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FOREWORD 

Traffic analysis and associated traffic analysis tools are critical to help State and local 
transportation agencies make decisions related to transportation investments. These tools, 
particularly traffic simulation tools, require extensive datasets so that the underlying models 
within these tools can be calibrated to real-world conditions. New data sources such as probe 
data, trajectory data, and connected vehicle data provide both opportunities and challenges for 
use in traffic simulation tools. These new data sources can be combined with existing, more 
traditional datasets to support the calibration of traffic simulation models. 

This report focuses on how these new sources of data can be used in traffic simulation analyses. 
The report will be of interest to researchers, traffic analysts, and State and local transportation 
agencies who are interested in incorporating new sources of data into their transportation 
decisionmaking processes. 

Carl Andersen 
Acting Director, Office of Safety and 

Operations Research and Development
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CHAPTER 1. BACKGROUND AND STUDY SCOPE 

BACKGROUND AND STUDY SCOPE 

In the rapidly evolving transportation landscape, recognizing the unique features of various 
emerging data sources and applying data cleaning and fusion strategies have become important 
areas of focus for researchers and practitioners. Located at the intersection of advanced 
communication technologies, data management tools, and contemporary data analytics, the 
traffic simulation model calibration field is enriched by an influx of data from connected and 
automated vehicles (CAV) and advanced intelligent transportation system (ITS) infrastructure 
capabilities. 

This report systematically reviews the state of the art and state of practice in emerging data 
cleaning and fusion methodologies and their potential application in traffic simulation model 
calibration. Given the diverse nature of data sources and the spectrum of cleaning and fusion 
methods, this report summarizes the key characteristics of these data sources, the challenges 
involved in cleaning and fusing such data, and recommended best practices for traffic simulation 
model calibration. 

Every data source—from legacy infrastructure-based sensors, such as loop detectors and radars, 
to emerging data sources, including probe data, connected vehicle data, high-resolution trajectory 
data from aerial sources, or video data—possesses strengths and weaknesses. This report 
addresses the barriers that hinder widespread adoption of emerging data in traffic analysis 
applications and traffic simulation model calibration and provides insight into effectively and 
efficiently leveraging emerging data sources for traffic simulation model calibration. 

The report focuses on the following key objectives: 

• Clarification of terminologies and concepts: This report explains the terminologies and 
concepts associated with emerging data cleaning and fusion. It delves into the 
relationships among emerging data cleaning and fusion and various sources of 
transportation data. 

• Insights from literature review and applications: The report synthesizes insights from 
an extensive literature review and consultation with users and vendors of data cleaning 
and fusion tools. It examines real-world applications of emerging data cleaning and 
fusion in recent transportation studies, sharing valuable experiences and lessons learned 
from these endeavors. 

• Customization of the data fusion framework: This section focuses on tailoring the data 
fusion framework, originally developed by the Federal Highway Administration (FHWA) 
Office of Operations, for microsimulation model calibration (Hale et al. 2022). The 
framework encompasses five steps: data acquisition and storage, data cleaning and 
fusion, data analysis, decision implementation, and evaluation and iteration. The 
framework’s design enables transportation agencies, including nontechnical personnel, to 
effectively harness emerging data sources and enhance their decisionmaking capabilities. 
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By addressing these objectives, the report serves as a practical resource, providing guidance and 
insights to facilitate the seamless integration of emerging data in traffic simulation model 
calibration. 

TERMINOLOGY USED IN THIS REPORT 

The following key terms related to traffic simulation and modeling are used in this report: 

• Calibration: The process in which the analyst selects the model parameters that cause 
the model to best reproduce field-measured local traffic operation conditions. 

• Microsimulation: The process of modeling individual vehicle movements on a second or 
subsecond basis to assess the traffic performance of highway and street systems. 

• Model: The specific combination of modeling software and input parameters developed 
by analysts for a specific application. 

• Project: This term is limited to the physical road improvement being studied to reduce 
confusing the analysis of a project with the project itself. 

• Software: Several models can be developed using a single software program. These 
models will share the same basic computational algorithms embedded in the software. 

• Validation: The process in which the analyst checks the overall model-produced traffic 
performance for a street or road system against field measurements of traffic 
performance, such as traffic volumes, travel times, average speeds, and average delays. 
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CHAPTER 2. IDENTIFYING AND CHARACTERIZING EMERGING DATA SOURCES 
FOR TRAFFIC SIMULATION CALIBRATION 

This chapter identifies and characterizes potential emerging data sources for traffic simulation 
model calibration. The first section focuses on identifying potential emerging data sources for 
traffic simulation model calibration and suggests a list of emerging data sources from State 
department of transportation (DOT) stakeholders and recent vendor contacts, based on their 
interests. This list includes questions designed to illuminate potential misunderstandings and 
complexities associated with the traffic simulation model at hand. Categorizing the identified 
data sources and datasets aims to provide an organized perspective on potential data that could 
be used. The second section in this chapter focuses on characterizing the identified emerging 
data sources from an analytical data fusion and data quality perspective. Data sources are 
categorized based on their performance metrics, such as reliability, accuracy, granularity, 
timeliness, and cost. This categorization is key for understanding the applicability and 
effectiveness of these data sources. 

IDENTIFYING POTENTIAL EMERGING DATA SOURCES FOR TRAFFIC 
SIMULATION MODEL CALIBRATION 

Categories of Emerging Data Sources 

Different State DOTs have expressed joint interest in exploring emerging data sources, the 
potential data integration steps for Traffic Analysis Toolbox Volume 3: Guidelines for Applying 
Traffic Microsimulation Modeling Software (2019 Update) (Wunderlich et al. 2019). State 
agencies have also recognized the significance of the Regional Integrated Transportation 
Information System, which integrates real-time data from location-based service (LBS) and 
probe data to effectively monitor work zone performance measures. 

Based on the information provided from the stakeholders and literature review, the project team 
has classified emerging data sources into the following categories: 

• Probe vehicle data encompass data directly obtained from vehicles and connected 
devices, ensuring high reliability, accuracy, and granularity. The data are updated, 
although the cost may be a consideration due to data acquisition and processing. Probe 
vehicle data are used by many State DOTs for traffic simulation model calibration, and 
are used for analyzing various traffic parameters, such as hard braking, queues, speeds, 
and secondary crashes. Another type of probe vehicle data and related dashboards are 
used by traffic engineers for tracking work zone delays, queue lengths, and speeds 
(INRIX, 2004; Airsage, 2000; Wejo, 2013, Gupta, 2007). 

• High-resolution vehicle trajectory data offer reliability and accuracy as they are 
specifically collected for focused analysis. They provide detailed per-vehicle trajectory 
data, which are valuable for model calibration. However, the cost can be high due to data 
acquisition, processing, and storage. Examples of sample data include the Highway 
Drone (HighD) vehicle datasets, which describe position, speed, acceleration, and lane 
changes, as well as classical datasets, such as Next Generation Simulation (NGSIM), and 
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recent FHWA projects, such as Trajectory Investigation for Enhanced Microsimulation 
Calibration Guidance (Krajewski 2018; NGSIM 2006; Hale et al. 2021). 

• CAV data encompass data from connected vehicle pilot projects, the Waymo™ Open 
Dataset (Tancik et al. 2022), and the OpenACC dataset (European Commission 2020). 
CAV data are highly reliable and accurate, providing insights into the behavior of 
advanced vehicles. These data offer a high level of granularity and real-time updates, but 
the cost can be significant due to the advanced technology involved. 

• Crowdsourced platform data exhibit varying levels of reliability and accuracy, as they 
rely on user-generated input. These data provide moderate granularity with detailed 
incident reports and benefit from high timeliness due to real-time updates. The cost 
involved is generally low to moderate and is mainly associated with data processing. 

• Emerging sensor technologies and traffic management systems data (such as Light 
Detection and Ranging (LiDAR), and three-dimensional (3D) point clouds and their 
application) can vary in their reliability, accuracy, granularity, timeliness, and cost, 
depending on the specific technology or platform employed. Examples of sample datasets 
include KITTI videos and 3D point clouds captured by cameras and LiDAR mounted on 
vehicles driving in urban and rural areas (Geiger et al. 2013). 

Traffic Trajectory Datasets 

Since the early 2000s, researchers have been gathering high-resolution trajectory data to study 
the fundamental laws and traffic flow behaviors in microscopic traffic simulators. Among the 
available open-source vehicle trajectory datasets, the NGSIM trajectory dataset (NGSIM 2006) is 
the most extensively used. Its release has attracted enthusiasm among traffic flow researchers for 
the past decade. Using the NGSIM dataset as a foundation, numerous studies exploring traffic 
flow have been conducted worldwide, encompassing both microscopic and macroscopic levels, 
leading to significant new discoveries. Visualization results of the NGSIM dataset can be seen in 
NGSIM-I–80-Trajectory-Animation (2017) and NEXTA (2018). 

Several publicly accessible datasets are available for traffic flow model calibration and studies. 
The HighD Dataset is a publicly accessible dataset that offers high-quality, naturalistic vehicle 
trajectories recorded on German highways using drones (Krajewski et al. 2018). HighD is one of 
the largest datasets of its kind, both in the number of vehicles and the total recording duration. 
The dataset features diverse traffic scenarios that provide robust modeling and analysis 
capabilities. It includes vehicle trajectories with a frequency of 25 Hz, offering detailed insights 
into vehicle behavior. The dataset also provides rich metadata, including vehicle class, length, 
velocity, acceleration, and lane positioning. Recorded in high definition, the dataset consists of 
more than 50 recordings capturing more than 110,000 vehicles and 45 h of traffic. The dataset 
can be used in applications such as driver behavior analysis, traffic flow analysis, autonomous 
vehicle algorithm development, and traffic simulation model validation. 

The Waymo Open Dataset is a high-quality, multimodal sensor dataset obtained from Waymo’s 
self-driving cars (Tancik et al. 2022). Due to its variety and quality of data, the Waymo dataset 
serves as a resource for the development and validation of self-driving algorithms. The dataset 
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includes LiDAR data collected by Waymo’s proprietary sensors, offering a 360-degree field of 
view and high-resolution depth information. Additionally, the dataset encompasses 
high‑resolution camera data from multiple angles, which provide visual context and help with 
object detection and classification tasks. The dataset is accompanied by labels and annotations 
for different objects in both LiDAR and camera data, facilitating machine learning model 
training for object detection and segmentation. With a diverse range of driving scenarios 
captured under different environmental conditions and locations, the dataset allows algorithms to 
be tested and trained in various scenarios, enhancing their robustness. The dataset also provides 
synchronized and calibrated sensor data, enabling integration and correlation between different 
modalities. 

The pNEUMA experiment deployed 10 drones over multiple days in the central business district 
of Athens, Greece (Paipuri et al. 2021). The drones captured traffic streams within a congested 
area spanning 1.3 square km that covered more than 100 km-lanes of the road network, 
approximately 100 busy intersections (signalized and non-signalized), and numerous bus stops, 
and generated nearly half a million trajectories. Using unmanned aerial vehicles (UAVs), the 
experiment aimed to systematically investigate key traffic phenomena in a multimodal congested 
environment. 

Other publicly accessible datasets include the Berkeley DeepDrive dataset, which provides video 
data and annotations for object detection and tracking, and the CityFlow dataset, which offers 
vehicle position, speed, acceleration, and lane-change data, along with traffic signal states and 
pedestrian movements (Wu et al. 2022; Tang et al. 2019). 

Emerging Data Vendors and Datasets for Traffic Flow Analysis and Model Calibration 

Several options exist of commercially available emerging data vendors, each offering distinct 
data attributes for characterization. Certain signal system manufacturers are incorporating 
advanced equipment into signal systems, communications, and logging systems, which allows 
collecting and distributing precise signal phase and timing data, as well as detector data and other 
relevant information. Data from different sources enable multiresolution analyses and model 
calibrations, specifically including: 

• Speed and traffic signal analytics data: Automated Traffic Signal Performance 
Measures (ATSPMs) provide data such as movement based turning counts, vehicle delay, 
and estimated queue length during peak hours, which can be used for multiresolution 
traffic simulation models. These products facilitate the assessment of roadway 
performance, congestion levels, and travel time reliability. For example, leveraging 
movement counts and other performance measures, transportation demand models can be 
calibrated to account for real-world conditions, ensuring that traffic planning and 
simulation models accurately represent actual travel patterns such as path-level volumes. 

• Origin-destination (OD) trips/waypoint data: Vendors offer comprehensive trip data, 
including OD information and travel times. These datasets can be helpful for calibrating 
transportation demand matrix as the key input elements of the simulator and gaining 
detailed insights into travel patterns. 
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• Path and link volume data: Vendors offer estimated traffic volumes derived from 
integrated historical data from various sources. This information plays a key role in 
calibrating transportation demand models and accurately forecasting future traffic 
patterns. By integrating traditional annual average daily traffic (AADT) and traffic 
volume profiles with comprehensive network-wide path data, the OD demand and traffic 
state estimation (TSE) modules could improve the accuracy and precision of traffic 
simulation models. 

• Micromobility data (e-scooter and bike sharing): Various data vendors are available 
that specialize in micromobility data, specifically e-scooter and bike sharing information. 
These datasets provide insights into the use and movement patterns of micromobility 
vehicles, enabling a deeper understanding of this emerging mode of transportation. 

Mapping from Sources of Data to Traffic Flow Analysis and Model Calibration 

The following key mappings can be summarized from the original sources of data to applications 
such as TSE, ITS, and work zones that are of interest to stakeholders involved in traffic analysis 
pooled funds: 

• Roadside basic safety message (BSM) data: Gathering BSM data from properly 
equipped vehicles provides insights into driver behavior, aiding in the identification of 
opportunities for roadway safety improvements. 

• High-resolution vehicle trajectory data: Augmenting or replacing traditional trip and 
OD studies used by planners and modelers by providing detailed waypoint information. 

• Turning movement counts: Using real-time turning movement counts during incident 
response or lane closures to understand alternate route usage and evaluate the 
effectiveness of communication strategies in influencing travel behavior. 

• Crowdsourced mapping data: Supplementing and improving State centerline files with 
publicly generated navigable mapping data. 

• High-resolution map data and other asset management systems: Using 
high‑resolution mapping data with centimeter-level accuracy, including detailed 
information on curbs, road markings, and signage for enhanced asset management. 

• Probe-based speed data: Studying congestion trends, identifying problematic locations, 
conducting before-and-after evaluations, and prioritizing transportation projects using 
speed and travel time data from vehicles with navigation systems. 

• Wireless technologies-based reidentification: Deploying wireless technologies 
equipment at intersections or decision points to collect travel times and potential route 
choice patterns on key corridors and arterials.  
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• Connected vehicle data from telematics providers: Extracting vehicle performance 
measures and warnings directly from connected vehicles, including events such as heavy 
breaking, traction-control engagement, emissions data, and seatbelt usage in commercial 
vehicles. 

Table 1 provides a summary of the measurement types, data quality, associated costs, and 
concerns for each surveillance technique used in traffic simulation model calibration. 

Table 1. Comparison of data collection techniques for traffic simulation model calibration. 

Surveillance Type Measurement Type Data Quality Costs and Concerns 
Point detectors, 
turning movement 
data. 

Vehicle counts and 
point speed. 

High accuracy, 
effective for 
incident response 
and lane closures 
and relatively low 
reliability. 

Low installation cost 
and high maintenance 
cost. 

Automatic 
vehicle identification. 

Point-to-point OD, 
path flow information 
for tagged or probe 
vehicles, such as 
travel time and 
volume. 

Accuracy depends 
on market 
penetration level 
of tagged vehicles. 

Relatively high 
installation costs for 
automated vehicle 
identifier (ID) readers, 
such as Wi‑Fi/ 
Bluetooth®. 

Mobile Global 
Positioning System 
(GPS) location 
sensors. 

Semicontinuous path 
trajectory and probe 
speed for individual 
equipped vehicles. 

Accuracy depends 
on market 
penetration level 
of probe vehicles. 

Public privacy concerns. 

Trajectory data from 
video image 
processing. 

Continuous path 
trajectory for vehicles 
on different links or 
lanes. 

Accuracy depends 
on machine vision 
algorithms. 

Relatively high 
installation cost for 
overhead video camera 
and communication 
wires. 

Connected vehicle 
data and roadside 
BSM collection. 

Detailed vehicle 
measures and BSMs 
from equipped 
vehicles. 

Highly reliable and 
accurate. 

Significant cost due to 
advanced technology 
involved. 

In summary, State DOTs can explore a variety of potential emerging data sources and analytics 
products for traffic simulation calibration. By leveraging the data offerings from data vendors, 
State DOTs can fine-tune their models, calibrate simulations to real-world conditions, and make 
informed decisions regarding transportation infrastructure planning. Evaluating the suitability of 
these data sources based on specific needs and requirements can help agencies unlock the full 
potential of their traffic analysis and simulation capabilities. 
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CHARACTERIZING EMERGING DATA FOR TRAFFIC SIMULATION MODEL 
CALIBRATION 

Key Aspects in Understanding Emerging Data Sources 

Understanding emerging data sources is a key aspect of contemporary traffic analysis and 
simulation. A few references suggested by State DOTs provide additional insights into 
recognizing the key aspects of understanding emerging data sources. The study conducted by 
Hale et al. (2022) on data fusion and analysis explores aspects such as data trustworthiness, 
latency, trip tracking, different vehicle classes, and data types. These considerations are key for 
effectively using emerging traffic analysis and simulation data sources. Additionally, the analysis 
by Desai et al. (2022) provides insights into using connected vehicle data for conducting 
mobility analysis, work zone analytics, and assessing the presence of electric and hybrid vehicles 
on interstates. 

Based on Hale et al (2022) and Desai et al (2022), the following information offers key insights 
and questions to enhance the understanding of these components of emerging data sources: 

• Data aspects: 

o Product and vendor differentiation: Understanding the differences between products 
and vendors is key for having a comprehensive overview of available options. 

o Data trustworthiness: Evaluating the reliability of data to help guarantee valid 
analysis and informed decisionmaking. 

o Latency: Considering the time delay in data availability ensures timely extraction of 
insights. 

o Emerging trends: Staying updated on current advancements and trends in data sources 
for informed decisions. 

• Trip aspects: 

o OD patterns: Recognizing OD patterns and routes enhances the accuracy of traffic 
analysis. 

o Trip tracking: Depending on the objectives of the analysis, determines whether 
long‑term or short-term tracking of trips is required. 

o Vehicle classes: Considering the unique characteristics of different vehicle classes, 
such as electric or hybrid vehicles. 

o Data type decision: Aligning the decision to work with raw data or aggregated data 
with the specific needs and objectives of the analysis. 

o Sampling strategy: Prioritizing obtaining sufficient and representative samples rather 
than striving for a specific percentage of total traffic. 
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• Other considerations: 

o Vendor selection: Being mindful of potential vendor lock-on and associated risks 
when selecting data providers. 

o Provider differentiation: Understanding there is a difference between data providers 
and service providers. Some primarily offer raw data, while others specialize in 
providing summary statistics and analytics. 

o Data ownership: Enabling secure access to the lowest level of data as needed. 
Although visuals and analytics tools can be useful, owning and being able to access 
the actual data are key. 

o Data types: Distinguishing between actual, factored-up, and synthetic data for a better 
understanding of their reliability and trustworthiness. Actual data provide a direct 
representation of observed trips, while factored-up data attempt to portray the entire 
population’s characteristics. Synthetic data are generated through modeling 
techniques to resemble actual data, and they are intended to provide a balance 
between data utility and privacy concerns. 

o Vendor longevity and adaptability: Ensuring the chosen vendor’s capacity for 
long‑term service and adaptability to changes rather than focusing on vendor lock-in. 

Key Traffic State and Model Variables in Emerging Source-Based Data Fusion for Traffic 
Simulation Applications 

Understanding how to effectively use emerging data sources is key to calibrating and improving 
traffic simulation applications. These data sources hold the potential to help analysts enhance 
ITS strategies, work zone applications, and identifying traffic system states. This enhancement 
provided by source-based fusion could lead to more precise models, improving traffic flow, 
reducing congestion, and advancing safety. It could systematically address key areas to meet the 
needs of pooled fund study members: 

• ITS strategies: Emerging data sources can improve the calibration of traffic simulations 
for ITS strategies. 

• Work zone applications: Work zone projects present challenges for traffic analysis and 
simulation due to their dynamic nature. Traffic data and other emerging data sources 
offer insights for calibrating simulations in work zone settings. These insights enable the 
development of a better work zone management plan. 

Accurately identifying traffic system states creates the foundation to effectively design and 
execute traffic control strategies. Ubiquitous sensing techniques, which enable different types of 
emerging mobile sensors, LBS, and participatory sensing, can provide more reliable and richer 
traffic observations. Consequently, there is a need to design a system state identification 
framework to improve the observability of traffic systems. 
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The establishment of traffic system state identification framework presents a series of 
theoretically challenging and important modeling issues when using heterogeneous sensor data 
with different degrees of uncertainty sources. Specifically, the TSE problem for traffic 
simulation model calibration should simultaneously estimate three sets of system state variables: 

• Traffic stream states such as flow rate, density, and speed on road segments of interest. 

• Fundamental diagram (FD) parameters such as free-flow speed and jam density of road 
links. 

• Congestion states represented by the queue profile and delays at traffic bottlenecks. 

• Microsimulation model parameters, including route choice, headway, standstill distance, 
volume, speed, travel time, and car following among others. 

The literature tends to categorize the traffic system states into three main ideas: 

• The TSE problem is devoted to inferring time-varying traffic state variables. 

• The model parameter estimation (MPE) problem is dedicated to calibrating or adjusting 
system parameters in traffic flow models. 

• Queue profile estimation (QPE) or congestion bottleneck identification (CBI) is 
performed to identify congestion duration and the resulting queue profile at signalized 
intersections or freeway bottlenecks (FHWA 2019). 

Key Driver Characteristics in Emerging Source-Based Data Fusion for Traffic Simulation 
Applications 

Understanding driver characteristics and behavior parameters plays a key role in traffic 
simulation and modeling. These traits include driver reaction time, desired speeds, and 
acceptable critical gaps for lane changing, merging, and crossing. The recent emergence of new 
data sources has introduced the capability to calibrate these parameters and even to specify 
additional driver attributes such as cooperation, awareness, and compliance with speed limits and 
traffic signs. 

Diverse Aspects of Driver Characteristics 

Key aspects of driver characteristics include aggression, cooperation, awareness, and 
compliance. Aggressiveness signifies how drivers respond to traffic-flow conditions, whereas 
cooperation indicates the extent to which drivers prioritize collective benefit and adjust their 
driving behavior. Driver awareness reflects the level of traffic condition information that drivers 
possess, such as queues, congestion, incidents, and available alternatives. Compliance is a 
measure of how often drivers adhere to traffic control signs, messages on variable message signs, 
and other regulatory instructions. 

Analysts can specify certain behavioral data to get a more detailed understanding of drivers. 
Observable data examples include minimum headway in car following, gap acceptance for lane 
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changing, response to yellow change interval, availability of real-time information, and driver’s 
response to this information. 

Observable Versus Difficult-to-Observe Data 

Emerging data sources provide ample observable driver behavior data such as queue discharge 
and car-following headways, gap acceptance, and startup lost time. Instead of solely relying on 
default values, analysts can benefit from collecting observable data whenever possible since a 
significant portion of driver behavioral data is challenging to observe directly. Examples of 
difficult-to-observe data include free-flow speed and acceleration or deceleration rates, 
lane‑change courtesy factors, and the distribution of driver types. This latter category affects 
aggressiveness and becomes a key data point in driver behavior analysis. 

Refining Driver Behavior Parameters 

If valid observed data are available, these can be used to override default values for driver 
behavior parameters, including free-flow speed, discharge headway, and startup lost time at 
intersections. While deviations from defaults are permissible, they should be documented. 

Emerging data sources offer an opportunity to refine and calibrate driver characteristics. These 
data sources can provide insights about the percentage of habitual or commuter drivers compared 
to tourists, the level of driver awareness of traffic flow conditions and available alternatives, and 
the overall familiarity of drivers with the transportation network. 

Harnessing these data sources can help analysts obtain a more indepth understanding of driver 
behavior. A more comprehensive understanding of driver behavior helps analysts create more 
accurate traffic simulation and modeling. 

Studies by Shahrbabaki et al. (2018) and Bachmann et al. (2013) outline emerging data cleaning 
and fusion techniques. These techniques include a range of algorithms designed for noise 
reduction, outlier detection, and imputation of missing data. A suite of advanced data fusion 
methods, such as Ambühl and Menendez (2016) and Wu et al. (2018), can also be referred to, 
encompassing statistical matching, machine learning-based fusion, and multimodal data 
integration. 

Probe vehicles, GPS traces, traffic cameras, and social media data are discussed to unravel the 
relationship among emerging data cleaning, data fusion, and various transportation data sources. 
Insights are gathered and summarized from consultation with model users, vendors, researchers, 
and industry experts to highlight the application and challenges of these data cleaning and fusion 
technologies. These consultations provide an understanding of experiences and challenges 
encountered during different stages of model applications. 

Subsequent chapters in this report share real-world experiences, lessons learned, and effective 
practices drawn from implementing data cleaning and fusion approaches. The goal is to improve 
the quality of transportation data and enhance the effectiveness of simulation-based analysis. 
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CHAPTER 3. EVALUATING IDENTIFIED EMERGING DATA SOURCES 

Chapter 3 examines the strengths and weaknesses of emerging data sources, as well as suggests 
techniques for preparing data for calibration. The first section highlights the importance of 
legacy data sources, particularly when synthesized with emerging data sources. The second 
section presents an indepth account of various datasets derived from data vendors. Each dataset 
exhibits strengths and specific applications, as shown in the following descriptions: 

• Data source A: Serves as a representative example of trip and volume data vendors. 

• Data source B: Encompasses probe vehicle data collected from a diverse array of sources. 

• Data source C: Provides publicly available, high-resolution vehicle trajectory data as 
highlighted in the third section. 

• Data source D: Focuses on loop detector data and GPS data derived from mobile phones. 

The usage of these data sources for systemwide macroscopic observation and TSE on a freeway 
segment is explained in detail, including an examination of the relative value of information 
under varying GPS and automatic vehicle identification (AVI) market penetration rates and a 
demonstration of an integrated framework for simultaneous TSE, MPE, and QPE. 

POTENTIAL LEGACY DATA SOURCES FOR TRAFFIC ANALYSIS WITH 
IDENTIFIED EMERGING DATA 

Review of Traditional Data Sources and Traffic Analysis Process 

This section examines the value of traditional or legacy data sources especially when integrated 
with newer, emerging data sources. Table 2 provides a list of these traditional data sources that 
are typically accessible and widely used. 
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Table 2. Category of legacy sensor data collection technologies. 

Sensor Description  
Variables of System 

Performance  

Use of Data Sources in Traffic 
Analysis and Simulation Model 

Calibration  
Inductive loop 
detector  

Detects vehicle movement, presence, 
count, and occupancy; reliable under 
various weather conditions. 

Vehicle count, vehicle 
presence  

FD and capacity parameters  

Magnetic sensor  Detects vehicle presence; identifies 
stopped and moving vehicles. 

Vehicle presence  Time-dependent queue profiles 
and congestion  

Camera  Detects vehicles across several lanes, 
vehicle classification, flow rate, occupancy, 
and speed. Cameras are linked to a 
computer with an intelligent algorithm to 
retrieve traffic parameters. It is low cost 
and easy to install and maintain.  

Flow rate, occupancy, 
speed, density, queue 
length  

Car-following model and subareas 
OD information 

Radar  Uses radio waves to detect vehicles, 
measure speed, and detect movement 
direction. It is high cost, difficult to install, 
and difficult to maintain.  

Vehicle count, speed, 
direction  

FD and capacity parameters 

Infrared  Detects infrared radiation through sender 
and receiver parts. It can measure speed, 
vehicle volume, and lane occupancy. It is 
low cost but difficult to maintain.  

Speed, vehicle count, 
occupancy  

FD and capacity parameters 

Ultrasonic  Uses ultrasonic waves to detect vehicle 
presence and occupancy. It is low cost but 
difficult to maintain.  

Vehicle count, vehicle 
presence, occupancy  

FD, and capacity parameters  

Remote traffic 
microwave sensor 

Uses radar technology for vehicle 
detection.  

Average vehicle length, 
speed  

FD, congestion bottleneck 
estimation  

GPS  Uses satellite-based sensing to provide 
information on vehicle location. It is 
relatively expensive and difficult to install 
and maintain.  

Coordinate, count, 
speed, direction  

OD, route choice  
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Multiresolution Traffic Simulation Tools for Modeling Driver Behavior and Traffic Flow 
Dynamics 

This research project employs a multitiered approach in assessing traffic simulation modeling 
tools and using them for realistic and accurate representations of traffic demand and supply 
scenarios. The selected tools fall under three distinct classifications, each aimed at specific 
resolutions of traffic flow modeling, from vehicle to aggregated flow level. These tools strive to 
recreate and simulate real-world traffic conditions and assist in devising efficient traffic 
management and control strategies. 

Open-source tools used in different studies include traffic simulation packages and DTA 
packages (Behrisch et al. 2011; Horni et al. 2016; Auld et al. 2016; Zhou and Taylor 2014). A 
typical traffic simulation package, such as package I, is a space-continuous, microsimulation tool 
offering multimodal simulation, including road vehicles, public transport, and pedestrians 
(Behrisch et al. 2011). It supports various application programming interfaces to enable 
customization of modeling. MATSim is a multiagent simulation framework, based on activity, 
that is also extendable. A typical DTA package, such as package II (Zhou and Taylor 2014), is a 
compact dynamic network loading simulator incorporating Newell’s simplified kinematic wave 
model (Newell, 1993). 

A main objective of the model calibration is to encapsulate naturalistic driver behavior under 
diverse freeway and arterial street driving conditions. These behaviors include desired speed 
selection, acceleration changes, lane changing, car-following distances, response times, and 
emergency stopping. The focus of this study is not to update existing models or develop new 
ones, but to devise techniques for creating traffic simulation models that are more accurate, 
sensitive, and compatible with future simulation models. 

The simulation modeling task workflow adheres to several principles to meet the objectives of 
model calibration. First, it seeks to statistically differentiate and characterize heterogeneous 
driver behaviors across different populations under different travel conditions. Second, it 
emphasizes the need for a comprehensive analysis of how existing microsimulation models can 
be enhanced using available vehicle position, speed, and acceleration data obtained from a wide 
range of data sources, such as GPS sensors, accelerometers, video images, and measurements 
collected from a driving simulator. 

Data from various past and ongoing studies, as well as databases developed by transportation 
research institutes, can be used for analysis. These databases provide longitudinal measurements 
of fundamental driver behavior characteristics and assist in modeling naturalistic driving 
behavior. 

EVALUATING IDENTIFIED EMERGING DATA FROM VENDORS 

Data Source A as an Example in Trip and Volume Data Vendor Category 

This section aims to examine the different datasets obtained from various data vendors. Each 
dataset brings strengths and specific applications. For instance, data source A falls under the trip 
and volume data vendor category. Data source B contains probe vehicle data from several 
providers. Numerous companies provide a comprehensive range of OD trips and waypoint data. 
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These data, rich with information such as the OD of trips and travel times, play a key role in 
calibrating transportation demand models and understanding travel patterns. Harnessing these 
indepth trip data and performing rigorous analysis can help analysts make informed decisions 
regarding transportation infrastructure and planning. 

Ensuring the accuracy and reliability of the data is paramount, which involves verifying its 
quality, especially when obtained from external vendors, to prevent any inconsistencies or biased 
outcomes. Additionally, in instances where certain data, like turning counts or link counts are 
missing, techniques such as OD matrix analysis or path flow assignment are used to estimate the 
required information for microsimulation studies. Specifically, by utilizing trip and volume data, 
the analyst can perform the tasks related to traffic simulation model calibration as follows: 

• Traffic volume and flow analysis: 
o Estimate of AADT analysis. 
o Estimate of traffic link count analysis. 
o Estimate of classified turn counts at intersections. 

• Travel behavior and demand analysis: 
o Estimate of OD trips analysis. 
o Route choice analysis. 
o Travel mode analysis. 
o Mode choice analysis. 
o Attraction analysis. 

• Network performance analysis: 
o Travel time analysis. 
o Travel speed analysis. 
o Network analysis. 

Data source A, for instance, uses a wide array of geospatial information from mobile devices to 
offer estimates of trip OD volume, trip purpose, and travel times using data from smartphone 
applications and GPS devices in commercial vehicles. These data allow users to create, execute, 
and visualize custom queries such as OD and link flow analysis. Such queries can be broken 
down further by time of day and trip purpose, giving transportation planners a detailed 
understanding of travel patterns. 

Travel mode analysis examines the distribution of various transportation modes in use, which 
aids infrastructure planning and promoting sustainable transit options. In contrast, mode choice 
analysis focuses on predicting individual preferences and factors influencing transportation 
choices, requiring detailed personal and trip-specific information. When evaluating 
vendor‑provided data, such as from data source A, analysts must ensure data completeness, 
assess its quality, and be mindful of potential limitations to derive accurate and meaningful 
insights applicable to both types of analysis. 

Recognizing the potential of OD trips and waypoint data, analysts should approach the data with 
a mindful perspective that considers its integration into various State DOT activities. The data 
sources, namely smartphone applications and commercial vehicle GPS devices, may 
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inadvertently bring biases into the analysis given the variability in accessibility of cellular data 
plans across different income groups. Additionally, the disparities in market penetration among 
the trips analyzed need to be accounted for. 

A thorough evaluation has been carried out to ensure the effective use of data source A. By 
addressing key questions and filling potential gaps, this research project enables DOTs to fully 
use the potential of data source A for informed planning and decisionmaking, as shown in 
table 3.
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Table 3. Summary of data source A applications. 

Reference Application Location Selection Data of Year 
Data Quality 
Evaluation 

Kothuri et al. 
(2022) 

Exploring data 
fusion techniques to 
derive bicycle 
volumes on a 
network 

Boulder, CO; 
Charlotte, NC; 
Dallas, TX; 
Portland, OR; Bend, 
OR; Eugene, OR 

2017–2019 Six cities selected, 
corridor-level OD 
volumes 

Claros et al. 
(2022) 

Validating and 
estimating AADT 
data  

State of Wisconsin 2019 with 
785,479 OD trips 
and 150,000 
vehicles collected 

100 traffic count 
stations selected for 
data validation with R2 
of 0.941 

Schewel et al. 
(2021) 

Collecting AADT Stations across 48 
States 

2011–2019 from 
FHWA; 2018–
2019 from MS2 

Using machine learning 
method to estimate 
AADT 

Turner, Tsapakis, 
and Koeneman 
(2020) 

Evaluating traffic 
count estimation 

442 permanent 
count locations in 
Minnesota 

2019 Implementing 
probe‑based counts for 
approximately 90 
percent of the 
moderate- to 
high‑volume roadways, 
specifically those with 
an AADT of 20,000 or 
more 

Yang, Cetin, and 
Ma (2020) 

Information for 
using probe data for 
planning tasks 

Virginia 2017–2018 Estimating AADT, 
estimating OD trips, 
estimating traffic 
counts, estimating turn 
counts and truck 
volumes at intersection 
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Reference Application Location Selection Data of Year 
Data Quality 
Evaluation 

Roll (2019) Evaluating probe 
data in AADT data 
inventory in Oregon 

Oregon 2017 Compared 
short-term‑based 
AADT and automatic 
traffic recorder 
between probe data and 
ODOT data percentage 
error, absolute percent 
error 

Avner (2018) Travel demand 
modeling 

Frederick, MD; 
Fredericksburg, 
VA; US 322, Centre 
County, PA 

Not applicable Interval versus external 
flow, external trip 
distribution, percentage 
error 

Shay (2017) Identifying freight 
patterns and access 
to major routes via 
OD trip analysis 

Rickenbacker area, 
Ohio 

Not applicable OD travel analysis, 
freight pattern analysis, 
gate entrance/exit 
analysis 
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Given the detailed information available in trip OD and link volume data provided by vendors, 
there is an opportunity for analysis and understanding of transportation demand models, but 
more critically, for the calibration of microsimulation models. The information encompasses the 
OD of trips, travel times, and more. Table 4 provides an overview of the general features and 
specifics of trip and volume data from data source A. 

Table 4. General features and specifics of trip and volume data from data source A. 

General Features Specifics 
Detailed trip information OD of trips, travel times 
Analysis categories Traffic volume and flow analysis (estimate of AADT, 

traffic counts, turn counts, truck volumes at 
intersections), travel behavior analysis (estimate of OD 
trips, route choice, travel mode, mode choice), network 
performance analysis (travel time, road speed, and 
network analysis), demand analysis (attraction analysis) 

Sample meta information Analysis ID 884450 focusing on north segment analysis, 
LBS trip data, “all vehicles volume” output type, specific 
date range (June 27, 2021; July 11, 2021; and July 25, 
2021), and metrics version R115-M116 

Key performance measures and 
considerations 

Reliability, accuracy, granularity, timeline, cost 

Example data See table 5 for detailed data and table 17 for data 
dictionaries of data source A 

Sample location and visualization Wisconsin I–90/I–94 OD zone selection, network 
topology and geometry (OpenStreetMap, osm2gmns, 
QGIS (a free, open-source cross-platform desktop 
geographic information system)) 

As shown in the general features in table 4 and specific samples from table 5, the provided 
dataset, with meta information for Analysis ID 884450, focuses on the north segment analysis, 
leveraging LBS trip data for OD analysis. This rich data source, coupled with the pass-through 
movement detection method, allows for extraction of key insights into travel patterns. 
This data compiling and analysis yield an “all vehicles volume” output type, estimating the 
volume of all vehicles involved in the analyzed trips during three specific periods: June 27, 2021; 
July 11, 2021; and July 25, 2021. 

The provided data demonstrates several key features: 

• Reliability: The use of LBS trip data with pass-through ensures extraction of valuable 
insights, enhancing reliability of the information. 

• Accuracy: The analysis focuses on the north segment, providing a specific geographic 
area for examination. Given that the provided data represent the overall volume of OD 
traffic across different trip purposes and vehicle types, the accuracy may not be 
exceptionally high. 
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• Timeline: The data include a specific date range (June 27, 2021; July 11, 2021; and July 
25, 2021), enabling focused examination of travel patterns during a specific period. This 
timeline aspect enhances the understanding of the data. 

• Cost: The cost is determined based on the size of the data required. Upon a thorough 
examination of various factors, it appears the costs associated with this data source are 
reasonable and align with industry standards. 
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Table 5. Sample detailed data from data source A. 

Mode 
of Travel 

Zone 
Type 

Zone 
ID 

Zone 
Name 

Pass-
through 

Zone 

Zone 
Direction 
(degrees) 

Zone 
Bidirectional 

Day 
Type Day Part 

Average 
Daily Zone 

Traffic 
Volume 

All vehicles 
volume 

Origin 1 1 Yes 137 No 0: all days 
(Monday–Sunday) 

0: all day 
(12 a.m.–
12 a.m.) 

31,259 

All vehicles 
volume 

Origin 1 1 Yes 137 No 0: all days 
(Monday–Sunday) 

1: peak p.m. (12 
p.m.–6 p.m.) 

16,328 

All vehicles 
volume 

Origin 1 1 Yes 137 No 1: Sunday 
(Sunday–Sunday) 

0: all day 
(12 a.m.–
12 a.m.) 

31,259 

All vehicles 
volume 

Origin 1 1 Yes 137 No 1: Sunday 
(Sunday–Sunday) 

1: peak p.m. (12 
p.m.–6 p.m.) 

16,328 

All vehicles 
volume 

Origin 10 10 Yes 27 No 0: all days 
(Monday–Sunday) 

0: all day 
(12 a.m.–
12 a.m.) 

4,228 

All vehicles 
volume 

Origin 10 10 Yes 27 No 0: all days 
(Monday–Sunday) 

1: peak p.m. (12 
p.m.–6 p.m.) 

1,831 

All vehicles 
volume 

Origin 10 10 Yes 27 No 1: Sunday 
(Sunday–Sunday) 

0: all day 
(12 a.m.–12 a.m.) 

4,228 

All vehicles 
volume 

Origin 10 10 Yes 27 No 1: Sunday 
(Sunday–Sunday) 

1: peak p.m. (12 
p.m.–6 p.m.) 

1,831 

All vehicles 
volume 

Origin 104 104 Yes 358 No 0: all days 
(Monday–Sunday) 

0: all day 
(12 a.m.–12 a.m.) 

3,249 
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The focus of the following analysis is the Wisconsin I–90/I–94 OD zone selection with 25 sensor 
locations strategically selected within this area. This selection also incorporates 13 ramps 
equipped with these sensors. The conversion of OpenStreetMap data to the General Modeling 
Network Specification (GMNS) (GMNS 2022) is used for this purpose. For a comprehensive 
understanding of the traffic flows in the selected area, a substantial number of routable nodes and 
links are identified through the osm2gmns conversion process (Lu and Zhou 2022). Precisely, 
3,405 nodes and 2,259 links are identified for a traffic assignment and simulation model 
network. 

As shown in figure 1, the key elements of the simulation network's topology and geometry 
revolve around choosing specific road types for inclusion in the analysis and streamlining the 
node consolidation process. Essentially, the goal is to differentiate and decide upon various link 
categories, ranging from primary roads to residential streets, determining which are most 
pertinent for the study network. For further visualization, QGIS is used for manual fixes in the 
cases of missing nodes, lanes, or turning movement lanes, as well as dealing with duplicates and 
ensuring consolidation. 

 
Original map: © 2024 OpenStreetMap contributors. Lines and numerical overlays added by FHWA. 

Figure 1. Map. Wisconsin I–90/I–94 OD zone with selected sensor locations. 
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Figure 2 presents the types of roads incorporated into the analysis, with small dots representing 
nodes within the selected area and large yellow dots representing sensors. The OSM link types 
included in the analysis comprise motorways, primary, secondary, and tertiary roads, and need to 
be mapped and converted to standard highway functional classification codes. This approach 
consolidates each complex intersection into a single node, thereby facilitating traffic signal 
modeling in later stages of the analysis. 

 
Original map: © 2024 OpenStreetMap contributors. Lines and numerical overlays added by FHWA. 

Figure 2. Map. General modeling network of nodes, links, and numbered sensor locations. 
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As shown in table 6 and figure 3, the transportation analysis dataset is based on the demand 
estimation models and plays a key role in estimating traffic volume across specific OD zone 
pairs, as well as for determining the associated flow patterns of vehicular movement along the 
routes. This sample data input enables transportation planners to analyze and calibrate 
microsimulation models effectively. 
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Table 6. Sample Origin-Destination (OD) demand matrix. 

O/D 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 104 Grand 
Total 

1  8,366 1,587 1,219 322 1,352 550 3,436 389 664 281 776 334 72 856 8 10 581 357 447 396 406 324 1,352 
2 8,467 31,960 778 746 304 569 630 414 163 809 1,460 612 608 8,152 284 39 7 477 378 343 94 1,512 173 3,260 
3 1,330 1  1 6 3 50 44 28 5  10   15      19 7  203 
4 1,583 1 35  2,518 432 1,094 1,194 222 161 61 211 37 15 75   96 77 23 57 27 2166 583 
5 260 195 22 3,455  75 163 147 13 105 12 106   28     3   473 350 
6 1,209 923 15 333 90  4,332 172 33 39 8 59 5 37 83 7  23 17 13 27  20 398 
7 517 1 33 855 143 5,006  697 134 366 15 254 18 57 320   38 11 23 41 6 58 483 
8 2,200 1 33 860 126 116 367  35 703 2,135 1,096  61 79   22 14 17 29 12 94 437 
9 7 5         16             9 

10 239 1 28 205 9 116 167 263 13 315 872 444 20 143 94   12 30 49 61  70 180 
11 783 1 5 126 59 21 190 627 65  1,536 879 11 77 119   47 33 6 13 15 20 271 
12 368 1 4 102 15 53 103 2,871 603 2,791  3,969 48 80 369   63 28 68 57 61 21 701 
13 1,216 1 3 351 47 167 246 1,417 304 1,457 3,190  22 145 252  4 73 46 45 75 18 57 500 
14 41 1  28   15  7  4   729 1,372 8  37 176 54 120 62  326 
15 96 7,758 5 43 3 83 167 91 71 32 167 125 913  136 29 427 783 620 681 224 1,140 11 929 
16 497 363 4 95 11 90 288 69 68 122 372 261 1,199 108  1 0 248 42 32 8 84 22 190 
17              7 53    7     22 
18  44            190  7   7     62 
19 316 1,621  57  13 5   14 14  23 363 237 8   75 50 14 57  191 
20 165 532  23  13 22 6 9 15 39 14 1 198 35 21  28  626 8 7 3 100 
21 164 997  4  5 32 6   13 16 466 267 31   31 595  9 38  150 
22 306 172 13 50  7 16 24 6 16 10 13 72 92    15 19 21  723 8 88 
23 136 2,060 6 19   22    23 44 22 616 85 6  33 31 36 988   275 

104 356 131 4 1,688 345 23 34 73 37 43   38  7     11 9   195 

Grand 
Total 1,306 3,875 197 524 287 459 434 662 124 470 584 502 243 599 229 15 90 171 147 145 117 261 231 698 
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Source: FHWA. 

Figure 3. Chart. Production/attraction-based zone average daily demand volume. 

Key traffic modeling components of this dataset include the following: 

• OD traffic volumes observation and visualization: Table 6 illustrates the OD traffic 
volume and average daily traffic volume over the study period for the different zones, 
respectively. They allow visualization of travel patterns within the analysis area. 

• Key role of OD matrix and estimation models: These tools provide information about 
travel patterns between different traffic analysis zones in a region. These data help 
transportation planners assess trip patterns based on sensor count and speed data on links. 

• OD travel time analysis: The travel time analysis is key for traffic simulation 
calibration. By comparing travel times measured from simulation runs and real-world 
data, the simulation model can be calibrated to reflect actual traffic conditions more 
accurately, thereby optimizing transportation system performance. 

• Traffic assignment and estimation process: This includes allocating the demand on 
available routes connecting each zone pair (traffic assignment) and adjusting an OD 
matrix that reproduces the observed traffic counts. Both processes are key for 
understanding and managing traffic patterns, especially during congestion. 

• Integration with other simulation models: The model’s capabilities are expanded by 
integrating with mesoscopic and microscopic models, adding depth to the analysis. 

• Calibration for complex behavior responses: Significant effort is put into calibrating 
transportation models to produce accurate results. Accuracy is key for complex networks 
and understanding the effects of demand management strategies on traveler’s choices. 
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• Overemphasis on supply side: Many analyses may fail to reflect the true impact of 
operating conditions due to a disproportionate focus on the supply side. This 
overemphasis is particularly apparent when assessing multiday performance to estimate 
reliability. 

• Importance of model verification and calibration: The comparison of observed and 
assigned volumes is a key part of model verification and calibration. 

Data Source B as Probe Vehicle Data 

This section details the use of probe vehicle data. These data are obtained directly from vehicles 
and connected devices. Updated in real-time, these data can incur significant costs due to data 
acquisition and processing. Data source B is a provider of data from connected and electric 
vehicles, offering real-time insights key for transportation monitoring, safety, and planning. Data 
source B’s extensive dataset can be used for various transportation-related applications, 
including performance measurement, project evaluation, and bottleneck analysis. 

The Adventures in Crowdsourcing workshop, hosted by the National Operations Center of 
Excellence, showcased the practicality of crowdsourced data from Nexar® (Zhang 2021). The 
focus was on using these data for real-time work zone management and safety in transportation 
systems. The workshop illustrated the advantages of crowdsourced data for work zone and 
lane‑closure detection, along with its use for monitoring, safety, and planning purposes, such as 
congestion studies, performance measures, and model validation. 

Zhang (2021) offers a practical case study on data source B’s application for transportation 
monitoring and planning. The data source B sample data offers an indepth view of transportation 
dynamics in the Phoenix metropolitan area managed by the Maricopa Association of 
Governments (MAG). As illustrated in the sample data in table 7, data source B provides insights 
into mobility, traffic patterns, and transportation behavior, which assists researchers, urban 
planners, and policymakers in decisionmaking processes aimed at optimizing transportation 
systems and improving urban mobility. 

Table 7. Sample of probe vehicle data. 

Randomized 
Journey/Trip ID Timestamp Latitude Longitude 

Speed 
(mph) 

Heading 
(degree) 

1234554321 10/2/2019 0:59 33.21915 -111.772998 21.88 89 
1234554321 10/2/2019 0:59 33.21915 -111.772656 38.01 90 
1234554321 10/2/2019 0:59 33.219155 -111.772158 55.29 89 
1234554321 10/2/2019 1:00 33.219158 -111.771555 66.81 89 
1234554321 10/2/2019 1:00 33.219157 -111.770876 74.88 90 
1234554321 10/2/2019 1:00 33.219157 -111.770144 81.79 90 
1234554321 10/2/2019 1:00 33.219161 -111.769371 86.39 89 
1234554321 10/2/2019 1:00 33.21917 -111.76688 94.46 89 
1234554321 10/2/2019 1:00 33.219165 -111.766026 95.61 90 

Note: “Heading” represents the direction of travel relative to true north, measured in degrees. 
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The collected data, composed of detailed attributes of a vehicle’s journey in a 3-s trajectory 
format, includes timestamp, position, speed, heading direction, and vehicle type—limited to 
passenger vehicles. The vehicle movement data provide 3 s resolution with coverage 24 h per 
day and 7 d per week, with a penetration rate of 4–6 percent. The vehicle body class distribution 
data show a dominance of pickup trucks (39.9 percent) and sport utility vehicles (multipurpose 
vehicles) at 27.6 percent, with sedans constituting 15.1 percent as reported by Zhang (2021). 

Several challenges and gaps need to be addressed to maximize the data source B’s utility for 
traffic simulation model calibration or related planning applications. First, data interpretation is a 
challenge. There is a gap between raw data and information meaningful to stakeholders that 
requires effort to convert into digestible insights. Given that passenger cars only account for 
28.1 percent of the data, careful interpretation of OD patterns is key to avoid representational 
biases. 

Second, data management poses a challenge due to the required resources for data storage, 
processing, analysis, and visualization, which underscores the requirement for capable staff to 
manage the workload and a powerful platform to handle big data. With large data files (more 
than 20 gigabytes per day in the MAG region), a significant amount of processing and querying 
effort is needed. 

The probe vehicle sample data offer an indepth view of transportation dynamics in the Phoenix 
metropolitan area, as shown in the data source B study. The usage of probe vehicle data provides 
insights into mobility, traffic patterns, and driving behavior, which assists researchers, urban 
planners, and policymakers in decisionmaking processes aimed at optimizing transportation 
systems and improving urban mobility. 

The probe vehicle data can provide a rich resource for traffic simulation model calibration. Some 
potential applications are as follows: 

• Performance measurement: Hot spots, congested segments, or critical zones can be 
identified by observing travel time, speed in corridors, subareas, or jurisdictions by time 
of day and day of week. The data can also facilitate project evaluations providing 
before‑and-after studies for transportation improvement projects. 

• TSE: Data can be converted into intersection measurements such as the turning 
movement count, and turning movement ratio, travel delay (divided into control delay 
and stop delay), level of service (LOS), queue length, and percentage of arrivals on green. 
The data can also yield intersection congestion profiles by date and time of day. 

• Model validation/calibration: The probe vehicle data can assist in calibrating travel 
demand models by providing data on travel time, speed, and free-flow speed. 
Microsimulation models can benefit from queue position and timing, queue length, delay, 
and turning movement counts. Cross-referencing can also be applied for data validation. 
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• Congestion study: The data facilitates freeway bottleneck studies, using OD data, travel 
time, delay, and harsh brake occurrences. For intersection analyses, turning movement 
ratio, percent arrivals on green, control delay, stop delay, and LOS can be evaluated. 
Corridor studies can assess travel time reliability and conduct before-and-after studies. 

As shown in table 8, probe data offer insights into and applications for model validation, travel 
studies, continuous travel monitoring, and congestion studies. The data’s extensive coverage of 
travel behavior and key performance indicators allows for comprehensive analysis and 
decisionmaking in transportation planning and operations. 
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Table 8. Summary of data source B’s traffic management and planning applications. 

Reference 
Purpose and 
Applications  Location Year of Data Data Quality Evaluation 

Data Fusion 
with Other 

Data Sources 
Islam and Abdel-
Aty (2023)  

Short-term conflict 
prediction using 
previous trajectory 
data  

Orange County, 
Orlando, FL 

2019 Long short-term memory 
(LSTM)-based conflict 
prediction framework uses 
connected vehicle probe 
data with a market 
penetration rate of 
3 percent and achieved a 
72 percent accuracy, 
81 percent recall, and 
28 percent false alarm rate 
in predicting conflict cases 

None 

Khadka et al. 
(2023) 

Estimate the regional 
link volumes using 
deep neural network 

1,200 locations 
on freeways in 
Dallas-Fort 
Worth, TX 

20 workdays in 
September 2021 

Total trajectory data 
collected with 15 min of 
time interval 

None 

Khadka, Li, and 
Wang (2022) 

Queue length and 
propagation at freeway 
bottlenecks, traffic 
delay, time-space 
visualization and 
combined with signal 
performance 

Dallas-Fort 
Worth, TX 

June 1–7, 2020; 
December 29, 
2020 

A total of 36,345 vehicle 
trips, with selected 0.5-mi 
segment length on highway  

High-
resolution 
signal data 

Saldivar-Carranza 
et al. (2022) 

Performance 
measurements at 
continuous flow 
intersection  

West Valley City, 
UT 

August 2021 
weekday 

4,500 trajectories and 
105,000 GPS points from 
August 2021 weekday data 

Not reported 
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Reference 
Purpose and 
Applications  Location Year of Data Data Quality Evaluation 

Data Fusion 
with Other 

Data Sources 
Sakhare et al. 
(2022) 

Truck and passenger 
trajectory data 
penetration analysis 

State of Indiana May 9–15, 2022 10.8 million vehicles and 
more than 13 million trips 
over a 1-w period from 
May 9–15, 2022. Average 
truck penetration is 
3.4 percent; overall 
connected vehicle 
penetration on interstates is 
6.32 percent and 
5.3 percent on 
non‑interstate roadways. 

Traffic count 
data, CAV data 

Saldivar-Carranza 
et al. (2021) 

Traffic signal 
performance: split 
failure, downstream 
blockage, and quality 
of progression, as well 
as traditional Highway 
Capacity Manual 
(HCM) LOS 

South of 
Indianapolis, IN  
(Thompson Road, 
Harding Street, 
Epler Avenue, 
Southport Road, 
Wicker Road, 
County Line Road, 
Fairview Road, 
and Smith Valley 
Road) 

July 2019 
weekdays 

Signalized intersections 
with 160,000 trajectories 
and 1.4 million GPS data 
of 3 s of time interval. Data 
features include GPS 
location, 
measured‑on‑vehicle 
speed, heading, timestamp, 
and an anonymous 
trajectory identification 
number. 

None 

Li et al. (2020) Roadway hazards 
identification 

State of Indiana August 2019 for 
1 w 

Conflict analysis using 
1.5 million hard breaking 
data. Delay and conflict 
analysis. 

Network, 
intersection 
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Gaps Between Probe Data Collection and Demand Pattern Interpretation 

The planners and simulation model users need to recognize another significant gap existing in 
probe data collection and demand pattern interpretation. If only a subset of vehicles equipped 
with transponder tags are identified by AVI counts or probe vehicles, then the estimation of 
market penetration rates and identification rates becomes a considerable challenge. This 
limitation needs explicit consideration when inferring population trip desires from the available 
data. Several models have been proposed to estimate population demand using probe vehicle 
counts, but they all acknowledge the difficulty associated with low identification rates often seen 
with license plate-based AVI data. For instance, one can use a three-stage procedure to estimate 
population OD demand from probe vehicle data, which includes estimating the tagged OD 
demand matrix from probe vehicle data, calculating market penetration rates using probe vehicle 
data and link counts, and then scaling the estimated probe vehicle demand to the total population 
demand using estimated market penetration rates. 

To account for possible identification and representative errors, Zhou and Mahmassani (2006) 
further developed a joint estimation formulation and a one-sided linear penalty formulation, 
thereby resulting in complex optimization problems. In summary, these models need to estimate 
either market penetration rates or identification rates to connect probe vehicle samples to 
population demand using a multiplicative function structure. Estimating these rates is 
problematic because they are essentially time-dependent and location-dependent random 
variables. Their inclusion in the demand estimation problem could complicate matters. 

DATA SOURCES C AND D FROM VEHICLE TRAJECTORY DATA COLLECTED 
AND MOBILE CENTURY EXPERIMENT 

This section introduces data source C and data source D. Data source C comprises publicly 
accessible, high-resolution vehicle trajectory data—a high-quality dataset that records 
naturalistic vehicle trajectories on German highways using drone technology. Data source C has 
been used for studies such as driver behavior analysis, traffic flow patterns, autonomous vehicle 
algorithm development, and traffic simulation model validation. This dataset exhibits a wide 
variety of traffic scenarios, high recording frequency, comprehensive metadata, and 
high‑definition quality. Some key characteristics of the data source C include: 

• Variety of traffic scenarios: Data source C includes a wide range of traffic scenarios, 
such as lane changes, free-flowing traffic, and traffic jams. The usage of data source C 
allows for more robust and comprehensive modeling and analyses. 

• Vehicle trajectories: The dataset contains trajectories for all vehicles visible in the 
drone’s field of view. Each vehicle’s position is recorded at 25 Hz (25 times per second), 
providing detailed insights into vehicle behavior. 

• Rich metadata: Data source C alongside the trajectories provides metadata about each 
recorded vehicle, including static information, such as the vehicle class and length and 
dynamic information, such as the velocity, acceleration, and lane positioning. 
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• High-quality recording: The dataset was recorded in high definition with a 1920 x 
1080‑pixel resolution, providing clear footage for analysis. 

• Extensive data: The dataset consisted of more than 50 recordings, capturing more than 
110,000 vehicles, and 45 h of traffic. 

Data source D focuses on loop detector data from the California DOT (Caltrans) Performance 
Measurement System (PeMS) and mobile phone-based GPS data from the Herrera et al. (2010) 
experiment. The data from these sources are instrumental in the systemwide macroscopic 
observation and TSE on a freeway segment. 

This section focuses on data fusion and calibration, which delves into how the developed 
framework harnesses different data sources for TSE and model calibration. The integration and 
efficient formulation of heterogeneous sensor data sources play a key role. The main problems 
considered in this section are integrating diverse data sources through data fusion. 

Specifically, one key analytical aspect in the data fusion process is the TSE model, which aims at 
estimating time-varying traffic stream states, such as flow rate, density, and speed on road 
segments. These states provide information for identifying traffic incidents in unobservable 
areas. Another analytical aspect is queue profile estimation using different data sources, which 
focuses on estimating the time-dependent queue length on freeway corridors or at signalized 
intersections. Queue profile estimation offers an intuitive representation of queue evolutions at 
oversaturated traffic bottlenecks, thereby supporting effective traffic simulation-based decision 
support and management. 

The potential of combining analytical data fusion models for a comprehensive understanding of 
traffic conditions still needs to be explored. This approach aims to leverage the high-level queue 
profiles for stabilizing local estimations using local estimations, contributing to aggregated 
traffic modeling and hierarchical control. A comparison of related studies is also provided, 
examining their different modeling approaches, solution methods, benefits, and challenges. The 
comparison helps identify the most promising strategies. This section considers four major 
sensors that provide observations for the joint estimation problem: loop detectors, GPS sensors, 
Bluetooth sensors, and video detectors. Each sensor type contributes unique data that enrich the 
observations, enabling more robust and accurate traffic state and queue profile estimation. 

Data Source C as Test Benchmark for Data Fusing with Emerging Multisource 
Heterogeneous Data 

Leveraging data source C, this report aims to establish comprehensive test datasets tailored for 
enhanced data fusion and traffic simulation model calibration. Data source C provides key 
insights into traffic flow analysis, driver behavior study, autonomous vehicle algorithm 
development, and traffic simulation model validation, thereby enhancing the understanding of 
highway driving dynamics. This initiative focuses on formulating a TSE and data fusion problem 
within a unified modeling framework, targeting freeway segments within a defined timeframe.   
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The goal is to systematically estimate the traffic states and queue profiles using observations 
from various traffic detectors. At the same time, addressing potential inconsistencies between 
different components and adhering to established modeling principles for accurate system 
dynamics representation is key. 

As represented in figure 4, the methodology involves four main types of emerging sensors that 
generate the necessary observations: 

• Loop detectors: These detectors provide aggregated vehicle volumes at predetermined 
locations at specified time intervals (e.g., every 5 or 15 min). 

• GPS sensors: These sensors deliver semicontinuous trajectory data of probe vehicles, 
including timestamps. 

• Bluetooth sensors: These sensors determine the travel time of vehicles equipped with 
Bluetooth devices from one sensor to the next. 

• Video detectors: These sensors offer high-accuracy vehicle trajectories within their 
monitoring range. 

 
© 2022 Lu. Modifications made by FHWA. 

Figure 4. Data fusion modeling on freeway segments with different types of traffic detectors 
(Lu 2022). 

To comprehensively evaluate the model’s performance under complex traffic conditions, six 
segments are selected from data source C. These segments encompass a range of traffic 
conditions, including both light and heavy traffic scenarios and transitions between these states. 
Detailed specifications regarding the dataset employed in this study can be found in table 9. 
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Table 9. Summary of data source C used in this research (Lu 2022). 

Dataset ID Direction Month Weekday Start Time End Time 
1 12 1 201709 Thursday 17:21 17:36 
2 25 1 201710 Monday 8:55 9:14 
3 26 1 201710 Monday 9:20 9:38 
4 25 2 201710 Monday 8:55 9:14 
5 26 2 201710 Monday 9:20 9:38 
6 46 2 201711 Wednesday 8:47 9:06 

Note: The publicly accessible source code and dataset of Lu’s research are available 
at https://github.com/jiawlu/Traffic_State_Estimation-Computational_Graph. 

To reduce the potential impact of data inaccuracies, a preprocessing stage is conducted to discard 
any observations that do not comply with quality control standards. Considerations at this stage 
may include GPS drift, Bluetooth mismatches, or other sensor-specific issues. The surviving 
observations indicate accurate data distribution and are suitable for the proposed model. 

The computational graphs used in this study are developed using an open-source machine 
learning framework. The freeway segments selected for Lu’s study (2022) are approximately 
420 m with no ramps. To mitigate the impact of vehicle identification errors on segment 
boundaries, the range of data processing and subsequent estimates is limited to between 30 and 
410 m for all datasets. The duration of each dataset fluctuates around 1,000 s, mainly determined 
by drone battery consumption. Table 10 presents the configurations of virtual traffic detectors 
used in the study. The loop detector is situated at locations 120 and 320 m from the segment 
upstream, with an aggregation time interval of 1 min. GPS data are collected at a sampling rate 
of 10 percent and reported every 5 s. The Bluetooth detector is positioned at locations 40 m and 
400 m from the segment upstream, with a sampling rate of 5 percent. Finally, the video detector 
is located between 220 and 230 m from the segment upstream. These configurations provide 
information for understanding data collection setup and methodology. 

Table 10. Configurations of virtual traffic detectors (Lu 2022). 

Detector Name Configurations 
Loop detector Location: 120 m and 320 m from the segment upstream 

Aggregation time interval: 1 min 
GPS Sampling rate: 10 percent 

Reporting frequency: 5 s 
Bluetooth detector Location: 40 m and 400 m from the segment upstream 

Sampling rate: 5 percent 
Video detector Location: 220–230 m from the segment upstream 

  

https://github.com/jiawlu/Traffic_State_Estimation-Computational_Graph
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Fixing Traffic Flow Model Parameters to Show the Value of Data Fusion with Different 
Data Sources 

Lu’s study (2022) evaluates the benefits of a joint estimation framework over precalibrated 
traffic flow models to enhance the accuracy of state estimations. First, data source C is used to 
calibrate the parameters of FDs offline and treat these parameters as constants in the state 
estimation model. Using the virtual detector setting in table 10, table 11 compares speed 
estimations with fixed traffic flow model parameters. The results show an increased estimation 
error across all six datasets, indicating that employing precalibrated traffic flow models can 
significantly compromise state estimation accuracy. 

Further investigation was performed for how much a joint estimation framework can improve the 
accuracy of state estimations compared to using precalibrated traffic flow models in TSE. As 
illustrated in table 11, precalibrated traffic flow models within the data fusion framework for 
queue profile estimation significantly affect state estimation accuracy, particularly in datasets 
with heavy congestion. This discrepancy is primarily due to potential differences between traffic 
environments (e.g., weather, traffic incidents) where traffic flow models are calibrated, and the 
traffic states are estimated. Significantly, the joint calibration approach results in an approximate 
40-percent improvement in both mean absolute error and mean absolute percentage error. The 
result in table 11 highlights the substantial value of the joint estimation framework in enhancing 
the accuracy of state estimations. 

Table 11. Comparison between speed estimations with calibratable and fixed traffic flow 
models (Lu 2022). 

Dataset 

Fixed Traffic Flow 
Model Parameters 

(mph) 

Joint Calibration of 
TSE/QPE and Traffic 
Flow Models (mph) 

Improvement Due to 
Joint Calibration 

(percent) 
1 1.73/9.00 1.20/5.88 30.6/34.7 
2 2.49/25.18 1.26/14.25 49.4/43.4 
3 3.84/29.23 2.31/18.65 39.8/36.2 
4 1.82/7.85 1.22/5.03 33.0/35.9 
5 2.11/10.18 0.98/4.60 53.6/54.8 
6 1.97/9.88 1.24/5.90 37.1/40.3 

Note: Values in each cell denote mean absolute error and mean absolute percentage error. 

Data Source D with Legacy and Emerging Data Sources on a Real-World Freeway 
Corridor with a Downstream Bottleneck 

This section emphasizes the application of the developed framework to estimate traffic states by 
leveraging diverse data sources. This approach contributes to efficient integration of 
heterogeneous sensor data, which underpins the calibration of traffic dynamics. This section 
investigates the cross-resolution TSE framework applied to a 3-mi freeway corridor 
characterized by a downstream bottleneck. As depicted in figure 5, the focus is the absolute post 
mi 22–25 on I–880 N in Alameda County, CA. This section was analyzed between 10 a.m.–12 
p.m. on February 8, 2008. The data for this analysis, presented in table 12, stem from two types 
collected during the Herrera et al. (2010) experiment. The travel time of the probe vehicles along 
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the entire corridor was extracted from the GPS data, providing macroscopic observation on a 
systemwide level. 

The estimation model settings in this section parallel those used in the preceding section, except 
for the integration of macroscopic modeling. This adjustment aligns with the central theme of 
this report. 

 
Source: FHWA. 

Figure 5. Diagram. Freeway corridor on I–880 N (post mi 22–25). 

Table 12. Configurations of traffic detectors. 

Detector Name Configurations 
Loop detector Location (post mile): 22.23, 22.53, 22.78, 23.37, 24.01, 24.48, 24.92 

Aggregation time interval: 5 min 
GPS Sampling rate: 1.74 percent (192 probe vehicles) 

Reporting frequency: 3.5 s on average 
 
Figure 6-A presents the estimation results at a broad scale, which highlights the calibrated arrival 
rate, discharge rate, and queue length curves, focusing on key time points that show changes in 
traffic conditions. At the first critical point, the traffic-flow arrival rate matches the discharge 
rate, and queueing begins. Then, the discharge rate reaches its lowest point. After that, the arrival 
rate matches the discharge rate again, corresponding with the maximum queue length and the 
start of queue dissipation. Finally, the queue clears, marking the end of the congestion period. 

Figure 6-A shows the modeled time-dependent travel time curve alongside observed travel time 
data from probe vehicles. While the project team’s method has generally resulted in a good 
alignment between the modeled and observed travel times, indicating its effectiveness in 
capturing macroscopic traffic dynamics, addressing the observed inconsistencies is important. 

Specifically, as highlighted in figure 6-B, there is a consistent overestimation of travel time 
outside of congested periods, which warrants further investigation and potential adjustment of 
the data fusion approach to improve the model’s accuracy across different traffic conditions. 
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© 2022 Lu. Modifications made by FHWA. 

veh/h = vehicle per hour. 

A. Estimated arrival rate, discharge rate, and queue length curves. 

 
© 2022 Lu. Modifications made by FHWA. 

B. Estimated travel time curve and observed travel time from probe vehicles. 
Figure 6. Charts. Estimation results of systemwide measures at the macroscopic level 

(Lu 2022). 

Performance Evaluation for Using Emerging Data Sources in Traffic Simulation Model 
Calibration 

This section assesses the efficiency of typical simulation model calibration using a broad range 
of metrics. Table 13 provides a comparative overview of related papers and reports on traffic 
analysis using emerging data sources. 
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Table 13. Comparative overview of related papers and reports for traffic analysis using emerging data sources. 

Reference Applications 
Data Source/ 

Category Data Features Reliability Accuracy Granularity Strengths Weaknesses 
Wejo Group 
(2023) 

Traffic alerts, drive 
time, parking 
service, location 
analysis, roadway 
analysis, trip 
analysis, trip trend 
analysis, speed 
analysis, traffic 
volume count 

LBS/probe 
vehicle data 

Timestamp, 
position, speed 
(kilometer per 
hour), heading 
direction, 
parcels, 
infrastructure 

15 min, (refers to the 
specific time 
window used for 
data aggregation. 
Within this interval, 
all collected data 
points are pooled 
together to provide a 
cohesive snapshot of 
traffic conditions.) 

N/A N/A Offer a broader 
utility of data 
for diverse 
transportation 
analysis 
applications 

N/A 

Sharma, 
Ahsani, and 
Rawat 
(2017) 

Speed bias, incident 
detection, 
congestion 
detection, latency, 
volume count, 
buffer time index 

LBS/probe 
vehicle data 

Traffic Message 
Channel (TMC) 
ID, direction, 
country, road, 
time segment, 
speed, 
referenced 
speed, average 
speed, travel 
time, confidence 

85–100 percent Realtime with 
more than 
78.8‑percent 
accuracy 

1 s Reliable data 
with accuracy, 
incident, and 
congestion 
detection 
capabilities 

N/A 

Adu‑Gyamfi 
et al. (2017) 

Speed, latency, 
similarity index 

LBS/probe 
vehicle data 

TMC ID, 
direction, 
country, road, 
time segment, 
speed, 
referenced 
speed, average 
speed, travel 
time, confidence 

85–100 percent N/A 1 s Reliable for 
monitoring 
transportation 
infrastructure 
performance 
over time 

Various levels 
of amplitude 
bias between 
LBS and 
benchmarked 
data 
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Reference Applications 
Data Source/ 

Category Data Features Reliability Accuracy Granularity Strengths Weaknesses 
Gong and 
Fan (2017) 

Travel time, 
reliability 

LBS/probe 
vehicle data 

TMC ID, 
direction, 
country, road, 
time segment, 
speed, 
referenced 
speed, average 
speed, travel 
time, 
confidence 

85–100 percent N/A N/A Capable of 
identifying and 
ranking 
recurrent 
freeway 
bottleneck 

Frequency of 
congestion or 
planning time 
index may not 
identify traffic 
congestion 

Saldivar-
Carranza et 
al. (2021) 

Video analysis for 
UAV/CAV 

LiDAR/high-
resolution 
vehicle 
trajectory 
data 

Automated 
traffic signal 
performance 
measures, 
signal 
operations, 
signal retiming, 
volume counts, 
turning 
movement 
analysis, asset 
management, 
precision 
navigation, 
identification 
of maintenance 
issues 

N/A N/A N/A Valuable for 
traffic signal 
analysis, asset 
management, 
and precise 
navigation 

N/A 

N/A = not applicable. 
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Based on the analysis in Chapter 3, the following characteristics of each data source are 
summarized: 

• Probe vehicle data: 
o Derived directly from vehicles and connected devices, offering high reliability, 

accuracy, and granularity. 
o Provides real-time updates, making monitoring and analyzing traffic conditions 

across a variety of operational planning applications. 
o Includes cost considerations associated with data acquisition and processing. 

• High-resolution vehicle trajectory data: 
o Exhibits high reliability and accuracy. 
o Allows for granular analysis with per-vehicle trajectory data, providing detailed 

insights into individual vehicle behavior. 
o Includes cost considerations of data acquisition, processing, and storage. 

• CAV data: 
o Provides highly reliable and accurate data, offering insights into the behavior of 

advanced vehicles. 
o Provides high granularity with real-time updates, enabling a detailed understanding of 

CAV operations. 
o Includes cost considerations associated with advanced technology. 

• Crowdsourced platforms data: 

o Provides data with which reliability and accuracy may vary. 
o Offers moderate granularity, with detailed incident reports a key strength. 
o Ensures high timeliness with real-time updates, making monitoring dynamic traffic 

conditions useful. 
o Includes cost considerations that are low to moderate, mainly involving data 

processing. 

• Emerging sensor technologies, traffic management systems, and data platforms provide 
data with which reliability, accuracy, granularity, timeliness, and costs vary based on the 
specific technology or platform used. 
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CHAPTER 4. DATA FUSION FRAMWORK FOR CALIBRATION OF 
MICROSIMULATION MODELS 

This chapter customizes the data fusion framework developed under a previous FHWA Office of 
Operations project for use in microsimulation model calibration (Hale et al. 2022). 

OBJECTIVES OF CALIBRATION AND POTENTIAL CALIBRATION MEASURES 

This section describes the objective of calibration, which involves determining the optimal set of 
parameter values for the model to accurately replicate observed system performance measures. 
This section also identifies appropriate calibration measures for datasets fused from emerging 
and legacy data sources. 

The most recent FHWA Traffic Analysis Toolbox Volume 3: Guidelines for Applying Traffic 
Microsimulation Modeling Software (2019 Update) established standardized practices for 
effectively using microsimulation tools (Wunderlich et al. 2019). The key modeling steps and 
principles of this analysis will be outlined in the report, with a focus on their relevance in 
facilitating fusion and calibration of traffic simulation data using emerging data sources. The 
project team’s proposed approach uses multiple data sources, which can enhance the granularity 
of data and improve the fidelity of simulation models. Recent advancements in sensor 
technology and in-vehicle monitoring systems have enabled the collection of extensive driver 
behavior data through real-world driving datasets. 

Data Collection Recommendations 

Existing agency-specific techniques and documents focusing on data collection can be tailored to 
project-specific requirements. These sources should be employed with consideration for suitable 
data collection methods. General resources on traffic data collection include: 

• Introduction to Traffic Engineering: A Manual for Data Collection and Analysis 
(Currin 2012). 

• Manual of Transportation Engineering Studies (Robertson 1994). 
• HCM 2010 (TRB 2010). 
• Traffic Analysis Toolbox Volume VI (Dowling 2007). 
• Traffic Monitoring Guide (FHWA 2022). 

Given that data collection can be costly, researchers should clearly define the required data for 
the study and allocate the budget accordingly. In situations with funding constraints, resources 
should be used in a way that guarantees the availability of sufficient, high‑quality data to 
examine the potential impact of transportation investments. 
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Data For Base Model Development 

Microsimulation primarily requires three categories of input data: 

• Road geometry (lengths, lanes, curvature). 
• Traffic controls (signal timing, signs). 
• Demand (entry volumes, turning volumes, OD table). 

Microsimulation models also necessitate data on vehicle and driver characteristics such as 
vehicle length, maximum acceleration rate, and driver aggressiveness. 

Data for Determining Travel Conditions 

In addition to being necessary for base model development, travel demand data are also key for 
identifying travel conditions such as entry volumes, turning movements at intersections within 
the study area, and vehicular OD tables. Other data that can influence travel conditions include 
weather data, incident data, transit data, freight data, bottleneck throughput data, and travel time 
data. 

Data for Model Calibration 

Model calibration involves adjusting the model’s parameters so that its outputs match observed 
data as closely as possible. Calibration data should represent the range of conditions the model is 
expected to replicate. For this reason, the report also provides instructions and methods for 
gathering data required for model calibration. 

Summary of the 2019 Update to Traffic Analysis Toolbox Volume III 

The 2019 update to Traffic Analysis Toolbox Volume III (Wunderlich, Vasudevan, and Wang 
2019) includes detailed technical information for data collection and analysis, model calibration, 
and analysis of alternatives. The update incorporates a complex corridor-based example problem 
to illustrate the application of the updated information. 

The following are highlights of this update: 

• Focus calibration and alternatives analysis on the representation of time-dynamic system 
performance measures, including bottleneck formation and dissipation. 

• Encourage comprehensive experimental design based on various travel conditions instead 
of solely relying on normative average days. 

• Replace subjective criteria with statistically valid and data-derived criteria, eliminating 
subjectivity from the process. 

• Develop a data-driven, repeatable, and potentially automatable calibration process. 

• Integrate time-dynamic representation of congestion to improve the realism of simulation 
analyses. 
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• Ensure better representation of recurrent and nonrecurrent conditions such as incidents, 
weather, and variations in travel demand, and help integrating various data sources to 
create meaningful and realistic models. 

• Emphasize accurate modeling and calibration of bottleneck dynamics. 

Following this information, the transportation community can adopt a data-driven and 
statistically valid approach for conducting objective analyses. Analysts are recommended to 
engage stakeholders and partners throughout the application of microsimulation models to ensure 
the credibility of results, recommendations, and conclusions while minimizing any potential 
unforeseen tasks. 

Performance measures should be carefully selected to differentiate the alternatives identified in 
the objectives statement. These measures can be observed using field data or generated from 
simulation outputs and should effectively distinguish between the alternatives. 

Microsimulation models offer analytical strengths in various scenarios, such as impacting 
lane‑level capacities and throughput; analyzing time-dynamic congestion patterns; and 
evaluating multiple intersections, interchanges, and facilities over time. The microsimulation 
models are valuable for informing decisionmakers in areas such as signalized network systems, 
freeway operations, managed lane deployments, incident management, corridor management, 
work zone planning, and ITS technologies and applications. 

Adhering to the following principles is important for conducting a practical analytical study 
using a microsimulation model: 

• Use measurable field data. 
• Recognize that the quality and quantity of data influence the analysis. 
• Collect an appropriate quantity of data based on the required analytical accuracy. 
• Use relatively recent and time-variant data. 
• Use contemporaneous data to ensure relevance and accuracy. 

Potential Calibration Measures 

This section illustrates the objective of calibration (e.g., find the set of parameter values for the 
model that best reproduces observed system performance measures) and identifies suitable 
calibration measures for datasets fused by emerging and legacy data. The following are general 
considerations for an effective analytical study using a microsimulation model: 

• Establish the objective, hypotheses, and well-defined performance measures before 
developing the microsimulation model. Analysts should consider the unique definitions 
and interpretations of terms at the microscopic level. 

• Select the appropriate tool based on its limitations ensuring it accurately represents traffic 
operations theory and aligns with the study’s purpose, needs, and scope. 
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• Acquire sufficient and reliable data, recognizing that the quality and quantity of data 
directly influence the accuracy of the microsimulation model results. 

• Calibrate the model specifically to local conditions and prevailing travel conditions to 
ensure an accurate representation and effective management of transportation systems. 

Establishing appropriate calibration measures to calibrate traffic simulation models using new 
and emerging data sources is important. Transportation agencies often employ various methods 
to estimate travel times and validate their models. These methods include data collection from 
sensors and cameras, traffic flow modeling, historical data analysis, and real-time traffic 
monitoring. Model validation typically involves comparing predicted travel times or traffic 
patterns with observed data to ensure accuracy and reliability. 

The CBI tool has facilitated the use of traffic simulation calibration with emerging data sources. 
This tool adopts approaches that consider various factors such as visibility, weather effects, and 
the exclusion of congestion caused by traffic signals. Its advanced features allow for a more 
accurate identification of congestion patterns, distinguishing between recurring and nonrecurring 
congestion durations. Additionally, the CBI tool can detail the spatial extent of queues over 
several days, which arise from interactions within vehicular flow. The CBI tool also incorporates 
new performance measures, offering numerical and graphical representations to assess and rank 
traffic bottlenecks with a higher level of detail and accuracy than existing methods. 

The development of the CBI tool is a breakthrough in traffic analysis, enabling a comprehensive 
evaluation of congestion patterns and the identification of bottleneck locations. Leveraging 
sensor speed profiles, this tool enhances the ability to pinpoint areas that require intervention or 
improvements to alleviate congestion and improve traffic flow. While these calibration measures 
serve as key indicators, they can be customized to align with specific project requirements and 
local conditions. With the abundance of emerging data sources, integrating the CBI tool and 
other data-driven techniques can further enhance the effectiveness and efficiency of traffic 
simulation calibration. 

Data Cleaning, Data Fusion, and Model Calibration Challenges in Traffic Simulation 
Applications 

To investigate the characteristics of identified emerging datasets and suggest potential uses of 
each for various aspects of traffic simulation calibration, a summary of methodologies for data 
fusion in general TSE and model calibration is presented in table 14. 
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Table 14. Methodologies for data fusion in TSE and simulation model calibration. 

Fusion Level  Data Fusion Methods 
Traffic Flow Analysis and 

Model Variables  
Data-level fusion Joint probabilistic data 

association (Fortmann, 
Bar‑Shalom, and Scheffe 1983), 
K‑nearest neighbor (Keller, Gray, 
and Givens 1985), probabilistic 
data association (Bar-Shalom and 
Tse 1975) 

Fusion motion data, fuse 
numerical data, remove outlier 
and noise, missing value 
estimation 

Feature-level fusion Kalman Filter (Welch and Bishop 
1995), Extended Kalman Filter 
(Houtekamer and Mitchell 1998), 
neural network (Lawrence 1993), 
fuzzy logic (Hájek 2013), 
Bayesian (Bernardo and Smith 
2009), Gaussian Mixture Model 
(Reynolds 2009) 

Travel time estimation, traffic 
states estimation/prediction, 
turning ration estimation, traffic 
flow prediction, traffic passenger 
prediction, traffic speed 
estimation/prediction, traffic 
incident/accident, traffic 
congestion prediction, pedestrian 
candidate identification 

Decision-level fusion 
and traffic flow 
model-based fusion 

Dempster-Shafer (Sentz and 
Ferson 2002), fuzzy logic, 
software agent, hybrid, and 
convolutional neural network 
(O’Shea et al. 2015) 

Traffic management 
transportation, traffic control 
decision, traffic control signal 
operation, misbehave vehicle 
detection, TSE, lane-changing 
detection 

 
CUSTOMIZING DATA FUSION FRAMEWORK FOR TRAFFIC SIMULATION 
CALIBRATION 

This section customizes the data fusion framework developed under a previous FHWA project 
for use in microsimulation model calibration. 

Overview of the Five-Step Framework to Support Data Fusion, Analysis, and 
Decisionmaking 

The five-step data fusion framework offers a procedure that enhances the decisionmaking 
capabilities of transportation agencies. This framework is beneficial for personnel lacking 
technical expertise in data science or analytics and is designed to leverage the opportunities 
presented by an array of emerging data sources. 

Step 1: Data Acquisition and Storage 

The framework’s foundation rests on data, which inform all subsequent steps. This stage 
involves identifying, obtaining, and securely storing relevant data, which could range from 
traditional traffic datasets to more complex, high-frequency big data. Techniques for managing 
data with varying temporal and spatial granularity are also discussed. 
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Step 2: Data Cleaning and Fusion 

Recognizing the data limitations inherent in the dataset, this step encompasses the process of 
data cleaning and tagging to address any flaws, uncertainties, or incomplete aspects, thereby 
improving the accuracy and reliability of the data. Techniques for identifying missing records, 
duplications, logical inconsistencies, outliers, and stale data are incorporated. Once data are 
cleaned, the fusion process begins, allowing the amalgamation of multiple datasets to provide 
rich, unique insights. Five fusion techniques—spatial, temporal, complementary, redundant, and 
cooperative fusion—are highly recommended for utilization, each offering unique benefits and 
applications. 

Step 3: Data Analysis 

Building on cleaned, tagged, and fused data, this stage involves employing analytical techniques 
to transform data into actionable information such as data mining, multivariate cluster analysis, 
supervised and unsupervised learning, and reinforcement learning. The aim is to extract insights 
from complex, multisourced fused data to inform decisionmaking. 

Step 4: Decision Implementation 

This step uses the actionable information derived from the previous step to formulate and 
execute decisions. Depending on the operational level of the decision (strategic, tactical, or 
operational), the decisionmaking process might be automated, manual, or semiautomated with a 
human-in-the-loop approach. The selection of the decisionmaking approach can depend on 
factors such as complexity, impact, and time horizon. 

Step 5: Evaluation and Iteration 

Finally, the effectiveness of the decision is evaluated based on key performance indicators 
suitable for the decision level. This stage also includes measuring baseline performance, 
evaluating postdecision performance, visualizing, and communicating performance, and 
providing feedback to the framework. The goal is to learn from the evaluation process and repeat 
the framework with improvements, making it a continuous cycle of learning and refinement. 

Key Principles of Customization 

In customizing the five-step data fusion framework to the datasets discussed in chapter 3, the 
following principles are proposed with a summary in table 15: 

• Nature of the data: Recognize each dataset’s unique attributes and potential 
applications. For instance, data source A offers detailed OD trip data, providing insights 
into travel patterns and geographic-specific data. Data source B probe vehicle data offers 
semicontinuous trajectory data, allowing for real-time route and detour analysis. 
High‑resolution vehicle trajectory data provide a variety of traffic scenarios with high 
recording frequency. Loop detectors and mobile phone-based GPS data are key for 
real‑time TSE and historical analysis. Assessing the data’s reliability, accuracy, 
granularity, and timeline is key, and stakeholders should qualitatively assess the strengths 
and weaknesses of each data source. 
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• Domain knowledge: Apply domain knowledge about traffic microsimulation models to 
inform the data fusion process. Analysts should understand the specifics of traffic 
microsimulation models and how they relate to the data. This understanding of models 
should include systemwide travel patterns; FD parameters including traffic volume, 
density, and speed distribution function; and microscopic model parameters such as 
car‑following model parameters. 

• Data compatibility: Ensure the datasets can be meaningfully combined during the 
framework’s fusion and analysis stages. The data should be compatible in terms of both 
temporal and spatial granularity. Emphasis should be placed on map matching needs for 
aligning GPS points to underlying networks and the fusion of complementary data 
sources such as speed from probe data, volume from loop detectors, and weather data. 
For example, GMNS offers a common format to organize and structure diverse datasets, 
thereby facilitating a better understanding of the data and enabling interoperability in 
traffic simulation model calibration. 

• Data cleaning and preparation: Check large, diverse datasets for accuracy, consistency, 
and completeness and prepare the data for subsequent framework steps. In traffic 
simulation model calibration, data cleaning and preparation involve ensuring all required 
data points are present and complete, checking for consistency in data formatting, and 
eliminating duplicates. Range constraints are applied to maintain plausibility, while error 
checking identifies anomalies, and standard validation ensures data align with accepted 
benchmarks. The age of data is also considered to ensure relevance to current traffic 
conditions. Missing or inconsistent data may be handled using data imputation techniques 
while documenting all modifications for transparency. 

• Algorithm selection: Choose algorithms that are the most suitable depending on the data 
and specific objectives. For instance, multivariate cluster analysis might be useful for 
identifying patterns in the OD trip data, while supervised learning (Zhu 2005) could 
predict traffic patterns based on historical data. A need to fully integrate the 
time‑dynamic representation of congestion was identified, highlighting the importance of 
evolving away from static or average demand patterns toward a more realistic reflection 
of congestion dynamics. 

• Model calibration and validation: Use emerging data sources to calibrate and validate 
microsimulation models, which involves using the data to estimate the model’s 
parameters, then using separate data to test the model’s performance. The framework 
should provide information on how to perform these steps effectively. Emphasize 
accurate bottleneck modeling by correctly representing the bottleneck location, onset 
time, and duration. Also important is aiding in the integration of various data sources to 
create meaningful and realistic models for recurrent and nonrecurrent conditions.
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Table 15. Analysis of data fusion steps, strategies, and customization for traffic simulation calibration using emerging data 
sources. 

Data Fusion 
Step Strategies 

Customization for Traffic Simulation Calibration Using 
Emerging Data Sources 

1 

1.1 Identify and obtain different emerging 
data sources 

Stakeholders and model users should understand the unique 
attributes and applications of each dataset. Assess the reliability, 
accuracy, granularity, and timeline of each dataset. 

1.2 Ingest/store data 
Apply domain knowledge about traffic microsimulation models to 
inform the data fusion process. Ensure compatibility of the datasets 
in terms of both temporal and spatial granularity. 

2 

2.1 Data quality and cleaning 

Stakeholders and model users should check the data for accuracy, 
consistency, and completeness. Apply range constraints to maintain 
plausibility, error checking to identify anomalies, and standard 
validation to ensure alignment with accepted benchmarks. 

2.2 Data fusion 
Understand how to meaningfully merge datasets, considering 
temporal and spatial compatibility. Enhance the calibration of the 
traffic simulation model by fusing complementary datasets. 

3 

3.1 Data analysis methods 

Select appropriate algorithms based on the nature of the data and 
specific objectives. Consider using multivariate cluster analysis for 
identifying patterns, supervised learning for predicting traffic 
patterns, and physics-informed neural networks for embedding 
physical laws governing traffic flow into the learning process. 

3.2 Strategies implementation 

Identify different traffic problems such as temporal (time of day, 
week, year) and spatial (corridor, segment, station, work zones). 
Consider evolving from static or average demand patterns toward a 
more realistic reflection of congestion dynamics. 
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Data Fusion 
Step Strategies 

Customization for Traffic Simulation Calibration Using 
Emerging Data Sources 

4 

4.1 Manual decisionmaking 

Use emerging data sources for calibrating and validating 
microsimulation models. This involves estimating the model’s 
parameters using the data and testing the model’s performance using 
separate data. Focus on the correct representation of the bottleneck 
location, onset time, and duration. 

4.2 Automated decisionmaking 
Automated decisionmaking processes can save time and labor for 
microsimulation model calibration. Accurate methodologies can 
improve the reliability and accuracy of results. 

5 Evaluation for results 

A cross-validation method should be applied for parameters in 
different locations. This ensures the inputs for microsimulation 
model calibration accurately represent the real-world situation. 
Provide information on integrating various data sources to create 
realistic models for both recurrent and nonrecurrent conditions. 
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In step 2 of table 15, data quality and cleaning considerations when using emerging data sources 
are presented: 

• Device issues: Adopting a multidevice configuration requires additional indexing, 
synchronization, and mapping skills and methods to ensure the device’s reliability as a 
data collection tool. There is a cost involved in ensuring device stability and 
maintenance. 

• Data preprocessing issue: Managing huge and unstructured data require complex 
preprocessing methods. Particularly in a multisensor and heterogeneous sources 
environment, dealing with such data becomes a challenge. Data quality and missing data 
values must be handled to avoid inaccurate results. 

• Research issue: Identifying key data to fit the project purpose can be a challenge. The 
diversity of algorithms and methods requires intensive study to formulate a suitable 
model to solve domain problems. Finding the complete, suitable, and relevant dataset is 
another challenge when evaluating data fusion proposed models or solutions, especially 
for a data-dependent model. 

• System architecture issue: Using hardware specifications requires compatible software 
to be integrated to ensure system performance and stability. Integrating different devices, 
sensors, algorithms, and methods has complexities. Collecting data from various sources 
and inputting them into the data fusion model requires integrating several systems 
equipped with stable communication networks. In cloud computing as a data center, 
security and privacy leakage are other key areas that must be considered. 

• Processing complexity issue: Collecting and processing data from various sources in 
real time requires complex, distributed, and dynamic systems. Heterogeneous data 
sources increase data completeness and reliability. However, dealing with heterogeneous 
data with different characteristics may require a model combination as a solution that 
increases the complexity. 

Underlying Components for Cross-Layer Consistency in Traffic Simulation Model 
Calibration 

The following specifics are key, interconnected components of traffic simulation model 
calibration. These components play a key role in maintaining cross-layer consistency by 
integrating and leveraging different resolutions of datasets. Trajectory-based modeling provides 
a detailed understanding of individual vehicle behavior and traffic dynamics, allowing for an 
accurate representation of real-world traffic flow. Joint estimation of traffic state and queue 
profiles enhances the observability of the traffic system, enabling effective management of 
congestion and queue evolution. Microscopic traffic flow modeling focuses on capturing 
fine‑grained details of traffic patterns and interactions, ensuring the fidelity of simulation 
models. By incorporating these components into the calibration process, the traffic simulation 
models can achieve higher accuracy and reliability, facilitating better decisionmaking and 
optimization of transportation systems. 
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In the calibration process, capacity parameters play an important role in defining a given 
roadway’s maximum sustainable flow rate. The process begins with calibrating these capacity 
parameters, which includes determining factors such as the number of vehicles that can pass 
through a roadway segment in a given period. The process of calibrating the capacity parameters 
involves collecting field measurements of capacity, which can be obtained from traffic counts 
and sensor data. These real-world measurements serve as benchmarks against which model 
estimates of capacity are compared. 

Next, the process involves obtaining model estimates of capacity. These predictions are 
generated from traffic simulation models, which consider factors such as roadway geometry, 
traffic volume, and vehicle speed. The accuracy of these estimates is key, as they directly impact 
the fidelity of the simulation models. 

Once the field measurements and model estimations of capacity are ready the next step is 
selecting calibration parameters. These variables such as traffic demand and driving behavior 
parameters within the traffic simulation models can be adjusted to better align the model 
estimates with the field measurements, traffic signal timings, and vehicle speed limits. 

With the calibration parameters selected, the objective calibration function is set to quantify the 
difference between the model estimates and the field measurements. The calibration process 
aims to minimize this difference, thereby maximizing the accuracy of the simulation models. 

Additionally, route choice parameters are calibrated, typically proceeding in two phases: global 
calibration and link-specific fine-tuning. The global calibration phase involves adjusting 
parameters that affect the overall behavior of drivers in choosing routes, such as travel time and 
route length preferences. The link-specific fine-tuning phase focuses on adjusting parameters that 
affect the choice of specific links in the network, such as turn penalties at intersections. 

Simultaneously, the analysis of traffic flow parameters is key. To bridge macroscopic system 
states more effectively, like flow and density, and to integrate legacy data including sensor 
counts, occupancy, and segment-based speed measurements, the calibration of variables is 
divided into microscopic, mesoscopic, and macroscopic studies, as illustrated in figure 6. The 
choice between these studies depends on the level of detail required. For instance, 
microscopic‑level studies delve into car-following and lane-changing models, providing granular 
insights into individual vehicle behavior. Mesoscopic-level studies, however, could examine 
headway and spacing distributions, offering an intermediate level of detail. Finally, 
macroscopic‑level studies may encompass the FD and traffic wave models, presenting an 
aggregate view of traffic flow and speed-density relationships. 

The primary objective of the framework and methodology development in figure 7 is to arm 
users with the necessary tools to effectively use emerging data sources to develop detailed and 
accurate traffic simulations. By illustrating the customization of these general data fusion steps, 
the report intends to improve users’ ability to maximize value from these data sources. This 
approach not only enhances the traffic simulation models’ accuracy but also increases their 
relevance in today’s traffic situations. The capacity to adapt and apply these steps further 
highlights the flexibility of the data fusion framework and its appropriateness for a wide range of 
traffic simulation calibration tasks. 
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Source: FHWA. 

Figure 7. Diagram. Emerging data fusion framework for microsimulation model 
calibration within a multiresolution framework. 

Macroscopic and Mesoscopic Modeling Framework for Enhanced Data Fusion Using 
Multisource Heterogeneous Data 

Accurate traffic system state identification is key for the design and execution of control 
strategies. Emerging technologies, including mobile sensors, LBS, and participatory sensing, 
offer richer traffic observations, necessitating a system state identification framework to enhance 
traffic system observability. This report addresses three key challenges in identifying traffic 
system state, as shown in figure 6. Essentially, the proposed approach aims to enhance traffic 
analysis by estimating time-varying traffic states like flow rate, density, and speed on specific 
road segments and queue lengths at congested areas. 

Combining these two approaches in a unified model can offer a more comprehensive 
understanding of traffic conditions. However, combining the two approaches is challenging due 
to the complexity of data fusion, which involves intricate correlations among components. The 
goal is to create an efficient and consistent model-driven framework for data fusion using various 
traffic data sources and advanced machine learning techniques, improving local estimates, 
aggregated traffic modeling, and hierarchical traffic control. Table 16 shows different 
computationally efficient and inherently consistent model-driven frameworks for using 
multisource heterogeneous traffic data and advanced computational techniques from general 
traffic data fusion applications. 
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Table 16. Comparison of related studies for data fusion and traffic flow mode calibration. 

Source Task Modeling Approach Solution Method Benefits and Challenges 
Sun, Jin, and Ritchie 
(2017) 

TSE Nonlinear optimization Closed-form formula, 
Gauss-Newton 
method 

Estimate traffic parameters and states 
simultaneously. Initial state estimation is 
sensitive to the measurement errors. 

Shi, Mo, and Di 
(2021) 

TSE Nonlinear optimization Gradient descent 
method (Amari 1993) 

Incorporate traffic flow models and field 
observations into a machine learning 
framework. A single data source is used. 

Wang et al. (2016) TSE State-space model Particle filtering 
(Djuric et al. 2003) 

Enable joint TSE and incident detection. High 
computational complexity. 

Canepa and Claudel 
(2017) 

TSE Mixed integer linear 
programming 

Mathematical 
programming solver 

Leverage Hamilton-Jacobi equations to solve 
estimation problems exactly. Limited to 
small-scale applications. 

Liu et al. (2009) QPE Lighthill-Whitham-
Richards shock wave 
theory (Leclercq 2007) 

Numerical 
derivations 

Estimate time-dependent queue length for 
congested signalized intersections. Not ideal 
for oversaturated scenarios. 

Ramezani, Haddad, 
and Geroliminis 
(2015) 

QPE Shock wave theory 
(Rassweiler et al. 2011) 

Data mining Applicable in oversaturated conditions. Queue 
development and dissipation varying among 
different lanes can be further considered. 

Duret and Yuan 
(2017) 

TSE Lighthill-Whitham-
Richards model in 
Lagrangian space 
(Porto, Senatore, and 
Zaldarriaga 2014) 

Numerical solutions 
obtained with 
Godunov scheme 

Propose a Lagrangian space formulation to 
assimilate Eulerian and Lagrangian 
observations. Require accurate preset traffic 
flow parameters. 

Jabari and Liu 
(2013) 

TSE State-space model 
(Roesser 1975) 

Kalman filtering 
(Welch and Bishop 
1995) 

Analytically tractable Gaussian model of 
(stochastic) first-order traffic flow. 
Discretized space-time state representation 
affects the investigation of wave propagation 
dynamics. 
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Microscopic Trajectory-Based Traffic Flow Modeling for Simulation Development 

The domain of traffic flow studies is witnessing a range of opportunities that arise primarily from 
advancements in technology, the refinement of data collection methodologies, and insights 
derived from comprehensive data analysis. 

Technological Advancements in Traffic Monitoring and Data Collection 

The incorporation of modern technologies such as roadside video cameras, drones, and 
video‑based traffic flow monitoring systems mark a leap from the early days of high-speed aerial 
photography and manual data reduction (Treiterer and Myers 1974; Coifman, Li, and Xiao 
2018). These systems provide detailed tracking of multiple vehicles simultaneously, capturing 
nearly the entire scope of traffic conditions and vehicle motion information. High-resolution 
cameras deployed on elevated structures or aerial vehicles further enhance data quality, leading 
to a deeper understanding of individual driver behaviors (Knoop, Hoogendoorn, and Van Zuylen 
2008; Zhang et al. 2016; Krajewski et al. 2018). 

Enhanced Understanding of Driving Behavior and Traffic Phenomena 

Comprehensive data analysis has shed light on several previously overlooked aspects of driving 
behavior and traffic phenomena. Key among these aspects are the understanding of asymmetric 
driving behavior and its impact on traffic flow (Yeo 2008; Yeo and Skabardonis 2009), and the 
identification of the driver memory effect, where a vehicle’s acceleration and deceleration is 
influenced by historical traffic conditions (Treiber and Helbing 2003; Wang et al. 2019). These 
insights offer an opportunity for more accurate traffic modeling and prediction. 

Indepth Analysis of Complex Traffic Behaviors 

The detailed analysis of complex traffic behaviors, such as lane changing and car following, has 
been made possible by the availability of trajectory data. These data have highlighted variations 
in these behaviors based on drivers and vehicle types and have been instrumental in the 
calibration of behavioral parameters of different driving styles (Zheng 2014; Sharma, Zheng, and 
Bhaskar 2018). 

Additional Challenges in Framework Customization 

Emphasis is also placed on the need to procure additional trajectory data to enhance the precision 
of traffic flow studies. Although strides have been made with the advent of datasets such as 
NGSIM, gaps persist, which emphasizes the need for more comprehensive data sources and deep 
customization. 

First, the current trajectory data are limited in spatial and temporal scope. For instance, the 
NGSIM dataset only covers small highway or arterial segments, and there is a need for more 
comprehensive tracking of vehicles and traffic flow dynamics (FHWA 2016). Second, there is a 
limited sampling of traffic scenarios. The NGSIM data, for example, contains very little 
free‑flow trajectory data and limited road segment geometries, hindering the understanding of 
some important traffic phenomena and the calibration of traffic flow models.  
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Third, inaccuracies exist in video-based trajectory collection methods. Despite advancements in 
image processing techniques, vehicle recognition, and localization errors are still a concern 
because of optical constraints of cameras and potential increases in financial costs due to 
multiple camera usage. Finally, the high equipment costs and data preprocessing time obstruct 
the collection of more high-quality trajectory data. Traditional video-based collection methods 
can only monitor fixed road segments, leading to financial and time costs and limiting the 
widespread usage of these methods. 

Table 17 provides an overview of four different datasets categorized based on their data features 
and their applications in traffic simulation calibration. The letters Y (yes) and N (no) represent 
the mapping of each data source to the detailed calibration needs at different resolutions. 

The following explains each column in table 17: 

• Data source/category: Specifies the source or category of the datasets used in traffic 
simulation calibration elements, including four datasets mentioned in chapter 2. 

• Data features: Describes the specific features or variables captured in each dataset across 
different emerging and legacy data sources. 

• Macroscopic systemwide travel pattern: Indicates if the dataset provides information on 
the systemwide travel OD pattern, traffic arrival on boundaries. 

• Time-dependent congestion: Specifies if the dataset includes information on systemwide 
queue length and travel time derived from speed profiles and trip data. 

• FD: Specifies if the dataset provides traffic flow system measures, including FD 
parameters (traffic volume, density, and speed distribution function). 

• Bottleneck-related system measures: Indicates if the dataset includes other 
bottleneck-related system measures, such as queue profile, congestion duration, capacity 
drop, and similar parameters. 

• Microscopic model parameters: Indicates if the dataset is used for microsimulation and 
car-following model calibration. 

• Route choice: Indicates if the dataset includes information on route choice. 

• Applications of related simulation model: Describes common purposes and applications 
of each dataset, such as transportation planning, travel monitoring, performance 
measurement, OD analysis, travel modeling, traffic flow analysis, autonomous vehicle 
algorithm development, macroscopic observation, and TSE on freeway segments. 
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Table 17. Mapping of four different datasets and their applications in traffic simulation calibration elements. 

 

Data Source/ 
Category 

Data 
Features 

Macroscopic 
Systemwide 

Travel 
Pattern  

Time-
Dependent 
Congestion 

FD 
Parameters 

Bottleneck-
Related 
System 

Measures 

Microscopic 
Model 

Parameters 
Route 
Choice 

Applications 
of Related 
Simulation 

Model 
OD trip data Vehicle 

volume, zone 
ID, day type, 
average daily 
zone traffic 

Y Y Y N N Y 
(partially 
related to 
subarea) 

Transportation 
planning, travel 
monitoring 

Semicontinuous 
trajectory data  

Timestamp, 
position, speed, 
heading  

Y Y Y Y N N Performance 
measurement, 
OD analysis, 
travel 
monitoring and 
modeling 

High-resolution 
vehicle trajectory 
data 

Vehicle 
trajectories  

Y Y Y Y Y Y Traffic flow 
analysis, 
autonomous 
vehicle 
algorithm 
development 

Loop detector 
data and mobile 
phone-based GPS 
data 

Vehicle 
volumes, 
timestamps of 
probe vehicles, 
travel time 

Y Y Y Y N N Macroscopic 
observation and 
TSE on freeway 
segments 
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 

Adding new data sources in traffic simulation and modeling is important, leading to more 
detailed and flexible depictions of real-world traffic conditions. This process involves important 
steps such as data integration, calibration methods, and validation procedures. Data 
integration refers to incorporating new sources, such as connected vehicles, UAVs, 
crowdsourced data, and social media, into calibrating traffic simulation models. Adding new data 
sources leads to increased accuracy and realism in simulated traffic conditions, a better 
understanding of dynamic demand patterns and driving behaviors, and the ability to monitor 
real-time changes in traffic flow and network conditions. 

Calibration methods involve adjusting the traffic simulation model using data from these new 
sources to ensure the model accurately mirrors real-world traffic characteristics. The outcomes 
include more precise simulations of traffic flow, travel times, and congestion patterns and more 
reliable predictions of network performance under different scenarios. The calibration methods 
also provide a better way to estimate OD demand patterns and evaluate the impact of 
transportation policies and strategies. 

Validation procedures, the third step, involve checking the accuracy and reliability of the traffic 
simulation model using real-world data from new sources. These steps allow for checking the 
model’s ability to reproduce observed traffic conditions, identifying any differences in 
simulation results, and confirming the model’s usefulness in decisionmaking and policy 
evaluation. The process ends with a review of how effectively integrating new data sources has 
improved simulation accuracy. 

To illustrate how to use emerging and legacy data for improving accuracy of traffic simulation 
model calibration, chapter 2 of this report provided an overview of potential emerging data 
sources for traffic simulation model calibration, aiming to improve traffic simulation and 
analysis. These data sources were categorized based on commonly available emerging datasets, 
offering a perspective on their applicability. This chapter can help users of traffic simulation 
models gain a deep understanding of the potential emerging data sources for calibration and their 
effective use in traffic simulation and analysis. 

Chapter 3 highlighted the strategic fusion of legacy and emerging data sources, providing 
benefits for OD demand, routing, and car-following models. It also examined the strengths and 
weaknesses of emerging data sources and suggested techniques for preparing these data for 
calibration. Chapter 4 of this report delved into the customization process of the data fusion 
framework (Hale et al. 2022) and Traffic Analysis Toolbox Volume 3: Guidelines for Applying 
Traffic Microsimulation Modeling Software (2019 Update) (Wunderlich et al. 2019), tailored for 
traffic microsimulation model calibration. Each step of the data fusion framework for supporting 
data fusion, analysis, and decisionmaking can be tailored to address the needs of traffic 
simulation calibration using emerging data sources.  
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The information provided in these chapters can help transportation practitioners and researchers 
leverage emerging data sources effectively, enhance the accuracy of traffic simulation models, 
and make informed decisions to optimize transportation systems. A comprehensive 
understanding of emerging data sources and the customization process can help advance traffic 
simulation calibration practices and improve the efficiency and effectiveness of traffic 
management strategies.
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