Right Turn Lanes on Main Road 
None 
One Right Turn 

    
  

  
  

  
  

  
  

155 
(47.4%) 
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Two Right Turns 30 (9.2%) 
142 

(43.4%) 

  
Right Turn/Acceleration Lanes on 
Minor Legs None 
Both 

    
  

  
  

  
  

  
  

326 
(99.7%) 
1 (0.3%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 7. Summary Statistics: 90 Four-Legged Intersections, Washington State 

Two-Lane Rural Roads, 1993 - 1995 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

  
Total Number of Accidents 
(TOTACC) 

0 18 1 2.83 255 42.2 

Total Number of Injury Accidents 
(INJACC) 

0 13 0 1.77 159 
(62.35%) 

53.3 

Total Number of Run-Off-Road 
Accidents (RORACC) 

0 2 0 0.24 22 (8.63%) 78.9 

Severity: Fatal = K 
Injury = A 
Non-incap = B 
Poss-inj = C 
Prop-dam = P 

  
  

  
  
  

  
  

  
  

  
5 (2.0%) 
20 (7.8%) 
72 (28.2%) 
62 (24.3%) 
96 (37.6%) 

  

  
Accident Rate (TOTACC per 
million entering vehicles) 

0 1.73 0.131 0.328     
42.2 

Accident Rate (0.944 
TOTACC/YEAR) 

0 6 0.333 0.944     
42.2 

Injury Accident Rate (0.589 
INJACC/YEAR) 

0 4.33 0 0.589     
78.9 
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Average Daily Traffic on Major 
Road = ADT1 

1,143 17,205 6,540 7,381     
  

  
Average Daily Traffic on Minor 
Road = ADT2 

6 3,165 416 718     
  

  
Conflict Index = CINDEX 

0.001 0.480 0.0646 0.0934     
  

  
Angular Deviation from 90° = 
DEV(degrees) 

0 45 0 2.47     
88.9 

Roadside Hazard Rating = RHRI 
= 1 
2 
3 
4 
5 
6, 7 

1 5 3 2.82 9 (10.0%) 
23 (25.6%) 
38 (42.2%) 
15 (16.7%) 
5 (5.6%) 

0 (0.0%), 0 
(0.0%) 

  

  
Number of Driveways = ND 

0 7 0 1.11     
53.3 

1 mi = 1.61 km, 1 ft = 0.3048 m 

  

Table 7. Summary Statistics: 90 Four-Legged Intersections, Washington State (continued) 

Two-Lane Rural Roads, 1993 - 1995 

Variable and Abbreviation Min. Max. Median Mean Freq %Zero 

Light Yes 
No 

    
  

  
  

  
  

  
33 

(36.7%) 
57 

(63.3%) 

  

  
Terrain Flat 
Rolling 
Mountainous 

    
  

  
  

  
  

  
28 

(31.1%) 
60 

(66.7%) 
2 (2.2%) 

  

  0 6.50 0 0.497     
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Degree of Curve = HI = 
(1/n)3DEG{i} 

78.9 

Crest Curve Grade Rate = VCI = 
(1/m)3(|∆g{i}|/l{i}) 
(crests only) 

0 3.585 0 0.185     
66.7 

Speed = SPDI (mph) 22.5 55 55 51.0     
  

  
Right Turn Lanes on Major Road 
None 
One Right Turn 
Two Right Turns 

    
  

  
  

  
  

  
53 

(58.9%) 
8 (8.9%) 

29 
(32.2%) 

  

  
Right Turn/Acceleration Lanes on 
Minor Legs None 
Both 

    
  

  
  

  
  

  
89 

(98.9%) 
1 (1.1%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m 

Bivariate Statistics 

In this section tables are exhibited that indicate the correlation coefficient between accident count and 
one other highway variable. A positive coefficient indicates that as the highway variable increases 
accident counts do also; a negative coefficient indicates that as one variable increases the other tends to 
decrease. When a relationship is pronounced significant in this discussion, it means that the P-value is 
small (say, under 15%, and usually under 5%). The P-value is the probability that the sample correlation 
would have the given magnitude or greater when the true correlation in the population is zero. Thus 
significant relationships are ones that provide strong evidence that the two variables are correlated on the 
population from which the sample comes. 

A major limitation of bivariate statistics is that the relationship between one variable and another may be 
masked or appear in a misleading light when a few especially influential variables such as ADT are 
present and their effect is ignored. The effect of a geometric variable, for example, on accidents when 
ADT is held constant is best revealed by the modeling to be discussed later since the modeling attempts 
to assess the combined contributions of all variables. With this caveat, bivariate statistics for accidents 
versus other variables are presented in Tables 8, 9, and 10. In Tables 11, 12, and 13 some of the 
significant correlations of highway variables with one another are also shown (in qualitative form rather 
than quantitative). 
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Segment Accidents 

The most pronounced correlations with accidents, applicable in both Minnesota and Washington, are as 
follows: 

 

Horizontal and vertical alignment also correlate positively with accidents but are not consistently 
significant. Some variables yield opposite signs from one State to the other, notably, lane and shoulder 
width, each of which is negatively correlated with accidents in Minnesota and positively in Washington. 
The consistent negative correlation of truck percentage suggests that trucks avoid the most dangerous 
roads. The weather variables in Minnesota are not significant. 

If the accidents are restricted to serious accidents or run-off-road accidents, the same relationships 
persist with slight changes. The negative correlation of truck percentage is less significant. On the other 
hand, for run-off-road accidents both horizontal alignment H and grade GR are more significant. 

Three-legged Intersection Accidents 

Accidents at three-legged intersections show the following relationships: 

positive correlation 

ADT1 

ADT2 

RT 

Horizontal and vertical alignment or driveways nearby generally contribute positively to accident counts 
but not in a consistently significant manner. Turning lanes are often installed at intersections with high 
turning volumes and high accident counts, but it is not clear why a right turn lane on the mainline would 
correlate positively with accidents while the conflict index would show much less significance (in 
Minnesota). Bad weather is marginally significant at Minnesota three-leggeds. 

Serious accidents and run-off-road accidents show the same pattern although major road ADT is not 
significant for run-off-road accidents. 
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Four-legged Intersection Accidents 

The significant correlations in this case are: 

Positive correlation 

ADT1 

ADT2 

CINDEX 

The Minnesota data, but not the Washington data, show expected dependencies on channelization, 
alignment, Roadside Hazard Rating, number of driveways, as well as (weak) positive dependence on bad 
weather. 

Serious and run-off-road accidents behave likewise, but major road ADT is not significant for run-off-road 
accidents. 
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Table 8.  Bivariate Statistics: Segment Accidents versus Other Variables. 
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 Table 9. Bivariate Statistics: 3-Legged Intersection Accidents versus Other Variables 
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Table 10: Bivariate Statistics: 4-Legged Intersection Accidents versus Other Variables 
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Table 11. Correlations between Segment Variables in MN and WA Samples 

  
VARIABLE 

POSITIVE CORRELATES NEGATIVE CORRELATES 

ADT SHW, TOTWIDTH T, SEG_LGN 

T 
Truck % 

SEG_LGN, SHW, TOTWIDTH, 
SPD 

ADT, SNP, NONDRYP 

SEG_LGN T, RHR, SPD, SNP, 
NONDRYP 

ADT, DD, INTD, SHW 

LW Lane width SPD   

  
SHW Shoulder width 

ADT, T, SPD RHR, H, VC, GR 

TOTWIDTH ADT, T, SPD RHR, H, VC, GR 

RHR 
Roadside Hazard Rating 

SEG_LGN, H, VC, GR, SNP, 
NONDRYP 

SHW, TOTWIDTH, SPD 

DD Drwyrate INTD T, SEG_LGN, SPD 

INTD Intrate DD SEG_LGN 

H Hor RHR, VC, GR SEG_LGN, SHW, TOTWIDTH, 
SPD 

VC Crests RHR, H, GR T, TOTWIDTH, SPD 

GR Absolute grade RHR, H, VC SHW, TOTWIDTH, SPD 

SPD Speed T, SEG_LGN, LW, SHW, 
TOTWIDTH 

RHR, DD, H, VC, GR 

SNP, NONDRYP (MN only) SEG_LGN, RHR, H T 

NOTE: Segment length (SEG_LGN), Roadside Hazard Rating (RHR), Speed (SPD), and Truck 
Percentage (T) show strong correlation with a large number of variables. Segment lengths tend to be 
longer in rural areas and this accounts for the negative correlation with ADT, driveway density, and 
intersection density. The Roadside Hazard Rating and Speed variables also show expected correlates. 
The behavior of the Truck Percentage variable suggests that teamsters favor routes with certain 
characteristics and/or that such routes are more likely to have commercial development nearby. 
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Table 12. Correlations between 3-Legged Intersection Variables in MN and WA Samples 

  
VARIABLE 

POSITIVE CORRELATES NEGATIVE CORRELATES 

ADT1 ADT2, ND, SNP, NONDRYP CINDEX, SPDI 

ADT2 ADT1, CINDEX, ND, HI, RT SPDI 

CINDEX ADT2, HI ADT1, SPDI, SNP, NONDRYP 

DEV from 90° RHRI   

  
RHRI Roadside Hazard Rating 

DEV, HI, VI   

  
ND No. of Drwys " 250 ft 

ADT1, ADT2, HEI, SNP, 
NONDRYP 

SPDI 

HI Hor. to ± 250 ft ADT2, CINDEX, RHRI, VCI, VI, 
VEI 

SPDI 

HEI Hor. to ± 764 ft ADT2, CINDEX, RHRI, ND, VI, 
VEI 

SPDI 

VCI Crests to ± 250 ft HI, VI, VEI SPDI 

VI Vert. to ± 250 ft RHRI, HI, HEI, VCI, VEI SPDI 

VEI Vert. to ± 764 ft RHRI, HI, HEI, VCI, VI SPDI 

SPDI Speed     
ADT1, ADT2, CINDEX, ND, 
HI, HEI, VCI, VI, VEI 

RT Right Turn Lane on Major 
Road 

ADT2   

  
SNP, NONDRYP (MN only) 

ADT1, ND CINDEX 

1 mile = 1.61 km, 1 ft = .3048 m 

NOTE: Perhaps the fact of chief interest in Table 12 (the 3-legged intersections) is the negative 
correlation between posted speed and the other variables of interest. In Table 13 (the 4-legged 
intersections) speed plays a similar role but not quite so marked. 
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Table 13. Correlations between 4-Legged Intersection Variables in MN and WA Samples 

  
VARIABLE 

POSITIVE CORRELATES NEGATIVE CORRELATES 

ADT1 ADT2, DEV, HI, SNP, 
NONDRYP 

CINDEX 

ADT2 ADT1, CINDEX, RT   

  
CINDEX 

ADT2, RT ADT1 

DEV from 90E ADT1 SPDI 

RHRI Roadside Hazard Rating VI, VEI   

  
ND No. of Drwys ± 250 ft 

SNP, NONDRYP SPDI 

HI Hor. to ± 250 ft HEI, SNP, NONDRYP   

  
HEI Hor. to ± 764 ft 

HI, RT, SNP, NONDRYP SPDI 

VCI Crests to ± 250 ft VI, VEI SPDI 

VI Vert. to ± 250 ft RHRI, VCI, VEI   

  
VEI Vert. to ± 764 ft 

RHRI, VCI, VI SNP, NONDRYP 

SPDI Speed     
DEV, ND 

RT Right Turn Lanes on Major 
Road 

ADT2, CINDEX, HEI   

  
SNP, NONDRYP (MN only) 

ADT1, DEV, ND, HI. HEI VEI, SPDI 

1 mile = 1.61 km, 1 ft = .3048 m 
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Other Bivariate Relationships 

Bivariate relationships between highway variables are also in evidence as might be expected. In Tables 
11, 12, and 13 above we indicate relationships in which the correlation coefficient has the same sign in 
both Minnesota and Washington and the correlation is strongly significant in both States (P-value typically 
less than 5%) or strongly significant in one State and moderately significant in the other (P-value typically 
less than 15%). We omit obvious correlations (e.g., between different vertical measures). 

In the case of weather variables (SNP and NONDRYP) the correlation is for Minnesota data, the only 
State where weather data were collected. The weather variables show some surprising correlations in the 
intersection samples. See Table 14 below. These correlations have no counteparts in the segment data. 
The direct implication, however frivolous it may be, is that rural intersections. 

  

Table 14. Correlations between Weather and Minnesota Highway Variables 

  
Correlation 
coefficient and P-
value 

Minnesota 3-legged intersection 
sample 

Minnesota 4-legged intersection 
sample 

ADT1 ND ADT1 ND 

NONDRYP .21201, .0001 .12608, .0128 .12202, .0274 .21916, .0001 

SNP .19164, .0001 .13523, .0076 .09611, .0827 .21555, .0001 

with high major road ADT or with nearby driveways tend to have more rain and snow than other rural 
intersections. The correlation of weather with minor road ADT is not significant. 

Summary 

A wide variety of variables have been introduced in this chapter to facilitate the modeling in the next. 

The summary univariate statistics for these variables (Tables 2 through 7) indicate that most of them 
show a good range of values that will provide variation for the modeling. Exceptions are: lighting along the 
segments (the vast majority have none), right turn/acceleration lanes on the minor legs of intersections 
(most have none), and intersection angle deviation from 90° on Washington State intersections. Most 
Washington intersection angles are 90° , perhaps in part because photolog estimates had to be used in 
Washington State and are much cruder than those obtained from Minnesota plans. 

Bivariate statistics indicate that commercial traffic on two-lane segments correlates negatively with 
accidents while surface width and lane width have unexpected effects in Washington State. Traffic is the 
dominant variable for intersections, but the existence of a right turn lane on the major road correlates 
positively with accidents on three-legged intersections. 

Bivariate relationships between accident variables and highway variables should be interpreted with 
caution: they may indicate that the highway variable correlates with a another influential highway variable. 
Modeling with several variables simultaneously may permit greater insight into the relative effects of 
different highway variables. 
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Modeling 

In this chapter the modeling effort is described. The chapter begins with a discussion of Poisson and 
negative binomial modeling and goodness-of-fit measures. Then models are developed for the Minnesota 
and Washington segments and the behavior of the variables is examined. We pass then to an extended 
negative binomial model developed by Shaw-Pin Miaou that attempts to capture the effect of variation 
along a roadway. In our case this can be applied to horizontal curvatures, vertical curves, and 
straightaway grades along the segments. The extended negative binomial methodology is applied to the 
Minnesota segments, to the Washington segments, and then jointly to the combined segments with a 
variable for the State. Thereafter Poisson and negative binomial models are developed for the four 
intersection data sets and for the combined intersection data sets. Most of the models attempt to 
represent the mean total number of accidents (TOTACC), but we also include a few models of serious 
accidents (INJACC) as well. Finally logistic regression models for accident severity are developed and 
evaluated. 

Poisson and Negative Binomial Modeling Techniques 
The Poisson and Negative Binomial Models 

Poisson and negative binomial models, with parameters a generalized linear function of covariates, are 
by now a well-accepted method of modeling discrete rare events such as roadway accidents. See Miaou 
and Lum (1993). It is assumed that accidents occurring on a particular roadway or at a particular 
intersection are independent of one another and that a certain mean number of accidents per unit time is 
characteristic of the given site and of other sites with the same properties. The mean itself is assumed to 
depend on highway variables. Since the mean must be greater than zero, it is taken to have a 
generalized linear form given by: 

 

 

where P( i) is the probability of i accidents at the given site. The negative binomial distribution adds a 
quadratic term to the variance representing overdispersion. The negative binomial model takes the form: 
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The coefficients  are estimated by maximizing the log-likelihood function L( ) for the Poisson 
distribution: 

  

(5.2) 

  

Here  = ( 0, 1, ...., n) is the vector of coefficients, yi is the observed accident count for segment 

(5.3) 



 

80 

  

For convenience the same letters will often be used for both the parameters and their estimated values, 
i.e., hats ^ will be omitted. 

Model Evaluation - Overdispersion 

A decision about whether the Poisson form is appropriate can be based on one of several statistics. As 
noted in SAS Technical Report P-243 the deviance of a model m is: 

 

where Lf is the log-likelihood (5.2) that would be achieved if the model gave a perfect fit ( i = i for each 
i, and K = 0) and Lm is the log-likelihood (5.2 or 5.3) of the model under consideration ( i = i ). If the latter 
model is correct, Dm is approximately a chi-squared random variable with degrees of freedom equal to the 
number n of observations minus the number p of parameters. 

A value of the deviance greatly in excess of n - p suggests that the model is overdispersed due to missing 
variables and/or non-Poisson form. Thus when deviance divided by degrees of freedom 

 

is significantly larger than 1, overdispersion is indicated. 

Likewise, the Pearson chi-square statistic, defined by 

 

is an approximately chi-squared random variable with mean n - p for a valid Poisson model. If 

 

is significantly larger than 1, overdispersion is also indicated. 

On the assumption that the basic form of the model is correct, Dean and Lawless (1989) recommend yet 
another statistic T1 to test the hypothesis that the model is a Poisson model against the alternative that it 
is overdispersed. When the null hypothesis K = 0 is true and the number of observations is large, the 
statistic 
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is approximately a standard normal random variable. If T1 is large positive, the hypothesis K = 0 is 
rejected, the data are considered to be overdispersed, and a negative binomial model with K positive is 
an alternative candidate model. 

Model Evaluation - Goodness of Fit 

In addition to a plausible basis for the underlying distributional assumptions, three important tests for an 
acceptable model are the following: 

· The estimated regression coefficient for each covariate should be statistically significant, i.e., one should 
be able to reject the null hypothesis that the coefficient is zero; 

· Engineering and intuitive judgments should be able to confirm the validity and practicality of the sign and 
rough magnitude of each estimated coefficient; and 

· Goodness-of-fit measures and statistics, such as R-squared (the coefficient of determination), the 
deviance, and the Pearson chi-square, should indicate that the variables do have explanatory and 
predictive power. 

The modeling of the data in this study was done using SAS and LIMDEP software. Along with 
approximate maximum likelihood estimates for the regression coefficients, these software packages yield 
estimates of the standard error for each coefficient. From these, P-values can be computed for the null 
hypothesis that the true value of some regression coefficient is zero. The z-score of the estimated 
coefficient is the estimated coefficient minus zero, divided by the estimated standard error. The P-value is 
the probability that a normal random variable has an absolute value larger than the z-score obtained. If 
the P-value is small, we have good evidence that the corresponding variable is significant, that the 
difference between the coefficient estimate and zero arises not from chance but from a systematic effect. 

Goodness-of-fit measures associated with Poisson-type models have been introduced and reviewed by 
Fridstrøm et al. (1995) and Miaou (1996). 

The R-squared goodness-of-fit measures, used to estimate the percentage of variation explained by a 
regression model, are somewhat controversial. Different R-squared measures may yield substantially 
different answers, or even answers larger than 1, particularly for models that are not linear. See the article 
of Kvalseth (1985). Until recently, R-squared measures appropriate for Poisson or negative binomial 
models had not been established. Fridstrøm et al. (1995) developed several alternative goodness-of-fit 
methodologies for generalized Poisson regression models. Four of these approaches are used here to 
evaluate goodness-of-fit. 

The first approach is based on the ordinary R-squared, or coefficient of determination, used in linear 
regression models: 

 (5.4) 
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where 

yi = observed accident count for highway segment or intersection no. i 

 = average accident count for the sample 

i = estimated mean accident count for observation no. i 

The numerator in the second term (of 5.4) is the variation not explained by the model. In a perfectly 
specified and estimated Poisson model (variance equal to mean), the most that can be explained of the 
given data is expected to be P2, where 

 

(5.6) 
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The variable  is approximately a standard normal random variable (at least for yi larger than 1). 

The three measures introduced so far are strongly oriented toward Poisson models. Indeed because they 
do not explicitly include an overdispersion parameter they seem inappropriate for negative binomial 
models. But a fourth approach is tailored to the negative binomial. 

The fourth approach, the Log-Likelihood R-squared, is based on the deviance Dm of the model. Fridstrøm 
et al. propose the following measures: 

Segment Models 

In this section we develop models for segments. The models are of Poisson type, negative binomial type, 
and extended negative binomial type. We discuss the choice of variables and explain the steps that lead 
to the final models presented. The choice of variables to retain, and the form in which to use them, are to 
some extent arbitrary since not all possibilities can be examined and some are more or less equivalent. 
The decisions are guided by criteria of simplicity (use of variables that are easily understood), 
comprehensiveness (inclusion of as many types of variables as possible), and significance (coefficients 
that are significantly different from zero according to statistical tests in one or more models). Many models 
can be generated, and we present here only a selection of models that illustrate the main phenomena 
and/or show the significant interactions. 

In general, we will exhibit a formula for the mean number of accidents on a segment as a generalized 
linear function of highway variables. This formula will show the estimated coefficient of each variable in 
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the model. In addition, we show the estimated standard error of the coefficient estimate and its P-value. 
The P-value is the probability that the estimated coefficient would have the value shown or any value 
farther from zero when the true coefficient is zero. A P-value of less than 5% is usually considered ample 
confirmation that the true coefficient is non-zero and that the estimated coefficient is significant. Later on, 
for the intersection models, we will liberalize this criterion considerably. 

The State Variable 

The STATE variable (value 0 for Minnesota, 1 for Washington) is used on all models that combine the two 
States. In effect it allows the constant or intercept term in each State to be different while constraining 
other coefficients to be the same. Including such a variable is equivalent to acknowledging that the 
accident experience of two different States is likely to be different on segments with the same traffic 
volumes and same highway characteristics. The STATE variable represents the demographics and habits 
of a different population of drivers in a different region and perhaps at a different era. Law enforcement 
practices, driver ages, and life styles may be quite different. Although the extra degree of freedom makes 
it easier to develop a combined model, it is of some interest when the coefficient of the State variable is 
insignificant (as it is in a few of the models below). 

The Exposure Variable 

For the segment modeling it is natural to include both segment length (seg_lng) and ADT as explanatory 
variables, and to expect that the number of accidents will be roughly proportional to the product of these 
factors times the time in days (365 days per year times 5 years in Minnesota or 3 years in Washington). 
Poisson models in Minnesota (Table 15) support this rough proportionality. If total number of accidents is 
modeled as a function of segment length and ADT, we obtain the following: 

  

Table 15. Minnesota Segments, Poisson Models with Exposure Variables 

Mean No. of Accidents = 5H(365/10^3)× exp{-.3916 + 1.0150 LSEG + .9765 LADT} 

Estimated standard error .0448 .0278 .0344 

of coefficient estimates 

P-value .0001 .0001 .0001 

  

Mean No. of Accidents = EXPO× exp{-.3934 - .0040 AVGM} 

Estimated standard error .0382 .0278 

of coefficients estimates 

P-value .0001 .6474 

1 mile = 1.61 km 
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where LSEG is the log of the segment length and LADT is the log of AVGM (ADT in 1000's of vehicles 
per day). The Minnesota standard errors are consistent with the conclusion that the true coefficients of 
LSEG and LADT are 1. The second model shows the effect of using EXPO as an offset (i.e., as a 
multiplier) but retaining AVGM. The Minnesota data do not support the retention of AVGM. 

Similar tables for Washington State and the combined data sets (Tables 16 and 17) indicate that LSEG 
and LADT have coefficients near 1 but still significantly different from 1 since the estimated standard 
errors are small. Also, if EXPO is taken as an offset and AVGM is retained, the latter is found to be 
significant. Although other choices could be made, the decision was made to use EXPO as an offset and 
exclude segment length as a separate variable, with the expectation that additional effects apparently due 
to segment length can be represented by other highway variables. AVGM was retained in some runs, 
although, as will be seen, it was not significant in the final model. 

  

Table 16. Washington Segments, Poisson Models with Exposure Variables 

  

Mean No. of Accidents = 3H(365/10^3)Hexp{.1606 + .9121 LSEG + .8918 LADT} 

Estimated standard error .0462 .0310 .0299 

of coefficient estimates 

P-value .0001 .0001 .0001 

  

Mean No. of Accidents = EXPO× exp{.1674 - .0269 AVGM} 

Estimated standard error .0390 .0059 

of coefficient estimates 

P-value .0001 .0001 

1 mile = 1.61 km 
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Table 17. Combined Segments, Poisson Models with Exposure Variables 

Mean No. of Accidents 

= (5 or 3)H(365/10^3)Hexp{-.3282 + .9685 LSEG + .9296 LADT + .4450 STATE} 

Estimated standard error .0346 .0206 .0226 .0366 

of coefficient estimates 

P-value .0001 .0001 .0001 .0001 

  

Mean No. of Accidents = EXPO× exp{ -.3405 - .0200 AVGM + .4719 STATE} 

Estimated standard error .0291 .0049 .0357 

of coefficient estimates 

P-value .0001 .0001 .0001 

1 mile = 1.61 km 

Lane Width and Shoulder Width 

Wider lanes and wider shoulders should lower accidents. If we add these two variables to the Poisson 
models (Table 18), some notable differences are found between Minnesota and Washington. The lane 
width variable is seen to be of unexpected sign and insignificant in the Washington data. 

  

Table 18. Poisson Models of Segments with Lane and Surface Width 

MINNESOTA 

Mean No. of Accidents = EXPO× exp{3.2115 + .0202AVGM - .2501LW - .1183SHW} 

Estimated standard .4172 .0089 .0354 .0104 

error of coefficient 

estimates 

P-value .0001 .0222 .0001 .0001 
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WASHINGTON 

Mean No of Accidents. = EXPO× exp{-.0093 - .0157AVGM + .0461LW - .0759SHW} 

Estimated standard .5270 .0063 .0464 .0110 

error of coefficient 

estimates 

P-value .9860 .0123 .3201 .0001 

COMBINED 

Mean No. of Accidents 

= EXPO× exp{1.5393 - .0079AVGM - .1117LW - .0915SHW + .2850STATE} 

Estimated standard .3236 .0050 .0277 .0075 .0606 

error of coefficient 

estimates 

P-value .0001 .1108 .0001 .0001 .0001 

1 mile = 1.61 km, 1 ft = .3048 m 

In the last chapter we had already noted anomalies in the correlation between accidents and lane or 
shoulder width in Washington. Several factors contribute to this situation. One of them is the direct 
correlation between lane width and shoulder width that occurs in the Washington State data but not the 
Minnesota data. The correlation coefficients are given by: 

Lane Width LW versus Shoulder 
Width SHW 

MINNESOTA 

SEGMENTS 

WASHINGTON 
SEGMENTS 

COMBINED 

SEGMENTS 

Correlation coefficient -.06313 .11127 .07047 

P-value .1166 .0029 .0101 
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The P-values are estimated probabilities that the correlation coefficient estimates would have the values 
shown or values farther from zero if there were zero correlation between the variables on the populations 
from which the data sets are samples. Minnesota lane widths and shoulder widths have a slight but not 
especially significant negative correlation, while Washington lane widths and shoulder widths have a 
significant positive correlation. This is also reflected when we consider univariate statistics for LW, SHW, 
and TOTWIDTH: 

  

State 

Variable Min Max Median Mean 

MN Lane Width LW 10 12 12 11.54 

Shoulder Width SHW 0 12 8 7.08 

TOTWIDTH 20 48 38 37.22 

WA Lane Width LW 9 12 11 11.37 

Shoulder Width SHW 0 10 5 5.01 

TOTWIDTH 18 44 32 32.77 

1 ft = .3048 m 

Another relevant fact is the shoulder composition in each State: 

MINNESOTA SHOULDERS WASHINGTON SHOULDERS 

Mixed bituminous 243 39.3% 

Gravel or stone 335 54.1% 

Composite 34 5.5% 

Sod 5 .8% 

Missing 2 .3% 

619 100.0% 

asphalt 402 56.5% 

bituminous 230 32.3% 

gravel 72 10.1% 

curb 1 .1% 

missing 7 1.0% 

712 100.0% 

  

Washington shoulders tend to resemble the road surface more than Minnesota shoulders. This suggests 
the possibility that a more appropriate variable than either lane width or shoulder width might be the 
variable TOTWIDTH, total width of road and shoulders. When the shoulder is paved, drivers may not 
make as much of a distinction between it and the road, and the combined width may be the only 
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important variable. When variables are dependent, it is sometimes useful to replace them with one 
significant combination. Against this it can be argued that lane width and shoulder width have different 
types of effects on accidents and that it is inappropriate to treat them as one additive variable. Indeed, in 
the final models we do not. 

Table 19 exhibits some models with only TOTWIDTH. 

  

Table 19. Poisson Models of Segments with TOTWIDTH 

MINNESOTA 

Mean No. of Accidents = EXPO× exp{1.7994 + .0152AVGM - .0614TOTWIDTH} 

Estimated standard .1828 .0087 .0051 

error of coefficient 

estimates 

P-value .0001 .0816 .0001 

WASHINGTON 

Mean No. of Accidents = EXPO× exp{1.2141 - .0192AVGM - .0324TOTWIDTH} 

Estimated standard .1649 .0061 .0050 

error of coefficient 

estimates 

P-value .0001 .0015 .0001 

COMBINED 

Mean No .of Accidents 

= EXPO× exp{1.3310 - .0078AVGM - .0464TOTWIDTH + .2853STATE} 

Estimated standard .1313 .0050 .0036 .0386 

error of coefficient 

estimates 

P-value .0001 .1191 .0001 .0001 
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COMBINED (WITHOUT AVGM) 

Mean No. of Accidents = EXPO× exp{1.3480 - .0476TOTWIDTH + .2650STATE} 

Estimated standard .1309 .0035 .0365 

error of coefficient 

estimates 

P-value .0001 .0001 .0001 

1 mile = 1.61 km, 1 ft = .3048 m 

Comparison of these models with those using LW and SHW suggests that replacing LW and SHW by 
TOTWIDTH plus an adjusted intercept yields similar explanatory value. However, because of the 
importance of these two geometric variables and the fact that in principle their values are independent, 
we retain both variables to the extent possible. In a few runs below TOTWIDTH is used instead to 
facilitate comparisons between the two States. 

NOTE: Variables ACCRES = (Number of accidents minus predicted number from a Poisson model not 
using lane width LW) and LWRES = (LW minus predicted LW from a regression model using other 
highway variables) can be developed. Their correlation coefficients and associated P-values, not 
reproduced here, confirm that in Minnesota lane width has a significant independent negative effect on 
accident counts while in Washington lane width has an insignificant independent positive effect on 
accident counts. 

Horizontal and Vertical Curve Variables 

With the exception of the extended negative binomial models, in which individual horizontal and vertical 
curves were modeled, the horizontal variables used in this study have been the composites H, HM1, 
HM1.5, and HM2 and the vertical variables have been the composites VC, VM, VMC, and VMCC. All of 
these variables were found to be highly significant. 

The only oddity is shown in Table 20 below and concerns the joint effect of H (average horizontal degree 
of curve) and VC (sum of crest % grade changes per hundred feet weighted by relative crest curve 
lengths). 

In Table 20 the coefficients of the vertical and horizontal variables differ substantially between the two 
States and VC is insignificant in Washington with P-value .1854. If one replaces VC by VMC, an 
alternative measure of crest curves that sums the crest % grade changes per hundred feet over all crests 
and divides by segment length, the vertical variable becomes significant and its model coefficient 
stabilizes somewhat (but the horizontal variable H still shows dramatic change in its coefficient). See 
Table 21. There is of course strong correlation between the horizontal and vertical variables in both 
States. 
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Table.  Correlation between the horizontal and vertical variables in both States. 

Segment Variables MINNESOTA WASHINGTON COMBINED 

Horizontal 
Measure H versus 
Crest Measure VC 

Correlation 
coefficient 

.21320 .38635 .33840 

P-value .0001 .0001 .0001 

Horizontal 
Measure H versus 
Crest Measure 
VMC 

Correlation 
coefficient 

.26423 .36362 .32581 

P-value .0001 .0001 .0001 

  

It is possible that unimportant reweighting is occurring among variables that measure essentially 

  

Table 20. Poisson Models of Segments with TOTWIDTH, H, and VC 

  

MINNESOTA 

Mean No. of Accidents = EXPO× exp{.9330 - .0422TOTWIDTH + .1849H + 1.6051VC} 

Estimated standard .1983 .0052 .0248 .2376 

error of coefficient 

estimates 

P-value .0001 .0001 .0001 .0001 

WASHINGTON 

Mean No. of Accidents = EXPO× exp{.7692 - .0257TOTWIDTH + .0985H + .2596VC} 

Estimated standard .1731 .0051 .0082 .1960 

error of coefficient 
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estimates 

P-value .0001 .00001 .0001 .1854 

COMBINED 

Mean No. of Accidents 

= EXPO× exp{.9169 - .0385TOTWIDTH + .0954H + .7770VC + .2387STATE} 

Estimated standard .1344 .0036 .0077 .1345 .0370 

error of coefficient 

estimates 

P-value .0001 .0001 .0001 .0001 .0001 

1 mile = 1.61 km, 1 ft = .3048 m 

the same thing. In Washington 63.2% of the segments contain crest curves versus 83.5% of Minnesota's. 
However, the mean values of VC and VMC are higher in Washington and their standard deviations are 
much higher. It is perhaps not surprising that there would be differences between Washington and 
Minnesota in the coefficient estimates, but it is surprising that VC and VMC behave differently in 
Washington. VMC roughly measures the number of crests per mile (if one assumes that they all have 
about the same grade change per hundred feet), while VC measures the average grade change per 
hundred feet and assigns zero grade change to portions where no crest exists. VMC will be large if there 
are crests with large grade change per hundred feet, but VC will damp these down if they occur over 
short lengths (because they will be weighted by length). 

Because vertical and horizontal alignment are in principle independent and both are very important, we 
will retain both. We do this despite the fact that the correlation coefficients are considerably larger and 
more significant than those between lane width and shoulder width in Washington (which led us to 
introduce the combined variable TOTWIDTH). But in some runs we replace VC with 
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Table 21. Poisson Models of Segments with TOTWIDTH, H, and VMC 

  

MINNESOTA 

Mean No. of Accidents = EXPO× exp{.9039 - .0397TOTWIDTH + .1840H + .0544VMC} 

Estimated standard .2027 .0054 .0248 .0081 

error of coefficient 

estimates 

P-value .0001 .0001 .0001 .0001 

WASHINGTON 

Mean No. of Accidents = EXPO× exp{.6895 - .0240TOTWIDTH + .0926H + .0395VMC} 

Estimated standard .1743 .0051 .0085 .0094 

error of coefficient 

estimates 

P-value .0001 .00001 .0001 .0001 

COMBINED 

Mean No. of Accidents 

= EXPO× exp{.7478 - .0340TOTWIDTH + .0928H + .0538VMC + .2503STATE} 

Estimated standard .1373 .0036 .0075 .0059 .0369 

error of coefficient 

estimates 

P-value .0001 .0001 .0001 .0001 .0001 

1 mile = 1.61 km, 1 ft = .3048 m 

VMC. The relationship between the vertical and horizontal measure will be reconsidered below when we 
use the extended negative binomial model, which takes into account individual curves on a segment. 
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Grade, Roadside Hazard Rating, Driveway Density, and Other Variables 

Other variables systematically investigated in connection with model development include GR (average 
absolute straight-away grade), RHR (Roadside Hazard Rating), DD (driveway density), SPD (speed), T 
(commercial traffic %), and INTD (intersection density). Weather variables (NONDRYP and SNP) were 
also investigated in Minnesota. 

The weather variables can be dismissed at once. Both NONDRYP and SNP had negative regression 
coefficients in models and were not significant. A higher percentage of bad weather tends to accompany 
a decreased number of accidents, but the P-values are large. In a few runs SNP is marginally significant. 
Because the weather variable was not local but pertained to a large Weather District in the State of 
Minnesota and because of its relative insignificance, it was dropped from the modeling and was not 
collected in Washington State. See Shankar et al. for a study of weather variables in Washington State 
that indicates sufficiently local weather can be significant. 

Among the remaining variables, SPD is not significant in either State nor in the combined data set. This 
may in part reflect lack of variation in the speed data, as well as the quality of the speed data (speeds 
were not collected on some segments, but were later reconstructed from HSIS files). 

GR is very significant in both States. The other variables are significant in one State or the other (but not 
both) and significant in the modeling of the combined data sets. One curiosity is that T has a negative 
coefficient in Minnesota and is not significant, but has a significant positive coefficient in Washington. 

The P-values for these variables in Poisson runs on the combined data sets (with other variables LW, 
SHW, H, VC, and STATE; and with EXPO as an offset variable) are: 

VARIABLE 
P-value 

GR .0001 

RHR .0001 

DD .0107 

INTD .0563 

T .0697 

SPD .4118 

  

Next we attempt to include combinations of these variables in a combined Poisson model for both States. 
When this is done, GR and RHR do well, as do GR and DD, and GR and T. GR, RHR, and DD do well 
together (although STATE gets a P-value of .1417 in this case); and GR, RHR, and INTD do well 
together. 

Thus it is certainly appropriate to include GR and RHR in the model and at least one other variable. INTD 
measures intersection density. However, intersection accidents and intersection-related accidents are 
excluded from the accident variable in the segment models. For this reason, any effect of INTD will be 
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indirect and INTD is not strictly comparable to DD (driveway density). This rules out a sum of DD and 
INTD as a measure. If GR, RHR, DD, and INTD are all included in the model, they have the respective P-
values .0001, .0001, .0001, and .1863. We conclude that INTD does have an independent effect distinct 
from that of DD, but not sufficiently significant to include in the model. 

The situation is similar with the commercial traffic variable T. It appears to be significant for the combined 
data set, but not sufficiently - when other variables are present S for inclusion in the model. 

Table 22 shows resultant Poisson models for Minnesota and Washington. The anomalous behavior of 
lane width and VC in Washington exhibited in Table 15 has already been discussed. However, we should 
note the insignificance of Roadside Hazard Rating RHR in Minnesota. An interesting set of correlations 
exists with a bearing on the insignificance of RHR in Minnesota and the peculiar behavior of lane width 
LW in Washington. 

Correlation coefficient and 
P-value 

MINNESOTA 
SEGMENTS 

WASHINGTON 
SEGMENTS 

COMBINED 
SEGMENTS 

Lane Width LW versus Roadside 
Hazrat RHR 

-.01141, .7769 .11555, .0020 -.1202, .6613 

Shoulder Width SHW versus 
Roadside Hazrat RHR 

-.23729, .0001 -.14910, .0001 -.33705, .0001 

TOTWIDTH versus 
Roadside Hazrat RHR 

-.23563, .0001 -.11560, .0001 -.32559, .0001 

RHR in Minnesota has a mean of 2.14 and a standard deviation of .97, while in Washington its mean is 
3.67 and standard deviation 1.57. Roadside Hazard Rating is higher and more variable in Washington 
State. The insignificance of RHR in Minnesota in part relates to the absence of variation. The unexpected 
sign of the lane width coefficient in Washington likewise may be in part due to its correlation with the quite 
variable magnitudes of RHR in Washington. When the data from the two States are combined, this 
correlation becomes insignificant and the coefficients of LW and RHR both attain more plausible values. 

In Table 22 most coefficients for the combined model are intermediate between those of the two States. 
The most prominent anomalies are the negative sign of lane width in Washington, the 

Table 22. Poisson Models for Segment Accidents 

Regression Coefficients (Estimated Standard Error and P-value in parentheses) 

Variables 
(offset = exposure EXPO) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept 2.0693 
(.4371, .0001) 

-.9719 
(.5444, .0742) 

.7064 
(.3290, .0318) 

AVGM 
(ADT/1,000) 

.0128 
(.0090, .1559) 

-.0210 
(.0067, .0017) 

-.0112 
(.0052, .0322) 
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Lane Width LW -.1994 
(.0359, .0001) 

.0678 
(.0480, .1577) 

-.0869 
(.0280, .0001) 

Shoulder Width SHW -.0792 
(.0111, .0001) 

-.0390 
(.0117, .0008) 

-.0599 
(.0078, .0001) 

Roadside Hazard Rating RHR .0044 
(.0273, .8706) 

.0650 
(.0171, .0001) 

.0703 
(.0141, .0001) 

Driveway Rate DD .0089 
(.0033, .0075) 

.0119 
(.0023, .0001) 

.0095 
(.0019, .0001) 

Degree of Curve H .1363 
(.0283, .0001) 

.0783 
(.0099, .0001) 

.0711 
(.0089, .0001) 

Crest VC 1.1905 
(.2634, .0001) 

.2090 
(.2073, .3135) 

.6843 
(.1455, .0001) 

Absolute Grade GR .2459 
(.0598, .0001) 

.0779 
(.0234, .0009) 

.1009 
(.0213, .0001) 

State 
(MN = 0, WA = 1) 

-- -- .0909 
(.0453, .0447) 

n, p 
Dm/(n - p), χ2/(n - p) 

619, 9 
1.6827, 1.6596 

712, 9 
1.6525, 1.7179 

1331, 10 
1.7135, 1.7422 

T1 13.55 12.04 22.71 

R2, P2, R2 P .7379, .8890,.8300 .6287, .8138,.7726 .6611, .8610, .7778 

R2 W, P2 W, R2PW .8300, .8960, .9263 .7641, .8609, .8875 .7886, .8777, .8984 

R2FT, P2FT, R2PFT .6426, .7609, .8446 .5846, .7049, .8293 .5999, .7341, .8172 

  

Table 23. Additional Poisson Models for Segment Accidents 

Regression Coefficients (Estimated Standard Error and P-value in parentheses) 

Variables 
(offset = exposure EXPO) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept 2.1930 
(.4438, .0001) 

.0378 
(.2034, .8526) 

.7048 
(.3293, .0323) 

AVGM -- -.0252 -- 
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(ADT/1,000) (.0066, .0001) 

Lane Width LW -.1856 
(.0350, .0001) 

TOTWIDTH 
-.0135 
(.0054, .0116) 

-.0918 
(.0281, .0011) 

Shoulder Width SHW -.0757 
(.0106, .0001) 

-.0664 
(.0077, .0001) 

Roadside Hazard Rating RHR -- .0726 
(.0169, .0001) 

.0662 
(.0143, .0001) 

Driveway Rate DD .0092 
(.0033, .0050) 

.0102 
(.0024, .0001) 

.0097 
(.0019, .0001) 

Degree of Curve H .1445 
(.0278, .0001) 

.0701 
(.0101, .0001) 

.0720 
(.0089, .0001) 

Crest VC in MN, Combined; 
VMC in WA 

1.2257 
(.2567, .0001) 

.0378 
(.0101, .0002) 

.6999 
(.1450, .0001) 

Absolute Grade GR .2438 
(.0582, .0001) 

.0740 
(.0235, .0016) 

.1077 
(.0214, .0001) 

SNP in MN; 
T in Combined 

-.8851 
(.5938, .1361) 

-- .0070 
(.0029, .0153) 

STATE -- -- .0418 
(.0448, .3500) 

n, p 
Dm/(n - p), χ2/(n - p) 

619, 8 
1.6796, 1.6361 

712, 8 
1.6396, 1.6774 

1331, 10 
1.7126, 1.7592 

T1 14.54 12.04 22.55 

R2, P2, R2 P .7297, .8890,.8208 .6279, .8138,.7716 .6607, .8610, .7673 

R2 W, P2 W, R2PW .8290, .8941, .9272 .7685, .8604, .8932 .7909, .8803, .8985 

R2FT, P2FT, R2PFT .6421, .7609, .8439 .5859, .7049, .8311 .6006, .7341, .8182 

insignificance of Roadside Hazard Rating RHR in Minnesota, and the insignificance of the crest variable 
VC in Washington. 

Table 23 shows a few variant Poisson models with characteristics of special interest. In Table 23 the 
insignificant variables from Table 22 are removed and other variables are introduced. In Minnesota 
AVGM and RHR have been removed, and SNP has been added (P-value = .1361). In Washington 
TOTWIDTH has replaced LW and SHW, and VMC has replaced VC. Also in Table 23 the combined data 
set is presented without AVGM but with the addition of T. The variable T is quite significant but STATE 
loses its significance (P-value = .3500). 
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Poisson versus Negative Binomial 

For the models in Tables 22 and 23 the values of Dm/(n - p), X2/(n - p), and T1 are computed, along with 
several measures of goodness-of-fit. The goodness-of-fit measures indicate that the models have a good 
deal of explanatory power. However, the other statistics in all cases strongly support the conclusion that 
the data are overdispersed. In particular, the large values of T1 establish this decisively. The sources of 
the overdispersion are presumably segment characteristics not included in the model. Some of these 
characteristics might be items not collected (e.g., sight distances, superelevations, local weather) that are 
possible to collect, but others are items well outside the scope of this study (e.g., driver characteristics). 

Negative binomial models are a natural generalization of the Poisson that permit treatment of 
overdispersion. Such models can be developed with the software package LIMDEP or by trial and error 
with SAS and different choices of an overdispersion parameter. The negative binomial also has the 
advantage of lending itself nicely to application of empirical Bayesian techniques when past accident data 
are available at a site. An adjusted model can be developed with parameters partly derived from the past 
data and partly from the given negative binomial model. The new model makes use of the old but also 
allows the predictions of the old model to be tempered by actual experience on the roadway. See Hauer 
et al. (1988). 

The phenomena noted in the earlier Poisson models occur in the negative binomial setting: differences 
between the behavior of AVGM, lane width LW, VC and VMC, and RHR from one State to the other; and 
marginal significance of INTD and T. So the analysis is not repeated. In general the estimated coefficients 
of variables are similar to what they were under the Poisson models. However, we have an estimate for 
one additional parameter, the overdispersion parameter K. 

Table 24 shows four representative negative binomial models. The overdispersion parameters vary from 
0.26 to 0.30. Variables that are omitted are not significant, and some that are retained are not as well S 
notably, intercept in three of the models, AVGM, and VC in the combined data set (and in Washington, 
not shown). AVGM is not at all significant in Minnesota, not very significant in Washington, and 
intermediate in the combined data set. Lane width has the wrong sign in Washington (not shown), and is 
less significant in the combined data set than it was in the Poisson. 

  

Table 24. Negative Binomial Models for Segment Accidents 

Regression Coefficients (Estimated Standard Error and P-value in parentheses) 

Variables 
(offset = exposure 
EXPO) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined Combined 
Variant 

Intercept 1.9456 
(.6992, .0054) 

.0358 
(.2719, .8953) 

.6883 
(.4779, .1492) 

.4733 
(.4796, .3356) 

AVGM (ADT/1,000) -- -.0242 
(.0137, .0787) 

-.0109 
(.0107, .3067) 

-- 

Lane Width LW -.1821 
(.0573, .0015) 

TOTWIDTH 
-.0127 

-.0857 
(.0405, .0343) 

-.0700 
(.0404, .0833) 
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Shoulder Width SHW -.0800 
(.0158, .0001) 

(.0071, .0720) -.0577 
(.0106, .0001) 

-.0569 
(.0105, .0001) 

Roadside Hazard 
Rating RHR 

-- .0642 
(.0254, .0116) 

.0622 
(.0219, .0046) 

.0609 
(.0219, .0055) 

Driveway Rate DD .0079 
(.0042, .0630) 

.0100 
(.0035, .0045) 

.0091 
(.0027, .0007) 

.0072 
(.0026, .0067) 

Degree of Curve H .1421 
(.0545, .0092) 

.0735 
(.0154, .0001) 

.0856 
(.0126, .0001) 

.0772 
(.0140, .0001) 

VC (MN/COM) 
VMC (WA/COMV) 

1.0495 
(.4964, .0345) 

.0333 
(.0168, .0468) 

.3748 
(.2605, .1502) 

.0394 
(.0141, .0052) 

Absolute Grade GR .1990 
(.0928, .0320) 

.0800 
(.0295, .0066) 

.0976 
(.0280, .0005) 

.0941 
(.0280, .0008) 

State -- -- .1420 
(.0679, .0366) 

.1427 
(.0678, .0353) 

n, p 
Dm/(n - p - 1) 

619, 7 
1.4938 

712, 8 
1.4767 

1331, 10 
1.4993 

1331, 9 
1.4922 

K .2657 
(.0385, .0001) 

.2821 
(.0385, .0001) 

.3022 
(.0285,.0001) 

.2943 
(.0281,.0001) 

R2 K .8609 .8302 .8310 .8354 

R2 .7251 .6268 .6489 .6669 

R2 D, P2 D 
R2PD 

.3720, .5607 

.6634 
.3455, .5300 
.6518 

.3518, .5464 

.6438 
.3548,.5477 
.6478 
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Table 25. Negative Binomial Models for Segment Injury Accidents 

Regression Coefficients (Estimated Standard Error and P-value in parentheses) 

Variables 
(offset = exposure EXPO) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept 1.9998 
(.8205, .0148) 

-.2375 
(.3511, .4988) 

.1675 
(.6108, .7839) 

Lane Width LW -.2458 
(.0694, .0004) 

TOTWIDTH 
-.0279 
(.0089, .0017) 

-.1155 
(.0531, .0296) 

Shoulder Width SHW -.1053 
(.0212, .0001) 

-.0740 
(.0143, .0001) 

Roadside Hazard Rating 
RHR 

-- .0506 
(.0314, .1077) 

.0410 
(.0272, .1315) 

Driveway Rate DD -- .0065 
(.0041, .1193) 

.0054 
(.0035, .1192) 

Degree of Curve H .2158 
(.0667, .0012) 

.0598 
(.0194, .0020) 

.0730 
(.0161, .0001) 

Crest VMC -- .0405 
(.0219, .0648) 

.0399 
(.0177, .0239) 

Absolute Grade GR -- .0725 
(.0377, .0543) 

.0574 
(.0360, .1109) 

State -- -- .4149 
(.0879, .0001) 

n, p 
Dm/(n - p - 1) 

619, 4 
1.0702 

712, 7 
1.1593 

1331, 9 
1.1212 

K   
.2398 
(.0786,.0023) 

.2751 
(.0682, .0001) 

.2710 
(.0518,.0001) 

R2 K .8934 .8444 .8628 

R2 .5859 .4824 .5386 

R2 D, P2 D 
R2PD 

.3483, .4468 

.7795 
.3185, .4334 
.7348 

.3303, .4399 

.7509 
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runs. The goodness-of-fit measures, including the ordinary R2, yield no dramatic conclusions. R2 K is 
systematically larger than the others. All the measures suggest that the Minnesota coefficients account 
for Minnesota accidents a bit better than the other models. 

Table 25 shows negative binomial models for serious accidents, based on the variable INJACC. Variables 
with little significance have been omitted and only those that are significant or marginally significant have 
been retained. The Minnesota model, with the fewest variables, once again has the highest goodness-of-
fit. The coefficients are roughly comparable to those for the models for total number of accidents 
(TOTACC). Differences between the deviances Dm and R2 as one passes from Table 24 (TOTACC) to 
Table 25 (INJACC) are not of importance. Both measures tend to give smaller values when observed 
data are near zero, and larger values when the observations are away from zero: INJACC has small or 
zero values more often than TOTACC. 

The Extended Negative Binomial 

 

instead of (5.1). With respect to the j-th highway variable, segment number i is decomposed into 
Cij subsegments of relative lengths {wijc : c = 1, ..., Cij} where the variables xij take the respective 
putatively constant values {xijc : c = 1,..., Cij}. In effect this model slices up the segments into subsegments 
where each variable is constant. The weights wijc are the relative lengths of the subsegments and add to 
1. The value Cij can be taken to be independent of i (and j) if the maximum number of subsegments in the 
data set is specified: for segments with fewer subsegments the extra weights can be set equal to zero. 
For some variables, all weights except one are set to zero, and the model behaves like an ordinary 
negative binomial model with respect to them. 

An advantage of the extended negative binomial model is that it permits local variation along a roadway 
to be taken into account. Rather than summing local effects or averaging them, one in effect sums the 
accidents occurring on subsegments where conditions are constant. This givesthe model form a scale 
independence: one may decompose segments into subsegments or aggregate adjacent segments 
without changing model form. 
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Table 26. Extended Negative Binomial Models for Segment Accidents 

Regression Coefficients (Estimated Standard Error and P-value in parentheses) 

Variables (offset = 
exposure EXPO) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept 2.0168 
(.6593, .0022) 

.0846 
(.2883, .7692) 

.6287 
(.4993, .2080) 

AVGM 
(ADT/1,000) 

-- -.0239 
(.0107, .0252) 

-.0111 
(.0897, .2099) 

Lane Width LW -.1843 
(.0548, .0008) 

TOTWIDTH 
-.0142 
(.0077, .0669) 

-.0829 
(.0424, .0504) 

Shoulder Width SHW -.0812 
(.0161, .0001) 

-.0560 
(.0116, .0001) 

Roadside Hazard Rating 
RHR 

-- .0689 
(.0245, .0049) 

.0665 
(.0210, .0016) 

Driveway Rate DD .0089 
(.0044, .0423) 

.0119 
(.0033, .0003) 

.0091 
(.0026, .0005) 

Degrees of Curve 
DEG{i} 

.0474 
(.0133, .0003) 

.0521 
(.0085, .0001) 

.0445 
(.0078, .0001) 

Crest Curve Rates V{j} .4834 
(.1416, .0006) 

-- .4653 
(.1255, .0002) 

Absolute Grades 
GR{k} 

.2404 
(.0592, .0001) 

.0894 
(.0314, .0045) 

.1047 
(.0286, .0003) 

State -- -- .1585 
(.0674, .0188) 

n, p 
Dm/(n - p - 1) 

619, 6 
1.4980 

712, 7 
1.4877 

1331, 10 
1.5012 

K   
.2722 
(.0457, .0001) 

.3055 
(.0460, .0001) 

.3034 
(.0331,.0001) 

R2K .8575 .8161 .8303 

R2 .7246 .5720 .6555 
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Table 27. Final Extended Negative Binomial Model for Segment Accidents 

Regression Coefficients (Estimated Standard Error and P-value in parentheses) 

Variables (offset = exposure 
EXPO) 

Combined 

Intercept .6409 
(.5008, .2006) 

Lane Width LW -.0846 
(.0425, .0465) 

Shoulder Width SHW -.0591 
(.0114, .0001) 

Roadside Hazard Rating RHR .0668 
(.0211, .0015) 

Driveway Rate DD .0084 
(.0026, .0011) 

Degrees of Curve 
DEG{i} 

.0450 
(.0078, .0001) 

Crest Curve Rates V{j} .4652 
(.1260, .0002) 

Absolute Grades 
GR{k} 

.1048 
(.0287, .0003) 

State .1388 
(.0659, .0351) 

n, p 
Dm/(n - p - 1) 

1331, 9 
1.5012 

K   
.3056 
(.0331, .0001) 

R2 K .8291 

R2 .6547 
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Table 28. Extended Negative Binomial Models for Segment Injury Accidents 

Regression Coefficients (Estimated Standard Error and P-value in parentheses) 

Variables 
(offset = exposure EXPO) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept 1.7147 
(.8860, .0530) 

-.1571 
(.3657, .6675) 

.3534 
(.6546, .5893) 

Lane Width LW -.2233 
(.0735, .0024) 

TOTWIDTH 
-.0302 
(.0095, .0015) 

-.1306 
(.0558, .0193) 

Shoulder Width SHW -.0996 
(.0219, .0001) 

-.0784 
(.0150, .0001) 

Roadside Hazard Rating 
RHR 

-- .0568 
(.0309, .0659) 

.0598 
(.0261, .0217) 

Driveway Rate DD -- .0085 
(.0040, .0349) 

.0062 
(.0034, .0679) 

Degrees of Curve 
DEG{i} 

.0580 
(.0116, .0001) 

.0406 
(.0107, .0001) 

.0457 
(.0091, .0001) 

Crest Curve Rates V{j} .5528 
(.1364, .0001) 

-- .4694 
(.1687, .0054) 

Absolute Grades 
GR{k} 

-- .0823 
(.0400, .0395) 

-- 

State -- -- .4309 
(.0852, .0001) 

n, p 
Dm/(n - p - 1) 

619, 6 
1.0763 

712, 6 
1.3009 

1331, 9 
1.1308 

K   
.2482 
(.0751, .0010) 

.2951 
(.0699, .0001) 

.2880 
(.0523,.0001) 

R2 K .8899 .8320 .8542 

R2 .5926 .4750 .5277 
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As with the negative binomial the goal is to estimate the coefficient vector and the overdispersion 
parameter K. Shaw-Pin Miaou made available a program that uses maximum likelihood to estimate these 
quantities. In Table 26 we show the results of the modeling. 

In Table 26 AVGM and Roadside Hazard Rating RHR are strongly insignificant in Minnesota and so were 
removed. In Washington the crest variable V{j}, although having the correct sign, is strongly insignificant 
in the presence of the other variables and so was removed. In the combined data set AVGM (and the 
Intercept variable) are insignificant. When AVGM was removed and the commercial percentage variable T 
added, the estimated coefficient for T was positive but had a significance level of about 20%. When the 
speed variable SPD is added instead, it has a negative coefficient and a P-value of 50%. 

Table 27 represents our final model for segments. It contains a large number of variables, all of them 
significant, and it represents the combined characteristics of rural segments in two States with a 
reasonable amount of variation in all variables. 

Table 28 shows three extended negative binomial models for Injury Accidents. AVGM was insignificant in 
all three data sets. RHR and DD were insignificant in Minnesota. The straightaway grade variable GR{k} 
was not significant in Minnesota, and the crest vertical V{j} was not significant in Washington. Extended 
negative binomial runs with all variables present did not converge in the combined data set, but did when 
GR{k} was removed. A total of 36% of all reported segment accidents were Injury Accidents in Minnesota 
versus 46% in Washington, and this is reflected by the increase in the coefficient for State from Table 27 
to Table 28. 

 

 

equations (5.13, 5.14, 5.15 respectively) 

Here D0 is the deviance of a model with only two parameters, the constant term (intercept) and the 
overdispersion parameter; k is the number of parameters of the model m under consideration (not 
including the overdispersion parameter in the model); and DEm is the expected value of the deviance in 
the case when a Poisson model with the same means yi as the model m is the correct one. Roughly 
speaking, RD2 indicates how much explanatory power results from adding the highway characteristics 
and R2PD represents this as a fraction of the highest possible expected explanatory power of any model 
with the same means as m. 
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For negative binomial and Poisson models Fridstrøm et al. regard R2PD and R2PFT with favor. They 
express reservations about R2P and RPW2 the first of these, being unnormalized, will make observations 
with large predicted means more influential, while the second tends to exaggerate the estimation errors 
associated with small predicted means. 

Yet another measure of goodness-of-fit, this one advocated by Miaou (1996), is based explicitly on the 
overdispersion parameter. 

(5.16) 

Here K is the overdispersion parameter estimated in the model, and Kmax is the overdispersion parameter 
estimated in the negative binomial model discussed above, namely, the model with only a constant term 
and an overdispersion parameter. Based on simulations Miaou concluded that this measure shows 
promise. It is simple to calculate, it yields a value between 0 and 1, it has the proportionate increase 
property (Miaou proposes as a criterion that independent variables of equal importance, when added to a 
model, increase the value of the measure by the same absolute amount regardless of the order in which 
they are added), and it is independent of the choice of intercept term in the model. 

Intersection Models 

Models for the three-legged and four-legged intersections in Minnesota and Washington are of Poisson 
and negative binomial type. Extended negative binomial models, appropriate for nonhomogeneous and 
variable stretches of road, are not attempted. The variables used to model accidents describe traffic 
volumes, horizontal and vertical alignment, channelization, roadside (driveways and hazard rating), 
intersection angle, and posted speed. Although sight distance is a desirable variable, data were not 
available. The alignment variables and hazard rating can be viewed as partial surrogates for sight 
distance. 

Because the intersection models are based on fewer observations than the segment models, and the 
relationships revealed between accidents and intersection variables are less clear-cut, some adjustments 
are made in the criteria for retaining variables in the models. In order to identify design variables that 
influence accidents and are subject to control of designers, in many of the models P-values are allowed 
much greater range than in the segment models. Values as high as 30% occur in some models. 

To some extent this represents a shift in methodology. For a P-value of 5%, under the null hypothesis that 
a particular variable has no influence and thus has zero as its true coefficient, there is one chance in 20 
that the estimate for the coefficient will be as far away from zero as, or farther away than, it is found to be. 
With a P-value of 30%, under the null hypothesis there are three chances in 10 that the estimate will be 
as far from zero as, or farther than, the actual estimate. The estimated coefficient is viewed as a 
fluctuation from zero due to random errors in the data. However, there is no compelling reason why the 
null hypothesis should govern the analysis, especially when engineering judgment suggests that the 
variable under study has an influence on accident counts. A defensible alternative is to view the 
estimated coefficient arrived at by maximum likelihood methods as a "best guess" whose confidence 
interval is measured by the standard error of the estimate. Larger P-values correspond to larger 
confidence intervals, perhaps intervals that include zero, but the estimate itself summarizes the data 
better than assignment of a zero coefficient and removal of the variable from the model. Adopting the 
"best guess" viewpoint is a more aggressive, less conservative stance toward the investigation of the 
underlying reality. Permitting larger P-values may be thought of as a partial transition toward the latter 
stance: we still show some deference toward the null hypothesis, but we attend closely to the estimate 
offered by the model, more closely the smaller its standard error. 
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Tables 29 through 35 below exhibit the chief models of both Poisson and negative binomial type for both 
the three-legged and four-legged intersections. For comparability, number of years is used as an offset so 
that what is modeled is mean number of accidents per year. Estimated coefficients for each variable are 
shown, along with their standard errors and P-values. Some variables were considered in the preliminary 
analysis that may not appear in the Tables - variants of the variables used here, as well as weather 
variables SNP and NONDRYP in Minnesota (these had negative sign and were not very significant). 
Tables 36 and 37 exhibit models for Injury Accidents. 

Traffic 

The chief variables are major and minor road traffic S ADT1 and ADT2. In addition the variable CINDEX, 
conflict index, measuring the relationship between these two was considered. In pre- liminary runs it was 
not significant when used in addition to them, and it was less significant than either of them when used as 
a substitute for one of them. ADT1 and ADT2 have different relative effects in the three-legged versus the 
four-legged cases (cf. Table 35): 

 

  

For four-legged intersections, major and minor road ADT have approximately equal influence, while for 
three-leggeds the major road ADT dominates. If one views a four-legged intersection as two three-legged 
intersections, admittedly an oversimplification, and accordingly halves the coefficient of LADT2 in the last 
column above, the effects are seen to be roughly compatible. 

  

Table 29. Poisson Models, 3-Legged Intersections Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables (Offset = 
number of years) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept -12.5714 
(.8238, .0001) 

-10.4414 
(1.5325, .0001) 

-12.1055 
(.8241, .0001) 

Log of ADT1 .8524 
(.0560, .0001) 

.6569 
(.1386, .0001) 

.8291 
(.0511, .0001) 

Log of ADT2 .4466 
(.0461, .0001) 

.5219 
(.0628, .0001) 

.4578 
(.0367, .0001) 

VCI 
(crests) 

.3313 
(.1301, .0109) 

-.2430 
(.1554, .1180) 

-.0010 
(.0957, .9915) 

HI .0473 -.0018 .0333 
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(.0141, .0008) (.0260, .9458) (.0124, .0073) 

SPDI .0190 
(.0101, .0597) 

.0062 
(.0146, .6731) 

.0151 
(.0083, .0687) 

Roadside Hazard Rating 
RHRI 

.1788 
(.0554, .0012) 

.0995 
(.0749, .1842) 

.1712 
(.0431, .0001) 

No. Drwys ND -.0441 
(.0306, .1498) 

-.0342 
(.0426, .4215) 

-.0436 
(.0241, .0710) 

Right Turn Lane RT .2684 
(.1068, .0119) 

.1472 
(.1814 .4172) 

.2554 
(.0909, .0050) 

Angle HAU .0060 
(.0016, .0002) 

-.0073 
(.0100, .4620) 

.0052 
(.0016, .0008) 

State 
(MN = 0, WA = 1) 

-- -- -.2497 
(.1071, .0198) 

n, p 
Dm/(n - p), χ2/(n - p) 

389, 10 
1.5388, 1.8818 

181, 10 
1.5867, 1.5900 

570, 11 
1.5554, 1.8344 

T1 18.25 7.38 21.22 

R2, P2, R2 P .4653, .8375, .5556 .3298, .6844, .4819 .4203, .8147, .5159 

R2 W, P2 W, R2 PW .6413, .8044, .7973 .5094, .6734, .7564 .5898, .7720, .7640 

RFT2, PFT2, R2PFT .4722, .5568, .8481 .2702, .4090, .6606 .4130, .5206, .7933 

  

Table 30. Poisson Models, 4-Legged Intersection Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables (Offset = 
number of years) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept -10.5546 
(.8711, .0001) 

-10.7648 
(1.4384, .0001) 

-11.6312 
(.8283, .0001) 

Log of ADT1 .6517 
(.0626, .0001) 

.3710 
(.1384, .0073) 

.6064 
(.0556, .0001) 

Log of ADT2 .6089 
(.0520, .0001) 

.7934 
(.0835, .0001) 

.6739 
(.0427, .0001) 
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VCI 
(crests) 

.3805 
(.1090, .0005) 

-.0064 
(.1171, .9565) 

.2280 
(.0777, .0033) 

HI .0334 
(.0363, .3578) 

-.4329 
(.1188, .0003) 

.0114 
(.0308, .7106) 

SPDI .0166 
(.0134, .2156) 

.0630 
(.0132, .0001) 

.0415 
(.0090, .0001) 

Roadside Hazard Rating 
RHRI 

-.0425 
(.0508, .4026) 

-.2050 
(.0740, .0056) 

-.0994 
(.0411, .0156) 

No. Drwys ND .1165 
(.0316, .0002) 

.0546 
(.0472, .2472) 

.0919 
(.0258, .0004) 

Right Turn Lanes RT -.0803 
(.1119, .4736) 

-.7261 
(.1599 .0001) 

-.2323 
(.0886, .0087) 

Angle HAU -.0044 
(.0024, .0701) 

.0309 
(.0079, .0001) 

-.0016 
(.0023, .4966) 

State 
(MN = 0, WA = 1) 

-- -- -.0629 
(.1038, .5447) 

n, p 
Dm/(n - p), χ2/(n - p) 

327, 10 
1.3371, 1.3665 

90, 10 
3.1285, 2.8507 

417, 11 
1.8524, 1.8106 

T1 3.71 11.05 14.97 

R2, P2, R2 P .6057, .7288, .8311 .4513, .8374, .5389 .4556, .7868, .5791 

R2 W, P2 W, R2 PW .5635, .6705, .8404 .7564, .9039, .8369 .5695, .7558, .7535 

RFT2, PFT2, R2FT .4807, .5081, .9460 .3813, .7792, .4894 .3700, .6183, .5985 

  

Table 31. Negative Binomial Models, 3-Legged Intersection Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables 
(Offset = number of years) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept -12.8114 
(1.2566, .0001) 

-11.3859 
(2.8742, .0003) 

-12.3250 
(1.1872, .0001) 

Log of ADT1 .8090 .7490 .8073 
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(.0658, .0001) (.2492, .0027) (.0632, .0001) 

Log of ADT2 .5055 
(.0715, .0001) 

.5211 
(.1022 .0001) 

.5027 
(.0561, .0001) 

VCI 
(crests) 

.2915 
(.3025, .3353) 

-.2115 
(.2409, .3798) 

.0758 
(.1327, .5682) 

HI .0351 
(.0334, .2935) 

.0175 
(.0527, .7399) 

.0270 
(.0250, .2800) 

SPDI .0253 
(.0188, .1780) 

.0100 
(.0281, .7218) 

.0188 
(.0141, .1837) 

Roadside Hazard Rating 
RHRI 

.1653 
(.0683, .0156) 

.0681 
(.1230, .5798) 

.1372 
(.0584, .0188) 

No. Drwys ND -.0293 
(.0479, .5405) 

-.0208 
(.0756, .7835) 

-.0270 
(.0399, .4977) 

Right Turn Lane RT .2578 
(.1402, .0660) 

.1765 
(.3598, .6238) 

.2442 
(.1265, .0537) 

Angle HAU .0047 
(.0032, .1444) 

-.0069 
(.0242, .7736) 

.0040 
(.0033, .2355) 

State 
(MN = 0, WA = 1) 

-- -- -.1994 
(.1578, .2064) 

n, p 
Dm/(n - p – 1) 

389, 10 
1.2959 

181, 10 
1.3731 

570, 11 
1.3277 

K 
R2 K 

.4759(.1001,.0001) 

.7828 
.7927(.3180,.0127) 
.6450 

.5794(.0955,.0001) 

.7390 

R2 .4452 .3022 .4057 

R2 D, P2 D 
R2PD 

.2878, .4585 

.6278 
.1751, .3919 
.4468 

.2609, .4463 

.5847 
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Table 32. Negative Binomial Models, 4-Legged Intersection Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables 
(Offset = number of years) 

Minnesota 
1985-89 

Washington 
1993-95 

Combined 

Intercept -10.6729 
(1.3603, .0001) 

-10.9301 
(3.7629, .0038) 

-11.4840 
(1.5737, .0001) 

Log of ADT1 .6179 
(.0847, .0001) 

.3681 
(.3828, .3364) 

.5773 
(.0985, .0001) 

Log of ADT2 .6262 
(.0730, .0001) 

.9218 
(.2280, .0001) 

.6944 
(.0795, .0001) 

VCI 
(crests) 

.3121 
(.2490, .2101) 

.0484 
(.6446, .9401) 

.2681 
(.2147, .2118) 

HI .0441 
(.0482, .3605) 

-.3381 
(.2142, .1144) 

.0359 
(.0477, .4519) 

SPDI .0222 
(.0189, .2407) 

.0507 
(.0274, .0644) 

.0399 
(.0150, .0080) 

Roadside Hazard Rating 
RHRI 

-.0628 
(.0579, .2786) 

-.1997 
(.1702, .2406) 

-.1175 
(.0587, .0454) 

No. Drwys ND .1295 
(.0513, .0116) 

-.0023 
(.1316, .9858) 

.1056 
(.0501, .0351) 

Right Turn Lanes RT -.0557 
(.1266, .6601) 

-.7191 
(.4662 .1230) 

-.1627 
(.1407, .2474) 

Angle HAU -.0052 
(.0033, .1169) 

.0384 
(.0154, .0127) 

-.0023 
(.0039, .5534) 

State 
(MN = 0, WA = 1) 

-- -- .0094 
(.1814, .9588) 

n, p 
Dm/(n - p – 1) 

327, 10 
1.2920 

90, 10 
2.1620 

417, 11 
1.5457 

K 
R2 K 

.2044(.0670,.0023) 

.8344 
.9466(.2828, .0008) 
.6051 

.5219 (.0849,.0001) 

.7187 

R2 .5882 .3366 .4313 



 

112 

R2 D ,P2 D 
R2PD 

.2981, .4052 

.7357 
.1197, .5290 
.2262 

.2653, .4799 

.5529 

  

Table 33. Additional Negative Binomial Models, Combined (MN/WA) Intersection 
Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables (Offset = no. of years) Combined 3-legged Combined 4-legged 

Intercept -12.4698 
(1.1151, .0001) 

-11.0804 
(1.5718, .0001) 

Log of ADT1 .8046 
(.0615, .0001) 

.5834 
(.0985, .0001) 

Log of ADT2 .5002 
(.0552, .0001) 

.6839 
(.0769 .0001) 

VCI 
(crests) 

-- .2714 
(.2017, .1785) 

HI .0280 
(.0248, .2587) 

-- 

SPDI .0216 
(.0132, .1034) 

.0298 
(.0149, .0448) 

Roadside Hazard Rating RHRI .1412 
(.0578, .0145) 

-- 

No. Drwys ND -- .0888 
(.0524, .0899) 

Right Turn Lane RT .2461 
(.1266, .0519) 

-.1586 
(.1390, .2538) 

Angle (HAU for 3-leggeds, DEV for 4-
leggeds) 

.0037 
(.0033, .2681) 

-.0059 
(.0047, .2190) 

State 
(MN = 0, WA = 1) 

-.2068 
(.1574, .1890) 

-.1335 
(.1729, .4399) 

n, p 
Dm/(n – p - 1) 

570, 9 
1.3243 

417, 9 
1.5448 
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K 
R2 K 

.5826(.0938, .0001) 

.7376 
.5281(.0832,.0001) 
.7154 

R2 .4016 .4511 

R2 D , P2 D 
R2PD 

.2628, .4484 

.5862 
.2658, .4811 
.5524 

  

Table 34. Additional Negative Binomial Models, Minnesota Intersection Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables 
(Offset = number of years) 

Minnesota, three-
legged, 1985-89 

Minnesota, four-
legged, 1985-89 

Minnesota, four-
legged, 1985-89 

Intercept -11.2798 
(.6343, .0001) 

-9.5860 
(.7397, .0001) 

-9.4267 
(.7632, .0001) 

Log of ADT1 .7923 
(.0619, .0001) 

.6568 
(.0829, .0001) 

.6334 
(.0881, .0001) 

Log of ADT2 .4920 
(.0683, .0001) 

.5882 
(.0691 .0001) 

.6116 
(.0695, .0001) 

VCI 
(crests) 

-- .3499 
(.1931, .0699) 

-- 

HI -- -- .0719 
(.0308, .0195) 

Roadside Hazard Rating 
RHRI 

.1944 
(.0666, .0035) 

-- -- 

No. Drwys ND -- .1088 
(.0459, .0177) 

-- 

Right Turn Lane RT .2822 
(.1375, .0402) 

-- -- 

Angle DEV -- -.0105 
(.0042, .0120) 

-.0111 
(.0042, .0083) 

n, p 
Dm/(n - p – 1) 

389, 5 
1.3316 

327, 6 
1.2690 

327, 5 
1.2995 

K .5377(.1024,.0001) .1854(.0611,.0024) .2293 (.0700,.0011) 
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R2 K .7546 .8498 .8143 

R2 .3955 .6208 .5869 

R2 D , P2 D 
R2PD 

.2828, .4630 

.6109 
.3107, .4116 
.7548 

.2941, .4115 

.7146 

  

Table 35. Final Negative Binomial Models, Minnesota Intersection Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables 
(Offset = number of years) 

MN 3-leggeds, 1985-89 MN 4-leggeds, 1985-89 

Intercept -12.9922 
(1.1511, .0001) 

-10.4260 
(1.3167, .0001) 

Log of ADT1 .8052 
(.0639, .0001) 

.6026 
(.0836, .0001) 

Log of ADT2 .5037 
(.0708, .0001) 

.6091 
(.0694 .0001) 

VCI 
(crests) 

.2901 
(.2935, .3229) 

.2885 
(.2576, .2628) 

HI .0339 
(.0327, .3004) 

.0449 
(.0473, .3431) 

SPDI .0285 
(.0177, .1072) 

.0187 
(.0176, .2875) 

Roadside Hazard Rating RHRI .1726 
(.0677, .0108) 

-- 

No. Drwys ND -- .1235 
(.0519, .0173) 

Right Turn Lane RT .2671 
(.1398, .0561) 

-- 

Angle HAU .0045 
(.0032, .1578) 

-.0049 
(.0033, .1341) 

n, p 
Dm/(n - p - 1) 

389, 9 
1.3200 

327, 8 
1.2874 
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K 
R2 K 

.4811(.0998,.0001) 

.7805 
.2055(.0652,.0016) 
.8336 

R2 .4409 .5944 

R2 D , P2 D 
R2PD 

.2891, .4604 

.6279 
.3005, .4081 
.7364 

  

  

Table 36. Negative Binomial Models, 3-Legged Intersection Injury Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables (Offset = no. of years) Minnesota 1985-9 Washington 1993-5 Combined 

Intercept -13.0374 
(1.7908, .0001) 

-13.8430 
(3.2641, .0001) 

-12.9939 
(1.6299, .0001) 

Log of ADT1 .8122 
(.0973, .0001) 

.9037 
(.2915, .0019) 

.8357 
(.0878, .0001) 

Log of ADT2 .4551 
(.0977, .0001) 

.5445 
(.1314 .0001) 

.4840 
(.0721, .0001) 

VCI 
(crests) 

.1869 
(.3657, .6092) 

-.1000 
(.2787, .7196) 

.0247 
(.1773, .8893) 

HI .0335 
(.0327, .3047) 

-.0063 
(.0739, .9316) 

.0179 
(.0294, .5424) 

SPDI .0156 
(.0269, .5618) 

.0165 
(.0331, .6173) 

.0125 
(.0197, .5248) 

Roadside Hazard Rating RHRI .2065 
(.0930, .0263) 

-.0002 
(.1505, .9990) 

.1300 
(.0757, .0858) 

No. Drwys ND -.0120 
(.0714, .8671) 

.0293 
(.0840, .7276) 

-.0044 
(.0525, .9331) 

Right Turn Lane RT .3620 
(.1814, .0460) 

.1647 
(.4034, .6830) 

.2957 
(.1590, .0629) 

Angle HAU .0051 
(.0045, .2594) 

.0016 
(.0412, .9692) 

.0046 
(.0048, .3384) 
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State 
(MN = 0, WA = 1) 

-- -- -.1299 
(.1924, .4996) 

n, p 
Dm/(n - p - 1) 

389, 10 
.9799 

181, 10 
.9546 

570, 11 
.9625 

K 
R2 K 

.4935(.1818,.0066) 

.8208 
.8166(.4144,.0488) 
.6500 

.6219 
(.1693,.0002) 
.7674 

R2 .4149 .1251 .3481 

R2 D , P2 D 
R2PD 

.2520, .3687 

.6835 
.1917, .3126 
.6134 

.2441, .3601 

.6778 

  

Table 37. Negative Binomial Models, 4-Legged Intersection Injury Accidents 

Regression Coefficients (Standard error and P-value in parentheses) 

Variables (Offset = no. of years) Minnesota 1985-9 Washington 1993-5 Combined 

Intercept -10.7829 
(1.7656, .0001) 

-12.5872 
(4.5643, .0059) 

-12.0196 
(1.9399, .0001) 

Log of ADT1 .6339 
(.1055, .0001) 

.4738 
(.4945, .3380) 

.5963 
(.1187, .0001) 

Log of ADT2 .6229 
(.0870, .0001) 

.9085 
(.2459, .0002) 

.6945 
(.0947, .0001) 

VCI 
(crests) 

.2789 
(.4623, .5464) 

.1074 
(.6848, .8754) 

.2824 
(.3469, .4156) 

HI .0729 
(.0635, .2513) 

-.6484 
(.3838, .0911) 

.0506 
(.0637, .4264) 

SPDI .0112 
(.0251, .6567) 

.0651 
(.0316, .0395) 

.0377 
(.0195, .0532) 

Roadside Hazard Rating RHRI -.1225 
(.0720, .0889) 

-.3189 
(.2123, .1332) 

-.2116 
(.0762, .0055) 

No. Drwys ND .0857 
(.0639, .1799) 

.0303 
(.1525, .8425) 

.0900 
(.0657, .1707) 

Right Turn Lanes RT .0451 -.9153 -.1273 
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(.1665, .7865) (.5273 .0826) (.1798, .4790) 

Angle HAU -.0043 
(.0044, .3258) 

.0360 
(.0157, .0220) 

-.0018 
(.0052, .7339) 

State 
(MN = 0, WA = 1) 

-- -- .2487 
(.2321, .2839) 

n, p 
Dm/(n - p - 1) 

327, 10 
1.1051 

90, 10 
1.8042 

417, 11 
1.2989 

K 
R2 K 

.1811(.1173,.1224) 

.8870 
.9692(.3751,.0098) 
.6431 

.6589 
(.1499,.0001) 
.7470 

R2 .4929 .2139 .3420 

R2 D , P2 D 
R2PD 

.2414, .3316 

.7279 
.1472, .4844 
.3040 

.2404, .4186 

.5744 

  

Alignment, Channelization, and Speed 

Two horizontal curve variables were used - HI and HEI - measuring degree of curvature out to 250 
respectively 764 feet. These variables had unexpected sign and/or were insignificant in Washington State 
(for HI, see Tables 29, 30, 31, 32, 36, 37) but behaved somewhat better in Minnesota for both three-
legged and four-legged intersections. HI was more stable than HEI, and so for comparability we elected 
to use HI as our horizontal variable in the runs shown. 

Three vertical curve variables were considered - VCI, VI, and VEI. Each measures average grade change 
per hundred feet for vertical curves near the intersection. The first is for crests out to 250 feet, the second 
is for both crests and sags out to 250 feet, and the third is for both crests and sags out to 764 feet. In the 
Minnesota data - the larger of the two State data sets - VCI, the crest only variable and the vertical 
alignment variable most closely related to sight distance, was substantially more significant than VI and 
VEI, and hence was selected for inclusion in the runs presented here. On the Washington data the 
vertical curve variables tended to have unexpected sign and/or be very insignificant. 

Several measures of channelization were used in the modeling, but the measure that proved most 
significant was RT, which takes the values 1 or 0 whether there is or is not at least one right turn lane on 
the major road. Other channelization variables - for bypass lanes on three-leggeds, zero, one, or two right 
turn lanes on four-leggeds, or acceleration lanes for the minor roads - were not significant and/or did not 
show much variation. Thus RT represents channelization in all runs. On three-legged intersections its 
coefficient was consistently positive and significant. It is not known whether this variable is a surrogate for 
high accident intersections (i.e., because many accidents tend to occur at the intersection, a right turn 
lane has been added) or a surrogate for high right turn major road traffic (and high left turn minor road 
traffic). On the four-legged intersections, the coefficient of RT tended to be negative but was not 
particularly significant. 
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The speed variable SPDI, an average of approach speeds - although negatively correlated with ADT, the 
alignment variables, and number of driveways - seemed to make an independent contribution to the 
accident frequency in all models. 

Roadside Variables - Number of Driveways and Hazard Rating 

Perhaps the most remarkable feature of the intersection models is the unexpected but systematic 
behavior of the variables ND, number of driveways, and RHRI, Roadside Hazard Rating. The coefficient 
of RHRI is positive at three-legged intersections while that of ND is negative. The reverse occurs on four-
leggeds: the coefficient of RHRI is negative and that of ND is positive. Because of the unexpected 
negative signs, ND has been omitted from some three-legged runs and RHRI has been omitted from 
some four-legged runs. 

With respect to driveways, perhaps drivers take more care when driveways are to be found in the 
neighborhood of a three-legged intersection, but insufficient additional care in the neighborhood of a four-
legged intersection. Each driveway or intersection leg represents potential traffic and requires a share of 
driver attention. In the intersection data sets driveways actually occur at a larger percentage of three-
legged intersections (62.5% in MN and 63% in WA according to Tables 4 and 5) than four-leggeds 
(32.4% in MN and 46.7% in WA according to Tables 6 and 7). At four-legged intersections, it might be 
argued that driveways are a third unexpected complication in addition to the two minor road legs, less 
easily integrated than two complications at a three-legged: a driveway and one minor leg. 

With respect to hazard rating, an opposite and possibly inconsistent explanation might be offered: It may 
be that drivers underestimate roadside hazards at three-leggeds and relatively speaking overestimate 
them at four-leggeds. Roadside hazards such as obstacles and steep sideslope do not require the same 
kind of attention as potential traffic entry points. Perhaps such hazards are more likely to be properly 
attended to when both sides of the roadway have entry points and available accident avoidance tactics 
are more limited. 

The Angle Variable 

The variable HAU used in Tables 29 through 33 and 35 through 37 is a signed variable proposed by Ezra 
Hauer (see Figures 4 and 5). For a three-legged intersection HAU is positive when the angle is larger 
than 90° as in 4(a) and HAU is negative when the angle is smaller than 90° as in 4(b). On the basis of 
work of Kulmala (1995) it is thought that turns from the far lane of the major road may be less accident 
prone in situation 4(a) than in situation 4(b). Accordingly the coefficient of HAU in the three-legged 
intersection model would be negative (when HAU is positive accidents are less frequent; and when HAU 
is negative they are more frequent, it is proposed). Of course, there are other turns to be made: a turn 
from the near lane of the major road, and turns left and right from the minor road. The four-legged version 
of HAU is the average of the HAU variable for two three-legged intersections (one to the right, one to the 
left), and would likewise have a negative coefficient if accidents owing to far lane turns through large 
angles are predominant. 

Tables 29 through 32 do not support any strong conclusion. Minnesota and Washington have opposite 
experience with the variable HAU. Minnesota angle data must be considered much more reliable, though, 
than Washington angle data. While Minnesota angles were determined from construction plans, those for 
Washington were very rough estimates made from photologs. Visibility of the direction of minor roads was 
extremely limited in the photologs. As Tables 4 through 7 indicate, for Minnesota three-leggeds 50.6% 
were reported as right angles versus 95.6% in Washington; for four-leggeds 37.6% were reported as right 
angles in Minnesota versus 88.9% in Washington. In the Minnesota Poisson models HAU is significant 
but the sign of its coefficient has unexpected value (positive) for the three-leggeds, although it behaves as 
expected for four-leggeds. Under the negative binomial models HAU is marginally significant for the 
Minnesota data with the same coefficient signs as for the Poisson. 
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The two other angle variables considered in this study are DEV (the absolute deviation from 90° of the 
angle, or the average of the two absolute deviations for the four-leggeds) and DEV15 (the squared 
difference between DEV and 15°, divided by 100). The behavior of these three variables on the 
Minnesota data is summarized below. 

Table.  The summarized behavior of three variables on the Minnesota data. 

  
Accident Models for Minnesota three-legged 
intersections with ADT1 and ADT2 and one 
of the variables at right. 
P-values and signs of the estimated 
coefficients of the variable. 

  
VARIABLE 

Poisson 
Model 

Negative 
Binomial 
Model 

DEV .4906, + .9955 , + 

DEV15 .4395, + .9248, - 

HAU .0006, + .2391, + 

  
Accident Models for Minnesota four-legged 
intersections with ADT1 and ADT2 and one 
of the variables at right. 
P-values and signs of the estimated 
coefficients of the variable. 

  
VARIABLE 

Poisson 
Model 

Negative 
Binomial 
Model 

DEV .0014, - .0139, - 

DEV15 .0071, - .0648, - 

HAU .0748, - .1419, - 

Thus angle, however measured, is a significant variable at four-legged intersections, and HAU is 
significant (but the others are not) at three-leggeds. 

DEV15 is an empirical variable developed in connection with study of the four-legged intersections. On 
some runs of Minnesota four-legged data it was more significant than DEV, suggesting that accident rates 
are highest at angles of 75° and 105°. It was also more significant than DEV on the combined Minnesota 
and Washington four-legged data. For reasons of simplicity we omit DEV15 from our tables, although we 
did use DEV on some four-legged runs (Tables 33 and 34). 

Negative Binomial Models - Minnesota versus Washington 

The statistics compiled in the lower rows of Tables 29 and 30 indicate that the Poisson models have 
definite explanatory power, especially the Minnesota models, but that they are nonetheless 
overdispersed. The values of T1 should be approximately normally distributed about zero if the 
overdispersion parameter is zero, but the values instead tend to be large positive numbers. The scaled 
deviance and the scaled Pearson chi-square likewise have values indicative of overdispersion. 
Accordingly we pass to negative binomial models in Tables 31 through 37. 

Tables 31 and 32 are negative binomial counterparts of Tables 29 and 30, with the same variables. In 
general the Poisson and negative binomial models are consistent with one another: coefficients have the 
same sign and similar magnitudes. In most cases the P-value of coefficients increases, the individual 
variables are thus less significant, and the overdispersion parameter K, a stand-in for omitted variables, 
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makes a significant contribution to all of the negative binomial models. In Washington the overdispersion 
parameters are larger than in Minnesota, and fewer variables are significant. 

In particular, for the Washington three-legged models the marginally significant variables VCI and RHRI 
become insignificant as one passes from the Poisson model in Table 29 to the negative binomial model in 
Table 31. For the Washington four-legged models the variables ADT1, HI, SPDI, RHRI, and RT become 
less significant from Table 30 to Table 32, with ADT1 and RHRI becoming insignificant. Because it is well-
accepted that ADT1 is an important variable, the quality of the data is called into question. The standard 
error for ADT1 is consistent with both a zero value and a much larger value (comparable to that of 
Minnesota). 

For all intersections in this study, the traffic data are imperfect. In rural sites they typically are based on 
spot measurements (part of a day at a site along the road near the intersection). Although efforts are 
made to average the data, with daily, weekly, seasonal, and annual variation taken into account, and with 
attempts to localize the count to the vicinity of the intersection, the results are not very reliable. 
Examination of files for both Minnesota and Washington shows that reported ADT for rural intersections is 
often the same from year to year (with no evidence that new measurements have been made or that 
paper estimates have been revised). When traffic data are available for all legs, sometimes they do not 
make sense: the difference in ADT between the two legs of the major road has no obvious relation to the 
minor road ADT. Efforts were made in this study to correct imperfections in the Minnesota intersection 
ADT, but because the Washington data were not part of an established data base, no similar efforts could 
be made with them. 

The Minnesota models are thus more trustworthy. Nonetheless, models for both sets of data, and for 
combined data, are included for comparison purposes. Where there is disagreement between Minnesota 
and Washington, the relevant variable should receive extra scrutiny and the evidence of Minnesota 
should be considered less conclusive than otherwise. 

Additional Negative Binomial Runs 

In Tables 33, 34, and 35 we exhibit additional negative binomial models for Minnesota and combined 
data. 

Table 33 shows combined data for both States with variables that are significant or reasonably close to 
significant in the "best guess" spirit. For the three-leggeds, compare Table 33 with the last column in 
Table 31: VCI and ND have been omitted. Both are very insignificant and ND has unexpected sign (more 
driveways lead to fewer accidents). For the four-leggeds, compare Table 33 with the last column of Table 
32: HI is very insignificant and has been omitted; RHRI, although significant, has unexpected sign (the 
more hazardous the roadside the fewer the accidents) and has also been omitted. The State variable is 
not significant in any of these runs, but has been retained nonetheless. 

Table 34 shows Minnesota negative binomial runs where all but the most significant variables have been 
omitted. The results for the Minnesota three-leggeds are quite consistent with the Minnesota column of 
Table 31. For the four-leggeds either horizontal or vertical alignment can serve as significant explanatory 
variables but not both. Angular deviation DEV from 90° is also strongly significant; the fewer predicted 
accidents the greater the deviation. The runs in Table 34 keep only the most significant variables. Note 
that SPDI is not one of them; nor is HAU (but angle is represented by DEV). 

Negative Binomial Models for Injury Accidents 

We also exhibit negative binomial models for injury accidents (INJACC) in Tables 36 and 37. These 
tables are comparable to Tables 31 and 32 and show that the same coefficient magnitudes generally are 
to be found, although with reduced significance. 
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With respect to the three-legged INJACC runs, the most significant variables besides ADT are Roadside 
Hazard Rating RHRI and channelization RT (in Minnesota and the combined data). This is similar to 
Table 31 where all accidents (TOTACC) are modeled. 

With respect to the four-legged INJACC runs, RHRI is again significant but with unexpected sign, and this 
mirrors the behavior in Table 32 and elsewhere. 

Final Intersection Models 

The chief idiosyncrasies found in the various models are already present in the Poisson runs (Tables 29 
and 30). We list some of these: 

• driveways seem to decrease accidents at three-legged intersections; 
• roadside hazards seem to decrease accidents at four-legged intersections; 
• a major road right turn lane seems to increase accidents at three-legged intersections; 
• the angle effect is variable from State to State and from three-legged to four-legged intersections; 
• Washington coefficients are somewhat erratic in sign and the coefficient of ADT1 in the four-

legged model is rather small relative to that of ADT2; and 
• Washington models have lower R2 values than the Minnesota models, and the combined models 

are intermediate. 

In view of the small size of the Washington State sample (the combined models are generally dominated 
by the Minnesota data), the non-random and ad hoc character of the Washington intersections (an 
"opportunity" sample), the lesser quality of some of the collected Washington data (e.g., traffic and angle), 
and the insignificance of variables of interest (including the State variable), we take the Minnesota models 
as fundamental. 

In particular, we offer the models in Table 35 as our final models for three-legged and four-legged 
intersections. These models are based exclusively on Minnesota data, and significant variables and 
marginally significant ones are included where we have allowed greater latitude for the alignment 
variables in the spirit of a "best guess" approach. In these runs the variables with unexpected signs (ND 
for the three-leggeds and RHRI for the four-leggeds) have been omitted. These models are the best we 
have to offer. Their shortcomings become apparent by comparing them with Tables 31 and 32, where 
more variables are included and both States are represented. 

Logistic Modeling 

Logistic modeling was done in this study on the Minnesota data to determine whether the probability of a 
serious accident given that an accident has occurred can be related to highway and intersection 
variables. The variable INJACC counts the number of injury accidents (i.e., other than property damage 
only accidents) and includes accidents with non-incapacitating injuries and possible injuries, whereas the 
focus of the logistic modeling is serious accidents (fatal or injury accidents). All sites with zero accidents 
were excluded. 

Although the results are inconclusive, we present them here since the methodology may be of interest. 

Theory 

Logistic regression is used to estimate probabilities for binary data or discrete ordinal data. In our case 
two severity classes are used: serious accidents and other accidents. The probability of an accident being 
severe is represented as a function of highway and intersection variables of generalized linear type, 
typically a logistic function of a linear combination of these variables. 
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A variable Y for each accident is defined as follows: 

  

 

  

Then P1 is the probability that Y has the value 1 given the value x = (x1,...,xk) of the highway 
characteristics at the accident site . With the logistic function, the model takes the form 

 

This functional form guarantees that P1 will always be a number between 0 and 1. Since P1 is the 
probability that an accident is severe (Y = 1) given the values of x, then 1 - P1 is the probability that an 
accident is not severe (Y = 0). The likelihood function for all the observed severities, derived from the 
binomial distribution under the assumption that the accidents are independent events, is: 

 

A measure of goodness of fit used on this model is the rank correlation (available in the SAS procedure 
LOGISTIC). All possible accident pairs with distinct severities are formed from the data, and then one 
calculates: 

total = t = the total number of pairs 

concordance = nc = the number of pairs for which the model predicts higher probability of a severe 
accident for the member of the pair that had the more severe accident 

discordance = nd = the number of pairs for which the model predicts higher probability of a severe 
accident for the member of the pair that had the less severe accident 

ties = t - nc - nd = the number of pairs with same predicted probability of a severe accident . 

Probabilities are grouped into intervals of length .02 and are considered equal if they lie in the same 
interval. Finally one calculates 

c = (nc + 0.5(t - nc - nd))/t. 
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The statistic c takes values between 0 and 1, and achieves the value .5 on average if a member of each 
pair is chosen with equal probability. Thus the farther above .5 c is the better the model. 

Results 

On the 619 Minnesota segments of this study in the time period 1985-89 there were a total of 1,694 
accidents, 121 of them serious. The models that result from maximum likelihood techniques showed no 
significant variables other than commercial ADT percentage T. Horizontal alignment or vertical alignment, 
but not both, had positive coefficients but the P-values were insignificant (one form of horizontal, not 
shown here, had a P-value of .306). One typical run yielded equation (5.18): 

(5.18) 

The P-values and statistic c are shown below. 

  

Table 38. Logistic Model for Serious Accident Probability, Minnesota Segments 

PARAMETER 
ESTIMATE P-value 

Intercept -3.0060 0.0001 

Percent of commercial vehicles = T 0.0413 0.0310 

Crests of Type I rate = VMCC 0.0314 0.5634 

Concordance = 53.1%, Discordance = 41.6%, c = 55.8% 

  

The statistic c differs from 50% by an appreciable but modest amount. 

For the three-legged Minnesota intersections, from 1985 to 1989, there were 524 accidents, 34 of them 
serious. Accident severity does not seem to be significantly affected by the value of the Conflict Index 
CINDEX. However, as equation (5.19) shows, horizontal alignment (out to 764 feet in each direction) 
tends to increase the severity, while severity is negatively influenced by vertical alignment (The variable 
VCEI is a variant of VCI, going out to 764 feet rather than 250 feet). Since there are very few serious 
accidents, this result contrary to expectation may reflect peculiarities in the sample. 

(5.19) 
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Table 39. Logistic Model for Serious Accident Probability, MN 3-Legged Intersections 

PARAMETER 
ESTIMATE P-value 

Intercept -2.39 0.0001 

Crest curve rate VCEI (out to " 764') -2.5099 0.03 

Horizontal curvature rate HEI (out to " 764') 0.0753 0.09 

Concordance = 60.4%, Discordance = 33.5%, c = 63.4% 

  

For the four-legged Minnesota intersections, from 1985 to 1989, there were 494 accidents, 58 of them 
serious. The model below was developed. 

 

Alignments were not at all significant. Instead the conflict index and the angular deviation from 90º were 
marginally so. Roadside Hazard Rating, although not significant, was also retained. 

  

Table 40. Logistic Model for Serious Accident Probability, MN 4-Legged Intersections 

PARAMETER 
ESTIMATE P-value 

Intercept -2.38 0.0001 

Conflict index CINDEX 1.75 0.10 

Angle DEV -0.016 0.20 

Roadside Hazard Rating RHRI 0.079 0.55 

Concordance = 57.1%, Discordance = 40.3%, c = 58.4% 
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Summary 

A variety of modeling techniques - Poisson, negative binomial, extended negative binomial, and logistic - 
have been applied in this chapter, along with measures of overdispersion, goodness-of-fit, and 
concordance. In general the Poisson models, negative binomial, and extended negative binomial models 
give mutually consistent values for regression coefficients. The T1 statistic indicates that overdispersion is 
present and thus that negative binomial models are to be preferred. The logistic models are not 
particularly satisfactory, perhaps because of the relative infrequency of serious accidents and the 
relatively greater importance of missing variables. 

The segment models - our final model is in Table 27 - support the assertion that most of the variables in 
the study are significant. Some variables that correlate with accidents (e.g., commercial traffic percentage 
T) are omitted because they are not as significant as competing variables. However, the chief variables - 
exposure, lane and shoulder width, Roadside Hazard Rating and driveway density, and the alignment 
variables - are all represented. Differences between States appear to be genuine and are captured by the 
variable STATE. When we pass to the negative binomial and the extended negative binomial, the 
coefficient estimates are reapportioned somewhat as overdispersion and localized vertical and horizontal 
measures make their contribution to the variation in accident counts. 

With regard to intersections, the final models are presented in Table 35. Minnesota data are taken as 
fundamental because the Washington intersection data are non-random and less reliable. Furthermore, 
the criteria for significance are relaxed so that "best guess" coefficients for alignment design variables can 
be presented. The effects of number of driveways, Roadside Hazard Rating, the angle variables, and 
channelization show notable variation between the three-legged intersections and the four-legged. 
Number of driveways has unexpected sign (negative) on three-leggeds in both States. Roadside Hazard 
Rating has unexpected sign (negative) on four-leggeds in both States. The acute/obtuse angle variable 
HAU behaves as expected on four-leggeds but not on three-leggeds, but another angle variable, 
deviation DEV from 90°, is more significant on four-leggeds. The presence of major road turning lanes 
increases accidents on three-leggeds but decreases them on four-leggeds. In the final models of Table 
35 number of driveways (wrong sign) is omitted from the three-legged intersections, while Roadside 
Hazard Rating (wrong sign) and right turn lanes (insignificant) are omitted from the four-legged 
intersections. 

Some noteworthy differences also appear between the Minnesota and Washington models, for example, 
the insignificance of Roadside Hazard Rating in Minnesota segments (due perhaps in part to less 
variation), the anomalous sign of lane width in Washington segments (perhaps related to design 
differences), differences in the commercial traffic percentage variable T between the two States, and 
insignificance of most variables on the Washington three-legged intersections. 

The combined segment model (Table 27) and the Minnesota intersection models (Table 35) exhibit the 
effects of the chief variables, while minimizing anomalies found in some variables and in Washington 
intersection data. 
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Validation And Further Analysis 

This chapter is devoted to miscellaneous analytical tasks relevant to possible uses of the models: 

• Validation tests are performed to measure the predictive efficacy of the leading models. The 
Minnesota models are tested against Minnesota data from a later time period (1990-1993) on the 
same segments and intersections. They are also tested against Washington data, and the 
Washington segment model and the combined segment model are tested on Minnesota data 
from 1985-89 and 1990-93. 

• The relative explanatory value of different groups of variables in the final models (Tables 27 and 
35) is assessed by means of the Log-Likelihood R-squared introduced in Chapter 5. 

• Scaled residuals (observed accident counts minus predicted mean accident counts divided by 
estimated standard error) are compared graphically with leading variables to check for systematic 
trends that might contradict the assumed model form or suggest model refinements. 

 

Validation 
Validation Techniques 
 

The chi-square statistic  2 provides a rough validation measure. More precisely, use is made here of a 
concocted  2, called  c2 , that applies to both the Poisson and the negative binomial distribution: 

 

A more refined approach is to compute the z-score of the concocted statistic c2. If the null hypothesis 
that the model is valid is true, it can be shown that the expected value of c2 is the sample size N and its 
variance is given by: 
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Then the z-score of c2 is 

 

and this statistic is approximately normal. 

Also computed are the mean absolute deviation (MAD) and the mean absolute scaled deviation (MASD): 

 

These are two additional measures of the predictive power of the model. 

Minnesota Models versus Later Minnesota Data 

Highway Safety Information System data became available during the course of this study for the years 
1990-1993 in Minnesota. These data included accident counts, traffic, shoulder widths, lane widths, and 
speeds for 392 segments (out of the 619 in the original sample), and accident, traffic, and speed data for 
365 three-legged intersections (out of the original 389) and 309 four-legged intersections (out of the 
original 327). The sample sizes for the second time period are smaller because sites with major changes 
(for example, segments that had changed length) or for which accident counts were not available were 
omitted. The new values of the highway variables were applied to the leading models and the predicted 
mean accident counts were compared with actual accident counts to test how the models performed. 
Variables such as number of driveways, Roadside Hazard Rating, and alignment were not revised for the 
new data sets. The values of these variables were obtained from photologs for 1985-89 and original 
construction plans. Updated values were not available, and it was assumed that few changes had 
occurred. 

Table 41 shows the results of applying the Minnesota models from Tables 26 and 35 to the 1990-93 
Minnesota data. The first model is an extended negative binomial model for segments with an 
overdispersion parameter K = .2722, the second and third models are negative binomial models with K = 
.4811 and .2055, respectively. The critical value 295% has been listed for comparison purposes. The 
segment data fit the model quite well, while the three-legged and four-legged intersections fail to fall 
within the 95% critical value. If we adopted as null hypotheses that the segments, the three-legged 
intersections, and the four-legged intersections were drawn from intersections with mean accident counts 
given by the models, we would reject these hypotheses for the intersections and fail to reject for the 
segments. 
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Table 41. Validation of Minnesota Models with 1990-1993 Minnesota Data 

  
  
  
  

  
Sample 

size 
of data 
used in 

modeling 

Sample 
size 
N of 

validation 
data 

  
χc2 

Critical 
value χ295% 

Z-score 
of χc2 

Mean 
Abs. 
Dev. 
MAD 

Mean 
Abs. 

Scaled 
Dev. 

MASD 

MN Segment 
Model 

(Table 26) 
  

  
619 392 304.6 439 -1.94 1.17 0.71 

MN 3-legged 
Intersection 

Model 
(Table 35) 389 

  
365 

  

  
  

464.1 
  

  
  

410 
  

  
1.94 1.02 0.73 

MN 4-legged 
Intersection 

Model 
(Table 35) 327 

  
309 

(308*) 

  
386.6 

(343.3) 351 

  
2.05 

(0.91) 
1.28 

(1.15) 

  
0.85 

(0.83) 

* One outlier removed 

Nonetheless, in other respects the fits are reasonably good, not only for the segments but also for the 
intersections, with small mean absolute and absolute scaled deviations. The four-legged intersections 
improve dramatically when one outlier is removed, an intersection with 51 accidents in 1990-1993. 

The objection may be made that accidents in the new time period are correlated with accidents in the old 
time period, and that the validation sample is not independent of the sample used to derive the model. 
The effect of this might be to generate predicted accident counts for the new time period similar to those 
in the old time period, but with the dependency on highway variables not receiving a genuinely 
independent test. Indeed, the overfitting of the segment data suggests this possibility. 

Minnesota Models versus Washington Data 

Table 42 below shows validation results when the Minnesota models of Table 41 are applied to the 
Washington segments and intersections. In this case there is no danger of correlation and the validation 
data serve as an independent sample. 
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Table 42. Validation of Minnesota Models with 1993-1995 Washington Data 

  
  
  
  

  
Sample 

size 
of data 
used in 

modeling 

Sample 
size 
N of 

validation 
data 

  
χc2 

Critical 
value χ295% 

Z-score 
of χc2 

Mean 
Abs. 
Dev. 
MAD 

Mean 
Abs. 

Scaled 
Dev. 

MASD 

MN Segment 
Model 

(Table 26) 
  

  
619 712 991.8 775 4.69 1.52 0.85 

MN 3-legged 
Intersection 

Model 
(Table 35) 389 

  
181 

  

  
  

141.4 
  

  
  

213 
  

  
-1.14 1.17 0.74 

MN 4-legged 
Intersection 

Model 
(Table 35) 327 90 188.0 113 5.22 2.68 

  
1.13 

  

  

Table 42 shows a marked difference between the segment and four-legged Minnesota models and the 
corresponding Washington data with respect to c2. The MAD and the MASD look somewhat better. The 
three-legged model looks relatively good, but it should be recalled that this model has the largest 
overdispersion parameter (K = .4811 for the three-leggeds versus K = .2722 for the segments and K = 
.2055 for the four-leggeds). The large overdispersion parameter indicates more unexplained variation 
than in the other models, and also has the effect of increasing the denominator in c2 and MASD. 

In the case of the segments one explanation of the large z-score of c2 is the difference in overall 
accident rate (accidents per million vehicle-miles) between Minnesota and Washington. In Table 43 a 
comparison is shown of three different ways of applying the Minnesota segment model to the Washington 
data: 

i) the model is used as is; 

ii) the predicted mean is taken to be that in i), multiplied by the ratio (1.0228/.6656) of the accident rate 
(accidents per million vehicle-miles) in Washington to the accident rate in Minnesota; or 

iii) the predicted mean is taken to be that in i) multiplied by that factor which gives the maximum likelihood 
estimate when the predicted mean in i) is used as an offset. 
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Table 43. Validation of Adjusted MN Segment Model with 1993-1995 WA Data 

  

  

  

  

  

Sample 
size 

of data 
used in 

modeling 

Sample 
size 

N of 
validation 

data 

  

χc2 

Critical 
value χ295% 

Z-score 

of χc2 

Mean 

Abs. 

Dev. 

MAD 

Mean 

Abs. 
Scaled 

Dev. 
MASD 

MN Segment 
Model 

(Table 26) 

without 

adjustment 619 712 991.8 775 4.69 1.52 0.85 

MN Segment 
Model 

(Table 26), 

mult. by 

1.0228/.6656 619 

  

712 

  

  

  

630.3 

  

  

  

775 

  

  

-1.45 2.07 0.77 

MN Segment 
Model 

(Table 26) 

mult. by 
exp(.0914) 619 

  

712 

  

  

869.8 775 2.69 1.57 0.81 

Table 43 shows that multipliers lead to better fits. An argument in favor of the maximum likelihood 
multiplier, exp(.0914), is that the ratio of the overall accident rates, 1.0228/.6656 = exp(.430), does not 
measure the effect of variables besides exposure observation by observation and that differences 
between the two States in these other variables may already be represented in the model. Method iii) 
introduces the intercept giving the maximum likelihood fit after the model has accounted for other 
variables to the extent possible. 

Table 43 calls attention to the important question of how a model developed for one or more States in 
some time period should be applied to other States and/or other time periods. A multiplier such as the 
ratio of accident rates or the maximum likelihood intercept can be applied, or even one tailored to 
minimize c2 or MAD or MASD. The choice of multiplier in general depends on the quantity being 
optimized. Thus, for example, to obtain a value for c2 as close as possible to zero in Table 43, a 
multiplier intermediate between exp(.0914) and exp(.430) might be used. 
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Washington and Combined Segment Models versus Minnesota Data 

Table 44, similar to Table 43, can be generated by applying a Washington State segment model to the 
Minnesota data. The extended negative binomial model for Washington State from Table 26 is applied to 
the 1985-1989 Minnesota data with and without a multiplier in Table 44. The ratio of accident rates, 
.6656/1.0228 = exp(-.430), yields the largest z-score for c2, while the maximum likelihood intercept, 
exp(-.2108), yields the z-score closest to zero. 

  

Table 44. Validation of Adjusted WA Segment Model with 1985-1989 MN Data 

  
  
  
  
  

  
Sample 

size 
of data 
used in 

modeling 

Sample 
size 
N of 

validation 
data 

  
χc2 

Critical 
value χ295% 

Z-score 
of χc2 

Mean 
Abs. 
Dev. 
MAD 

Mean 
Abs. 

Scaled 
Dev. 

MASD 

WA Segment 
Model 

(Table 26) 
without 

adjustment 712 619 513.2 678 -1.96 1.75 0.72 

WA Segment 
Model 

(Table 26), 
mult. by 

.6656/1.0228 712 

  
619 

  

  
  

900.3 
  

  
  

678 
  

  
4.93 1.66 0.88 

WA Segment 
Model 

(Table 26) 
mult. by 

exp(-.2108) 712 

  
619 

  
  
645.0 678 0.47 1.65 

  
  

0.78 
  

  

The combined extended negative binomial model for segments (Table 27) can be applied to the segment 
data for Minnesota and Washington individually and, as expected, yields z-scores for c2 close to zero 
(.926 on Minnesota data, -.0577 on Washington data). When applied to the 1990-1993 Minnesota data 
(with STATE = 0) it yields the results in Table 45. The accident rate for the 1990-1993 Minnesota 
segments is .5509 accidents per million vehicle-miles, whereas for the combined Minnesota-Washington 
data set, used in the modeling, the rate is .8070 accidents per million vehicle-miles. 

The data used for validation in Table 45 are not independent of those used in modeling since some of the 
segments are the same. Nonetheless, it is of interest to note that adjustments may be appropriate when a 
model is applied to a new time period. Table 45 shows that adjustments that increase likelihood may have 
variable effects on c2, MAD, and MASD. 
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Table 45. Validation of Combined Segment Model with 1990-1993 MN Data 

  
  
  
  

  
Sample 

size 
of data 
used in 

modeling 

Sample 
size 
N of 

validation 
data 

  
χc2 

Critical 
value χ295% 

Z-score 
of χc2 

Mean 
Abs. 
Dev. 
MAD 

Mean 
Abs. 

Scaled 
Dev. 

MASD 

Combined 
Segment 

Model 
(Table 27) 

without 
adjustment 1331 392 296.1 439 -2.09 1.20 0.71 

Combined 
Segment 

Model 
(Table 27), 

mult. by 
.5509/.8070 1331 

  
392 

  

  
  

495.0 
  

  
  

439 
  

  
2.09 1.12 0.85 

Combined. 
Segment 

Model 
(Table 27) 
mult. by 

exp(.0938) 1331 

  
392 

  
  
273.4 439 -2.62 1.26 

  
  

0.69 
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Explanatory Value of Final Models 

One way to assess the explanatory power of models is to examine the coefficient of determination R2 and 
see how it changes as one adds variables to the model. In Tables 46 and 47 and Figures 6 

  

Table 46. Accident Variation by Groups of Covariates, Final Segment Model 

  
Combined Extended Negative Binomial Model 
(Table 27) 

Log-Likelihood Coefficient of 
Determination(%) 

Randomness 45.20 

Exposure 26.81 

State 2.63 

Lane Width, Shoulder Width 2.33 

Roadside Hazard Rating, Driveway Density 1.38 

Alignment (DEG{i}, V{i}, GR{i}) 1.95 

Unexplained 19.70 

TOTAL 100.00 
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Figure 6.  Graph of accident variation by groups of covariates, Final Segment Model. 

and 7, this is done for three of the models S the combined segment model of Table 27, and the 
Minnesota three-legged and four-legged models of Table 35. Because all of these models are of 

  

Table 47. Accident Variation by Groups of Covariates, Final Intersection Models 

  
  

Minnesota Intersection 
Models (Table 35) 

Log-Likelihood 
Coefficient of 

Determination (%) 

three-
legged 

four-
legged 

Randomness 53.96 59.19 

Exposure (ADT1, ADT2) 27.12 27.99 

Design (All other variables) 1.78 2.06 

Unexplained 17.14 10.76 

TOTAL 100.00 100.00 
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Figure 7.  Graph of accident variation by groups of covariates, Final Intersection Models. 

negative binomial type, we use the Log-Likelihood R-squared proposed by Fridstrøm et al. (1995). With 
respect to this measure, negative binomial randomness is represented by 1 - P2 D. The contribution of 
other factors is represented by R2 D for the first variable when a model with that variable present is used, 
and then the increment in R2 D for each additional variable as it is added to the model. Finally the 
unexplained portion of variation is P2 D - R2 D, where R2 D is the R-squared value obtained when all 
variables are present. 

Although the Log-Likelihood R-squared is not the only way to compare explanatory values, it is a 
reasonable way to do so for negative binomial models (and we presume for their extended negative 
binomial counterparts). The tables and figures indicate that the portion of mean accident counts explained 
by variables other than exposure and ADT is small. 

Cumulative Scaled Residuals 

Figures 8 through 15 below show cumulative scaled residual plots for the extended negative binomial 
model (combined segments, Table 27) and for negative binomial models (Minnesota three-legged and 
four-legged intersections, Table 35). The cumulative scaled residuals are plotted against leading 
explanatory variables. For an explanatory variable x, a plot is made of j versus 

 

where j runs through the values of x. Each term, a scaled residual, should be approximately unbiased. 
However, if the sum depends in some regular way on j, then the model may have missed some 
systematic effects (e.g., quadratic dependency). If there is no systematic effect and the terms are 
otherwise independent, the expected value of the sum is approximately zero, and its standard deviation is 
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approximately the square root of the number of observations for which x  j. For the segments this means 
a standard deviation not in excess of 1331  36.5 and for the intersections one not in excess of 
389  19.7 (three-legged) or 327 18.1 (four-legged). The cumulative scaled residuals should 
represent the net distance traveled after each step in a random walk that ends at the sum of the scaled 
residuals for the entire data set. 

For the segments (Figures 8, 9, 10, and 11) the overall sum of the scaled residuals is about -8, for the 
three-legged intersections (Figures 12 and 13) the sum is about -2, and for the four-legged intersections 
(Figures 14 and 15) the sum is about +1. Thus the segment graphs and the three-legged graphs should 
end below the horizontal axis, while the four-legged graphs should end above. 

Table 48 summarizes the residual behavior. 

 

Figure 8.  Cumulative scaled residual versus exposure (MVM). 

The segment model overpredicts (predicted mean number of accidents higher than actual number) at the 
low end of exposure. The cumulative scaled residual varies from -32 to +12. 
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Figure 9.  Cumulative scaled residual versus degree of curve H. 

Overprediction occurs on segments without horizontal curves. The cumulative scaled residual varies from 
-36 to +7. 
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Figure 10.  Cumulative scaled residual versus crest curve grade rate VC. 

The segment model underpredicts on segments without crest curves. The cumulative scaled residual 
varies from -13 to +30 . 
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Figure 11. Cumulative scaled residual versus absolute grade GR. 

The cumulative scaled residual varies from -24 to + 22. 
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Figure 12.  Cumulative scaled residual versus ADT1. 

The cumulative scaled residual varies from -9 to +11. 
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Figure 13.  Cumulative scaled residual versus ADT2. 

The cumulative scaled residual varies from -16 to +7. 
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Figure 14.  Cumulative scaled residual versus ADT1, 4-Legged Intersections. 

The cumulative scaled residual varies from -4 to +12. 
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Figure 15.  Cumulative scaled residual, versus ADT2, 4-Legged Intersections.  
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Table 48. Cumulative Scaled residual versus increasing Value of Variables, Final Models. 

.  

Despite the indications of overprediction or underprediction in some regimes in the segment model, which 
might lead one to develop separate models in different regimes (e.g., one model for low exposure, one for 
medium exposure, and one for high), the graphs are generally consistent with random walks. In particular 
the ranges shown in Table 48 above are reasonable. In a random walk, as mentioned, the n-th step or 
observation on average will take one a distance of less than ±(n)1/2 units from the origin. In addition it is 
not at all uncommon to stay on one side of zero (above or below) for many steps in succession. Negative 
binomial models never predict zero values for the dependent variable (in our case numbers of accidents). 
Thus at low values of highway variables (presumed to be associated with fewer accidents), when the true 
number of accidents is zero, the negative binomial predicts a positive number and hence must 
overpredict at least somewhat. 

Summary 

Validation based on a chi-square statistic c2, mean absolute deviation MAD, and mean absolute scaled 
deviation MASD suggests that the models have some predictive power. The Minnesota models behave 
well on the later Minnesota data (Table 41): the segment model is even underdispersed. This does not 
constitute a real test, though, since the data sets are dependent so that accidents in the later time period 
might be expected to correlate well with accidents on the same segment in the earlier time period (and 
the latter are the basis for the model). A better test is to validate models from one State with data from the 
other. On Washington data (Table 42) the Minnesota models give small values for MAD and MASD, 
although the Washington four-legged sample gives somewhat large values. The Washington segment 
model also gives small values of MAD and MASD on Minnesota data (Table 44). To get a small value 
of c2, one adjusts the intercept term of the model to account for a difference in accident experience 
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between the States. Inspection of Tables 43 and 44 shows that the multiplier that makes c2 smallest for 
the Minnesota segment model applied to Washington data is approximately 1.35, while the best multiplier 
for the Washington segment model applied to the Minnesota data is on the order of 0.85. The product of 
these numbers is approximately 1.0, as is reasonable. 

As assessed by the Log-Likelihood R-squared, the explanatory power of the highway variables is rather 
limited. Exposure and ADT account for about 27% of the variation. For the segments a total of 5.7% of 
the variation is accounted for by other highway variables (while STATE accounts for 2.6%). For the three-
legged intersections, all highway variables other than ADT account for only 1.8% (perhaps in part 
because of the large overdispersion parameter in the three-legged model), while for the four-leggeds the 
other variables account for 2.1%. See Tables 46 and 47, and Figures 6 and 7. 

Although the cumulative scaled residual graphs for the segments suggest some differences in regimes, 
the graphs in Figures 8 through 15 are generally consistent with the model forms in Tables 27 and 35. 
Different models applied when some of the highway variables are confined to subsets of their full range 
(first quartile, second quartile, etc.) might yield better fits, but if a single overarching model is wanted for 
each of the three classes of data, the final models in Tables 27 and 35 are plausible candidates (with 
adjustments for different States and times). 
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Conclusions 

We present the final models of this study in the form of equations and make a few remarks about their 
significance. Appendix 2 gives the equations in metric form. 

The final models proposed in this study are the following: 

I. Segments of two-lane rural roads (Table 27) 

Extended Negative Binomial Model with K = .306 

 

NOTE: Each set of weights WH{i}, WV{j}, and WG{k} separately must sum to 1. To ensure this, usually it 
is necessary to insert one artificial horizontal curve with DEG = 0, one artificial crest with V = 0, and one 
artificial straightaway with GR = 0, each one having whatever weight is needed to make the sum equal 1. 

II. Three-legged intersections of two-lane rural roads, stop-controlled on the minor road (Table 35) 
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III. Four-legged intersections of two-lane rural roads, stop-controlled on the minor road (Table 35) 
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These models yield the Accident Reduction Factors shown in Table 49 below. Recall that the Accident 
Reduction Factor is the percentage decrease in mean predicted accident count when a variable is 
increased by one unit, all other variables being held fixed. A negative value signifies that accidents 
increase by that percentage when the variable is increased by one unit. 

Table 49. Accident Reduction Factors for the Final Models 

  
Segment Model (Table 27) 

3-Legged Intersection 
Model (Table 35) 

4-Legged Intersection 
Model (Table 35) 

LW +8.1%     
  

  
  

  
  

  
SHW 

+5.7%     
  

  
  

  
  

  
RHR 

-6.9% RHRI -18.8%     
  

  -0.84%       -13.1% 
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DD   ND 

DEG -4.6% HI -3.4% HI -4.6% 

V -59.2% VCI -33.7% VCI -33.4% 

GR -11.0%     
  

  
  

  
  

  
  

  
  

  
HAU 

-0.5% HAU +.5% 

The Accident Reduction Factors for DD and ND are roughly comparable. Since DD = ND times 5280 
divided by 500, the coefficient 0.0084 of DD in the segment model (Table 27) translates into a coefficient 
0.0887 of ND and an Accident Reduction Factor of -9.3% for an intersection model, as compared with -
13.1% in the actual four-legged intersection model (Tables 35 and 49). 

The ultimate use of models such as these is to aid the highway designer to improve highway safety and 
to determine what design measures will do this most effectively. The coefficients proposed for each of the 
models - in Tables 27 and 35 and in the equations above - are directly translatable into predicted accident 
counts and Accident Reduction Factors. Even if the models considered here were taken to be definitive, 
each coefficient has an estimated standard deviation or standard error (shown in Tables 27 through 35), 
and there is no reason to believe that the estimated coefficients are known to much greater accuracy than 
one standard deviation. For a normal random variable about 68% of measured values lie within one 
standard deviation of the mean. In addition there are numerous uncertainties that cannot be quantified in 
the highway variables. Variables such as ADT are crude averages over time, and some variables are 
incorrect for unknown causes (new construction without plans to confirm the change, data entry errors in 
one of the multiple data bases from which the data are obtained, inaccuracies in location of accidents, 
mileposts, alignments, etc.). 

One informal way to estimate the error in a coefficient is to examine alternative models and note how 
coefficients vary from model to model. As well as referring to the literature for models obtained by other 
investigators, one may compare the different models in this study in Tables 21 through 37. Although there 
is some stability in coefficients as one passes from Poisson to negative binomial to extended negative 
binomial, there is less as one passes from one State to another, or from all accidents to injury accidents. 

Of great importance for the practical utility of models such as the ones presented here is the issue of how 
to adapt them to different States and regions and/or different time epochs. In general what is needed is a 
multiplier that can be applied to a standard model to adjust it to a different State or region (for example, 
New England versus the Great Plains) and/or a different era (1999 versus 2001-2005), to circumstances 
in which drivers, vehicles, law enforcement, and demographics may differ from those under which the 
standard model was developed. Engineering judgment together with historical data from different States 
and eras can be used to develop multipliers. Alternatively, a small recent sample of accidents in a region 
can be compared with predictions from the standard model and an adjustment factor derived from the 
sample. Yet another approach is the Empirical Bayesian one: combine past data on a particular segment 
or intersection with a standard model of negative binomial type as discussed in Hauer et al. (1988). 

Although the segment model developed here summarizes data from two reasonably diverse States (and 
two epochs), the intersection models are based on Minnesota alone. In Table 42 they have only partial 
success when applied to Washington State. Moreover, the design variables (e.g., Roadside Hazard 
Rating, number of driveways, channelization, and intersection angle) behave in unexpected ways as one 
moves from three-legged intersections to four-legged ones. These peculiarities, as well as the relatively 
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high accident rates at intersections, suggest that intersection studies should continue as a highway safety 
research priority. 
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Appendix 1 - Statistics on the Minnesota Populations 

 
Percentage of Accidents versus Accident and Vehicle Variables for Three-legged and Four-legged 

Intersections and Segments 

(Minnesota two-lane rural roads, 1985-1989) 
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949 three-legged intersections and 1,440 accidents 

1,156 four-legged intersections and 2,028 accidents 

3,308 segments and 8,083 accidents 
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*3,308 segments with 8,083 non-intersection accidents were studied, but the constraint that shoulder type 
remain the same from left to right and throughout the time period 1985-1989 reduces these to 3,203 
segments. Of these two had no shoulders, yielding the numbers shown above. 
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APPENDIX 2 - Final Models in Metric Units 

The metric versions of the final models are: 

I. Segments of two-lane rural roads (Table 27 in metric form) 

 

  

II. Three-legged intersections of two-lane rural roads, stop-controlled on the minor road (Table 35 in 
metric form) 
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III. Four-legged intersections of two-lane rural roads, stop-controlled on the minor road (Table 35 in metric 
form) 
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INDEX OF VARIABLES 
ACCRES 
ADT 
ADT1 35, 46 
ADT2 35, 46 
angle 
AVGM 
bypass 
CINDEX 
com_avg 
DD 
DDm 
DEG{i} 
DEGm{i} 
deltag{j} 
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DEV 
DEV15 
dir_ang 
EXPO 
EXPOm 
g{i} 
GR 
GR{k} 
 
H 
HAU 
HEI 
HI 
HIm 
HM1 
HM1.5 
HM2 
INJACC 
int1 
int2 
INTD 
LADT 
light 
l{j} 
LSEG 
LW 
LWm 
LWRES 
l_angle 
l_tlcs 
ND 
nodrwy 
noint 
NONDRYP 
 
pc{i} 
pt{i} 
rad{i} 
RHR 1, 10, 28 
RHRI 1, 10, 30 
RORACC 34, 45 
RT 
r_angle 
r_tlcs 
seg_lng 
seg_lngh 
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shl_typ 
SHW 
SHWm 
SNP 
SPD 
SPDI 
SPDIm 
T 
terrain 
tlcs 
tlml 
tlml1 
tlml2 
TOTACC 
 
TOTWIDTH 
VC 
VCEI 
VCI 
VCIm 
VEI 
VI 
V{j} 
VM 
VMC 
VMCC 
Vm{j} 
WG{k} 
WH{i} 
whm{i} 
WV{j} 
Y 45, 123 
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