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OVERVIEW
Utility trenches provide an underground passageway for long-distance 
transporting utilities such as water, sewage, electricity, natural gas, and so on to 
minimize disruption to the built environment as well as avoid damage caused 
by activities above ground. Installation and maintenance of these subterranean 
utility lines can be challenging as these processes often involve excavation 
and digging, which can be time consuming and labor intensive and sometimes 
can result in damages to the cables and pipes. Thus, having detailed location 
and geometric information of the trenches to avoid these problems is highly 
beneficial. This information can be digitally recorded during installation, 
inspection, or maintenance procedures and subsequently leveraged for future 
maintenance and repairs. Detailed as-built information can also enable more 
accurate analysis to support urban planning and decisionmaking, especially for 
underground infrastructure.

Traditionally, such tasks were completed with basic hand tools and survey 
equipment. However, these approaches usually suffer from limited accessibility 
in and near the trenches, safety hazards from extensive time on site, and 
the limited number of measurements that can be captured. Therefore, 
comprehensively depicting trenches and utility lines in a timely manner can be 
challenging. With the rapid evolvement of light detection and ranging (lidar) 
technology, several smartphone and tablet models are now equipped with 
pocket lidar (PL) sensors. These small, remote-sensing devices can support 
generating three-dimensional (3D) models of open pits and trenches without 
physical contact. Compared with survey-grade, terrestrial lidar systems, these 
smart devices are easily accessible with minimal training needs given the 
availability of a variety of easy-to-use apps.

In this case study, the research team collaborated with the Pennsylvania 
Department of Transportation (PennDOT) to perform the following tasks:

• Assess the ability of PL to perform 3D reconstruction of a trench and the 
accuracy of that 3D reconstruction.

• Evaluate the accuracy of derivative metrics extracted from the PL point 
cloud data, such as volume or pipe dimensions.

• Analyze and discuss the opportunities and challenges of using PL to 
measure trenches and utility lines.
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DATA COLLECTION AND FIELD SITE
The research team coordinated with PennDOT before 
field deployment to identify candidate sites suitable for 
this case study. The primary research site is a trench 
under maintenance located near the PennDOT Materials 
Testing Laboratory (figure 1).

Before the field effort, the research team gave a 
presentation to PennDOT about the key findings 
from the lab and field testing conducted in earlier 
phases of the research. Then the team deployed an 
Apple® iPhone® 13 Pro Max unit to the study site and 
performed data collection while PennDOT personnel 
also surveyed the site with a terrestrial lidar scanner 
(TLS): the Trimble® SX12 scanning total station.

PennDOT acquired TLS data from three scan positions 
around the trench (figure 2) to ensure the data quality 
(e.g., accuracy, coverage, and resolution). Although 
the range of the scanner is well beyond the area and 
object of interest, multiple scans are required due to 
the minimum vertical angle (−60°) and occlusions 
generated by objects and topography. Covering certain 
areas and objects inside a trench (e.g., the bottom 
surface of and area below a pipe) is still challenging 
given the constraints of setting up a scanner on a tripod 
in a safe and stable position. A lightweight scanner 
can be transported up and down the ladder and in 
the trench with ease, especially compared to heavier, 
tripod-based scanners (figure 3). Additionally, the field 
crew operating the heavier scanner can cause significant 

occlusions or artifacts in the data if the scanner is 
blocked due to limited space and mobility in the trench.

During data collection with PL, the research team used 
Laan Labs® 3D Scanner App with optimized settings 
because it was found to be a promising app for construction 
inspection from previous tests and case studies.(3,4) The 
maximum range of the PL device is 5 m, and the data 
collection provided a reasonable coverage of the trench 
by acquiring data along the perimeter (figure 4) without 
entering the trench. An extension pole allows the inspector 
to stay further from the edge of the trench while still 
maintaining good coverage of the pit. Moreover, compared 

Figure 1. Photo. Case study site.

© 2024 Google® Maps™. Original photo: Airbus®, Maxar Technologies. Modified by FHWA (see Acknowledgments section).(1)

Figure 2. Illustration. Reference point cloud data 
collected with Trimble SX12 terrestrial lidar scanner.

Source: FWHA. Created using data from the SX12 visualized in 
CloudCompare version 2.13.(2)
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to terrestrial lidar systems, PL is substantially smaller and 
lightweight; an inspector can easily carry PL down to the 
trench and perform detailed scanning if required. Figure 5 
shows the resultant point cloud from PL. Some of the data 
gaps shown in the screenshot are caused by the orange 
mesh construction safety fences around the trench.

DATA PROCESSING
The terrestrial lidar data were registered by PennDOT 
and shared with the team. The original data were high 
resolution (subcentimeter level) with U.S. survey foot units 
of measurement. To keep the unit consistent with the PL 
data and reduce the data volume to speed up subsequent 
processing and analysis, the data were converted to meters 
and downsampled to a 0.01-m point density with the 
EZDataMD EZVox tool.(5)

Figure 3. Photos. Example potential scan positions to cover inside a trench with a lightweight terrestrial lidar scanner.

Source: FWHA.

Figure 4. Screenshots. Data collection session with 3D Scanner App where areas beyond the sensor range are masked.(3)

Source: FWHA. Created using 3D Scanner App.(3)

Figure 5. Screenshot. Point cloud data of the trench 
obtained with PL.

Source: FWHA. Created using data from 3D Scanner App 
visualized in CloudCompare version 2.13.(2,3)
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To register the point clouds in the same coordinate 
system, the terrestrial lidar and PL data were registered 
in CloudCompare version 2.13.(2) First, one point cloud 
dataset was manually translated and rotated to match 
the other. Then an automatic fine alignment process was 
performed using the iterative closest point algorithm to 
minimize error between the two datasets.(6) Both alignment 
procedures did not adjust the tilting of either scan for 
evaluating the accuracy of the leveling quality with PL. 
The root mean square (RMS) error—a common metric 
used to quantify the registration accuracy—of the final 
registration was 0.048 m.

To further separate the ground surface from other objects, 
EZDataMD’s Vo-SmoG ground-filtering tool was used for 
both datasets with the same parameter settings (table 1).(7) 
The parameters were established by considering various 
factors, such as data resolution and quality. A paper by Che, 
Senogles, and Olsen contains a detailed description of the 
Vo-SmoG algorithm and that algorithm’s parameters.(8) 
Because the mesh fences and low vegetation surrounding 
the trench can potentially increase the possibility of false 
negative classification results, the point clouds were first 
filtered based on the same elevation thresholds. This same 
elevation threshold in the local coordinate system was 
also used as the ground level in further analyses, such as 
volume estimation. A 2 1/2-dimensional (2.5D) point grid 
was generated from the ground points to help with terrain 
modeling and comparison of the data. The grid cell size was 
set to 0.03 m and the maximum data gaps to be interpolated 
were set to 3 m. Lastly, the point clouds and terrain models 
were cropped to the same spatial extents for consistency in 
comparisons and calculations in the analyses.

Figure 6 shows the ground-filtering and modeling results 
for the terrestrial lidar and PL data. When evaluating the 
Vo-SmoG ground-filtering results, the terrestrial lidar data 
captures the mesh fence and vegetation in detail, while PL 
generates a smoother surface in general because PL had 
difficulty capturing the objects.(7) The pipe in the trench is 
correctly classified in both data as nonground. When further 
comparing the results, some artifacts occur in the PL data. 
Two surfaces appear to be overlapping in a specific area 
(highlighted in figure 6). This inconsistency in the surface 
is likely caused by the misclosure errors from the PL device 
and app, because this area happens to be near the starting 
and end points of the data-collection session. In this case, 
as shown in the results, the ground-filtering and modeling 
processes tend to treat the lower surface as the ground 
surface and remove the upper surface.

ANALYSES
Cloud-to-TIN Comparison
To evaluate the effectiveness and accuracy of using 
PL to model a trench, the team used CloudCompare to 

create the reference triangulated irregular network (TIN) 
model—using the terrestrial lidar data—by performing 
a Delaunay triangulation of the grid points.(2) Next, the 
distance between each grid point from processed PL 
data to the reference mesh was computed, followed by 
statistical analysis (figure 7). The mean and standard 

Table 1. Key parameter settings in the Vo-SmoG  
ground-filtering tool.(7)

Parameters Values

Isolated point removal window 0.30 m

Low point filtering window 0.05 m

Normal estimation window 0.10 m

Seed selection window 3.00 m

Proximity filtering window 0.03 m

Maximum normal difference 5°

Maximum displacement 0.03 m

Maximum gap 3.00 m

Minimum size 100 cells

Proximity distance 0.03 m

Maximum iterations 3

Figure 6. Illustrations. Ground-filtering and terrain-
modeling results of the point cloud data from the 
terrestrial lidar and PL data.

Source: FWHA. Created using data from the SX12 and 3D Scanner 
App visualized in CloudCompare version 2.13.(2,3)
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deviation of the cloud-to-TIN distances were 0.020 m 
and 0.038 m, respectively. This bias and variation 
between the surfaces were similar to the RMS reported 
in the registration process. Additionally, the distribution 
of the cloud-to-TIN distance follows a Gaussian 
distribution, which indicates that most of the errors 
were likely random errors in range measurements. 
Nevertheless, the same area with artifacts observed 
due to misclosure showed significantly larger errors 
compared with other areas (duplicate surface identified in 
figure 7). Another reason for such errors is the steep slope 
in this area; steep slopes tend to result in more artifacts in 
2.5D-grid and TIN models.

Volume Estimation
The team used CloudCompare to estimate the volume 
excavated from the trench for both terrestrial and PL 
datasets.(2) For each point cloud (ground points gridded 
at 0.03 point spacing), the same parameters were applied 
to ensure the estimation’s consistency. A horizontal 

plane was defined at ground level (0.35 m in the local 
coordinate system, which is the same plane used for 
elevation filtering). This ground-level plane was then 
used as the reference surface for volume calculations. 
The cell size was set to 0.05 m, resulting in a raster with 
dimensions of 156-by-109 (17,004 cells, including empty 
cells outside the area of interest). The cell size was set 
slightly larger than the input point density to minimize the 
empty cells in the area of interest. In each cell, an average 
elevation was taken among all the points lying inside 
the cell. Figure 8 shows the rasterization and calculation 
results. The two-dimensional (2D) surface area for each 
dataset was also calculated for quality control, because 
the 2D surface area should be very close between the two 
point clouds (21.625 m2 and 21.700 m2, respectively). The 
volume estimates from terrestrial lidar and the PL point 
cloud are 24.151 m3 and 23.597 m3, respectively. The 
volume measurement from the PL data is only 0.554 m3, 
or 2.3 percent, less than the reference volume derived 
from terrestrial lidar data.

Figure 7. Illustration. Cloud-to-TIN comparison between PL and terrestrial lidar data.

Source: FWHA. Created using data from the SX12 and 3D Scanner App visualized in CloudCompare version 2.13.(2,3)

Std. Dev. = standard deviation.

Figure 8. Illustrations. Volume calculation results for PL and terrestrial lidar data.

Source: FWHA. Created using the SX12 and 3D Scanner App visualized in CloudCompare version 2.13.(2,3)



6

Figure 9. Illustrations. Modeling results of the pipe in the PL and terrestrial lidar data.

Source: FWHA. Created using data from the SX12 and 3D Scanner App visualized in CloudCompare version 2.13.(2,3)

Pipe Modeling
The characteristics of the pipes exposed in the trench 
are valuable information for utility inspection and 
maintenance. After the ground-filtering process, the pipes 
were included in the nonground points for both terrestrial 
and PL data, which simplifies the extraction of such 
features. After manually segmenting the pipe from the 
point cloud in each dataset, modeling was performed with 
the Random Sample and Consensus (RANSAC) algorithm 
in CloudCompare with the settings defined in table 2.(2,9) 
RANSAC is a common approach for geometric primitive 
fitting that randomly samples points from the point cloud 
to generate shapes and identifies the consensus between 
these point sets from multiple iterations of random 
sampling to identify the predominant shape.

The modeling process succeeded in fitting a cylinder to 
both datasets. To evaluate the quality of the fit, the distance 
between each point cloud to the corresponding primitive 
(i.e., the best-fitting cylinders) was calculated and analyzed 
(figure 9). No significant differences were observed 
between the two datasets in terms of the mean (0.001 m 
and 0.000 m for terrestrial lidar and PL, respectively) and 
standard deviation of the errors (0.007 m for both datasets). 
However, the terrestrial lidar data can be visually observed 
to contain less noise but have data gaps due to the limited 
line-of-sight from the scan positions, as discussed in the 
Volume Estimation section. As a result, the least squares 
best-fitting primitive could potentially be biased and more 
sensitive to noise. By contrast, although more errors are 
present in the PL data, the PL data have more complete 
coverage of the pipe, which can help balance the modeling 
calculations in the fitting process.

To further evaluate the accuracy of the model derived from 
PL data, a detailed comparison between the computed 
parameters of the cylindrical models was conducted 
(table 3). Overall, the results are promising for measuring 
the basic characteristics of the pipe in the trench with PL, 
with generally consistent results to the terrestrial lidar 
data. Many characteristics can also be impacted by the 
modeling approaches and algorithms. For example, the 
length of the cylinder heavily depends on the segmentation 
and extraction of the point cloud lying on the pipe, which 
can be a subjective process. Additionally, the horizontal 

Table 2. Key parameter settings in RANSAC 
cylinder fitting.(9)

Parameter Settings Value

Minimum support points  
per primitive Yes

Use least squares fitting  
on found shapes Yes

Primitives Cylinder only

Maximum distance  
to primitive 0.030 m

Sampling resolution 0.010 m

Maximum normal deviation 35°

Overlooking probability 3 percent
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orientation of the pipe can be affected by the registration 
accuracy and strategy in this case. Similarly, the difference 
in radius can be partially explained by the ranging errors 
of the PL itself, as well as the potential bias introduced 
to the terrestrial lidar data due to lack of coverage for 
the bottom of the pipe. The tilting angle (slope) is an 
important attribute for a water or sewage pipe to ensure 
the flow direction. In this case, PL shows high accuracy in 
measuring the tilting angle via the cylindrical model.

KEY FINDINGS AND FUTURE 
OPPORTUNITIES
Some of the key findings and future opportunities from 
this case study are summarized as follows:

• PL apps are easy to use and can provide coverage in 
realtime, such that the inspector is able to ensure the 
data quality, which is particularly helpful in capturing 
trenches at busy construction sites to ensure the data 
quality is sufficient before leaving the site.

• PL’s size and weight provide great flexibility in terms 
of how and where to capture the data, especially in the 
limited working area associated with trenches.

• An extension pole is highly recommended if an 
inspector deploys a PL device to collect data within 
a trench because an extension pole can significantly 
increase coverage while allowing the inspector 
to work from a safe location. An extension pole 
also helps minimize the amount of field-of-view 
blockage by PL while the inspector is navigating 
rough terrain.

• Mild misclosure errors can be found when capturing 
a trench shorter than 10 m in any dimension in 
a loop. However, for a trench longer than 10 m, 
consider using multiple data-collection sessions with 
overlapping areas between them to minimize drifting 
and misclosure issues.

• PL shows accurate results calculating the volume of 
the trench. An approximate volume estimate can be 
obtained in some apps with a little bit of processing 
in the field.

• Pipes can be extracted and modeled in the PL data 
during postprocessing. However, the diameter of 
the pipe must be 0.05 m or larger for the pipe to be 
adequately captured.

• The modeling accuracy for the pipes from the PL 
data is promising in terms of the dimensions (i.e., 
length and radius) and tilting angles. The horizontal 
orientation of the pipes can also be estimated as 
some apps leverage the navigation  
data in the device.

• AR and mixed-reality technologies enable 
visualization of the data at the actual location, 
even after the trench or pit is filled because Global 
Navigation Satellite System georeferencing 
information can be captured during the scan. Future 
maintenance and construction can greatly benefit 
from such 3D visualization, which helps minimize 
guesswork in excavation.
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Table 3. Comparison between best-fitting cylinders from 
terrestrial lidar and PL.

Statistics
Terrestrial  

Lidar (SX12)
PL (3D  

Scanner App)(3) Difference

Point count
6905 

(sampled to 
0.01 m)

16697 —

Mean  
error (m) −0.000 0.001 0.001

Std. dev. 
error (m) 0.007 0.007 0.000

Radius (m) 0.089 0.097 0.008 
(9.0%)

Length (m) 1.712 1.728 0.016 
(0.9%)

Axis
(0.2440, 
0.9667, 
0.0772)

(0.2636, 
0.9616, 
0.0765)

1.16°

Tilt (degree) 4.43 4.39 −0.04 
(−0.9%)

—No data.

https://www.google.com/maps/@40.2889958,-76.8657642,215m/data=!3m1!1e3?entry=ttu
https://www.google.com/maps/@40.2889958,-76.8657642,215m/data=!3m1!1e3?entry=ttu
https://www.google.com/maps/@40.2889958,-76.8657642,215m/data=!3m1!1e3?entry=ttu
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