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SI* (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol
LENGTH

in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km

AREA
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha
mi2 square miles 2.59 square kilometers km2

VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft3 cubic feet 0.028 cubic meters m3

yd3 cubic yards 0.755 cubic meters m3

NOTE: volumes greater than 1,000 L shall be shown in m3

MASS
ounces 28.35 grams g
pounds 0.454 kilograms kg
short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”)

TEMPERATURE (exact degrees)

°F Fahrenheit
5 (F-32)/9

Celsius °C
or (F-32)/1.8

ILLUMINATION
foot-candles 10.76 lux lx
foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS
poundforce 4.45 newtons N
poundforce per square inch 6.89 kilopascals kPa

APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol

LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi

AREA
mm2 square millimeters 0.0016 square inches in2

m2 square meters 10.764 square feet ft2

m2 square meters 1.195 square yards yd2

ha hectares 2.47 acres ac
km2 square kilometers 0.386 square miles mi2

VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m3 cubic meters 35.314 cubic feet ft3

m3 cubic meters 1.307 cubic yards yd3

MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lbs) T

TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F

ILLUMINATION
lx lux 0.0929 foot-candles fc
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS
N newtons 2.225 poundforce lbf
kPa kilopascals 0.145 poundforce per square inch lbfin2

*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.  
(revised March 2003)
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INTRODUCTION

Naturalistic driving studies (NDS) are rich  
data sources for studying driver behavior  
and transportation safety. Recent NDS data 

suggest that driver state (e.g., distracted, attentive, 
sleepy, or angry) contributes to crash risk. A study  
by Dingus et al. found that driver-related factors exist 
in almost 90 percent of crashes.(1) Accessing NDS 
data to evaluate ways to identify driver states and 
mitigate their dangers is invaluable to researchers. 
However, NDS datasets are often large and require 
manual data reduction techniques to identify driver 
behaviors. Manually annotating the data—where a 
human reviewer looks for observable indicators of 
distracted behavior—is time-consuming and 
expensive and, therefore, limits the study sample 
size and the ability to understand the role of driver-
state variables on crash risk. Automating the 
annotation process would help researchers fully 
utilize the available data. A system for storing, 
mining, visualizing, and analyzing large naturalistic 
datasets would further overcome the existing 
challenges and enhance research in this area.

The Federal Highway Administration’s (FHWA) 
Exploratory Advanced Research (EAR) Program 
supported the project Deep InSight: Deep Extraction  
of Driver State from Naturalistic Driving Dataset  
to accomplish the following:(2)

• Develop a robust platform that can 
automatically detect and estimate  
driving behaviors.

• Address detection challenges in NDS videos.

• Serve as a repository for models.

• Enhance current and future NDS data.

A research team from Iowa State University,  
Syracuse University, the University of Missouri, and 
the University of Nebraska Medical Center designed 
Deep	InSight,	a	cloud-based,	artificial	intelligence	(AI),	
driver-state estimation platform to demonstrate an 
effective	approach	to	analyze	large	datasets	related	 
to driver behavior (figure	1). The platform provides 
enhanced frame-by-frame video annotations and 
models for driver-state estimation and behavior.

The platform’s end-to-end framework provides  
the following:

• Data storage and a repository of publicly 
available and privately collected NDS datasets.

• Integrated tools for custom data annotation 
and machine-learning (ML) modeling that 
permit data analysis and inference.

© REACTOR Lab.
HPC = high-performance computing; LSTM = long short-term 
memory; GAN = generative adversarial network.

Figure 1. Illustration. Stages and tools in  
the Deep InSight platform design.(3)
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• Recurrent neural network (RNN) models 
trained to automatically detect and  
estimate driver behaviors and address 
detection challenges, such as when a  
driver looks to the side or down.

• A comprehensive platform that is cost  
efficient,	accessible,	scalable,	and	secure.

The research team also experimented with 
enhancing the quality of naturalistic driving videos. 
These videos are typically low resolution and noisy, 

limiting the accuracy of models trained using clear 
images. Through their attempts, the researchers 
learned	valuable	lessons	that	could	influence	 
future work in this area.

Near the end of the project, Deep InSight  
was assessed at a Technology Readiness  
Level (TRL) 4, meaning the components were 
validated in a laboratory environment.(4) The  
TRL assessment also provided recommendations  
for next steps, including additional operational  
and user requirements.

 
 

 

Naturalistic driving studies (NDS) are rich data  
sources for studying driver behavior and  

transportation safety. Recent NDS data suggest  
that driver state (e.g., distracted, attentive,  
sleepy, or angry) contributes to crash risk.
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PROJECT METHODOLOGY

The research team wanted the Deep InSight 
platform to help transportation researchers 
study driver behavior and analyze NDS data 

quickly	and	efficiently	without	needing	to	set	up	or	
manage the system architecture. The researchers 
proposed the following features for the platform:

• Large-scale NDS data storage securely 
shared across multiple universities.  
Approved users can access and view the  
data but cannot download the data to limit 
security concerns.

• An automated annotation pipeline consisting 
of enhanced ML-augmented data annotation 
features for expediting model development. 
This pipeline allows human annotators from 
across the world to easily access and verify 
datasets and labels.

• Models that can be easily stored, transferred, 
and executed without depending on the 
computing environment.

• Programming language choices for model 
development without the responsibility of 
setting up virtual machines or handling data 
storage and network management.

• NDS data samples for standard training, 
validation, and test sets across which  
in-house models and third-party models can be 
evaluated for benchmarking their performance.

The Deep InSight project consisted of several 
stages to develop and test the platform and its 
integrated analysis tools.

PLATFORM DEVELOPMENT
Storage
The	first	step	was	to	find	a	system	capable	of	 
storing large volumes of data. The system also  
had	to	be	cost	efficient	and	provide	security	and	
privacy. The research team chose a cloud-based 
end-to-end pipeline that would allow researchers  
to store, annotate, process, visualize, analyze,  
and benchmark their results via the Internet.

The system stores data as objects in resources 
called buckets, and a single object can store up to 
5 terabytes of data. The Deep InSight framework 
includes	individual	buckets	for	different	datasets	
(raw, processed, and personal health information), 
annotations, and ML models with separate access 
controls to protect and secure the data. The ML 
component of Deep InSight enables data annotation 
and model training, testing, and deployment. The 
ML component uses an application that enables 
researchers to build and train models without  
having to learn additional cloud computing skills. 
Figure 2	shows	the	overall	workflow	of	the	Deep	
InSight framework.

Source: FHWA.
CVAT = Computer Vision Annotation Tool.
Figure 2. Diagram. Deep InSight framework workflow.(5)
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Number Distracted Driver Behavior

1 Normal forward driving

2 Drinking

3 Phone call (right hand)

4 Phone call (left hand)

5 Eating

6 Texting (right hand)

7 Texting (left hand)

8 Hair/makeup

9 Reaching behind

10 Adjusting control panel

11 Picking up object from floor (driver)

12 Picking up object from floor (passenger)

13 Talking to passenger at the right

14 Talking to passenger in back seat

15 Yawning

16 Hand on head

17 Singing with music

18 Shaking or dancing with music

Datasets
The research team used a naturalistic driving 
dataset collected by Mind and Brain Health Labs 
(MBHL) at the University of Nebraska Medical 
Center to develop, test, and train models for Deep 
InSight.(6) MBHL collected data from 143 participants 
who had driven a total of more than 500,000 mi. 
Similar to the second Strategic Highway Research 
Program (SHRP2) datasets, the MBHL dataset 
includes multiple cameras located inside and outside 
the vehicle and data collected from other vehicle 
sensors, such as the Global Positioning System, 
accelerometer, and gyroscope.(7)

In addition, the researchers generated a synthetic 
distracted driving (SynDD) dataset. The SynDD1 
dataset was designed for ML models to identify 
and analyze distracted behaviors and gaze zones 
exhibited by drivers.(8) The research team collected 
high-resolution video data from 100 diverse 

participants in a stationary vehicle using 3 in-vehicle 
cameras placed on the dashboard, near the rearview 
mirror, and on the top right-side window corner.

For the distracted activity, each participant 
continuously performed 18 distracted driver 
behaviors (table 1 and figure	3) for a short time 
interval. For the gaze activity, each participant was 
instructed	to	gaze	at	1	of	11	different	zones	in	the	
car, such as the speedometer and control panel. 
The sequence and duration of each activity were 
random for each participant. After each participant 
completed one set of activities, the researchers 
had them repeat the set while wearing a hat or 
sunglasses. The researchers manually annotated 
the dataset for each activity, specifying the activity’s 
start and end times. The SynDD1 dataset was used 
to evaluate the performance of ML algorithms to 
classify distracting activities and driver gaze zones 
and is available for other researchers to use.(8)

Table 1. Distracted driving activities.
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ANNOTATIONS AND LABELING

NDS data provide researchers with valuable 
insights into real-world driving behaviors. However, 
these datasets often contain very large amounts 
of data. For example, the SHRP2 NDS collected 
2 petabytes of continuous naturalistic driving data 
over 3 yr from more than 3,400 vehicles and 3,500 
drivers.(7) The extensive data poses challenges for 
researchers trying to extract and validate variables 
for analysis. In this phase of the Deep InSight 
project, the research team demonstrated a process 
that automatically provides custom annotations to 
maximize the use of NDS data.

An integral part of computer vision (CV) models, 
annotations are required to train ML models 
for feature learning and accurate prediction. 
The research team set up Deep InSight with an 
automated annotation and validation pipeline 
integrated with open-source tools to reduce  
the manual labor and time required to label the 
datasets. The researchers used the Computer  

Vision Annotation Tool (CVAT) to allow frame-by-
frame video annotation and labeling.(10) Human 
annotators	verified	the	model	annotations	and	
made	any	necessary	corrections.	The	modified	
annotations were used as the training dataset to 
improve the model’s performance. When the model 
achieved satisfactory accuracy, it was converted 
to images on a cloud-based platform that allows 
developers to build, run, and share containerized 
applications. The images were saved in the Deep 
InSight repository. The researchers used this 
automated annotation process to model driver  
head position and advanced behavioral analysis 
inside the vehicle in the next phase.

MODELS
The researchers developed several driver-state 
estimation models to detect head position, driver 
distraction, and the environment surrounding the 
driver,	such	as	lane	changes,	traffic,	and	traffic	
control	devices.	Specifically,	the	researchers	used	 
CV for face detection and recognition at acute 

Source: FHWA.
Figure 3. Photos. Study participant performing 18 distracted driving behaviors.(9)
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angles, such as when the driver is looking down 
or to the side, and for advanced behavior analysis 
inside the vehicle.

RNN models (e.g., a neural network that uses 
sequential or time-series data) trained on the 
SynDD1 dataset were used to automatically detect 
and estimate driver behaviors and address detection 
challenges, such as when a driver looks to the side or 
down.(8) RNNs are ideal for applications that involve 
complex interactions and input from multiple sensors, 
such as those involved in driver-state evaluations. 
The models the researchers developed required 
tracking combinations of cues over many video 
frames from multiple camera views and merging  
them with vehicle sensor data over time.

Deep InSight made it easier for the researchers  
to manually check the automated annotations  
and verify the model’s performance. Figure 4  
shows the model deployment pipeline. The  
models the researchers developed were  
adapted to work within a containerized software 
package and made available through the  
Deep InSight platform.

Driver Head Pose Models
Head pose estimation is a key step in detecting 
distracted and drowsy driving behaviors because 
the orientation of a driver’s face and head helps 
researchers understand whether a driver’s  

attention is focused on the road. NDS data often 
consist of low-resolution videos captured from  
more challenging camera angles than when a 
camera is directly facing the driver. In this stage  
of the project, the researchers’ goal was to  
develop deep learning-driven models for head  
pose estimation using lower resolution NDS  
videos from a camera capturing a side view  
of the driver. The researchers also wanted their  
model to address the challenges of driver head 
poses at extreme angles, such as when a driver 
looks to the side or down.

Methodology
First, the researchers conducted an extensive 
literature review to establish the current state-of-the- 
art benchmark performance. Next, they selected a 
single-stage face detector that could process images 
in realtime and identify key points on the driver’s 
face.(11) Five facial key points were obtained for each 
image (figure	5). Then the researchers compared 
three	different	approaches	to	classify	a	driver’s	 
head pose into one of the following categories:

• Looking forward.

• Looking left.

• Looking right.

The test data were collected during day and 
nighttime settings, and each of the three classes was 
represented by the same number of video frames.

Source: FHWA.
Figure 4. Diagram. Model deployment pipeline.(5)
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The sequence of facial key points was then sent to  
a point-processing module and used to compare the 
performance of three proposed models to each other 
as well as to the performance of three state-of-the-
art baseline models. The three proposed models 
were as follows:

• PointNet-based approach: A point cloud  
is a set of three-dimensional (3D) points.  
This approach was originally introduced  
to classify 3D point clouds obtained from 
sensors, such as light detection and ranging 
and stereo cameras.(13) The researchers 
adapted PointNet to combine a sequence  

of facial key points extracted from the images 
with point cloud processing.

• DeepSet approach: DeepSets were designed 
for instances where input, and possibly output, 
data were in sets.(13) This approach has  
proven	efficient	for	point	cloud	classification.	
With DeepSets, changing the order of the 
input	set	will	not	affect	the	output.

• Bidirectional gated recurrent unit (BiGRU)-
based approach: A gated recurrent unit (GRU) 
is an RNN that uses an update gate and a reset 
gate to determine what information should be 
passed to the output.(14) (The update decides 
which information from past processing steps  
to pass on, and the reset decides what past 
information to forget.) A BiGRU consists of two 
GRU units with two directions (forward and 
backward) for input, allowing it to capture 
information from the past and the future of the 
sequence.(13) The BiGRU was used to encode 
the sequential information.

Results
To compare the approaches and the baselines, 
the researchers used leave-one-driver-out cross 
validation	on	a	dataset	using	nine	different	drivers.	
This method used one driver as a validation set and 
the rest in the training set. The baseline methods 
included	two	video	classification	methods	and	one	
image	classification	method	using	convolutional	
neural network (CNN)-based approaches because 
most existing face-detection methods use CNN-
based techniques. All three of the approaches the 
researchers tested outperformed the baselines. Of 
the three approaches, the BiGRU-based approach 
performed the best in terms of overall accuracy, 
outperforming the best performing baseline 
approach by 11 percent.

Using facial key points helped overcome the 
challenge posed by using a camera capturing a 
side view of the driver rather than a front view. The 
researchers were able to develop and test a model 
with high accuracy for acute-angle face tracking.

Driver Behavior Analysis Models
Transportation researchers use CV techniques 
to automatically analyze NDS video data and 
categorize various aspects of driver behavior. 

© REACTOR Lab.
A. Driver looking down.

© REACTOR Lab.
B. Driver looking to the side and down.

Figure 5. Photos. Facial key points detected 
under challenging circumstances, such as 
acute angles and blocked features.(12)
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For this stage of the project, the research team 
conducted a literature review to gain insights into 
CV techniques used for NDS video data and the 
performance of the CV techniques in classifying 
driver behavior.

The research team found that CNN and deep neural 
networks were the techniques most frequently 
used to predict driver gaze and distracted behavior. 
These techniques achieved high accuracy and were 
not	affected	by	the	sensor	positioning	or	whether	
single or multiple cameras were used. For detecting 
drowsiness, deep-learning techniques performed 
better than traditional methods. Long short-term 
memory (a type of RNN capable of learning long-
term dependencies in sequential data) and CNN 
were most often used for detecting lane changes.

Conventional CV methods used to detect distracted 
driving behaviors often demand extensive supervision 
through abundant annotated training data. Recently, 
vision-language models have introduced large-
scale pretraining on visual-textual data, enabling 

adaptation	to	unsupervised	task-specific	learning,	
such as recognizing distracted activities. Vision-
language and image-text pretraining models like 
Contrastive Language-Image Pretraining (CLIP)  
have	demonstrated	significant	potential	for	learning	
visual concepts from natural language supervision.(15) 

The pretraining in these models can be adapted  
for	specific	tasks,	such	as	recognizing	distracted	
driving activities.

The Deep InSight researchers developed a  
driver activity recognition framework based on 
CLIP to detect distracted driving, which they called 
DriveCLIP. Using the pretrained network allowed  
for zero-shot transfer (e.g., using knowledge from  
the pretraining to recognize and classify new 
concepts without labeled examples) for tasks 
involving driving datasets. The researchers  
fine	tuned	a	linear	classifier	and	used	it	to	 
address tasks, such as object detection or  
action recognition, in the distracted activity task. 
Figure 6 shows the complete DriveCLIP process.

Source: FHWA.
Figure 6. Flowchart. DriveCLIP architecture for distraction detection.(16)
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The researchers tested the DriveCLIP approach 
on three distinct datasets and conducted the same 
tests using traditional deep-learning models for 
comparison. DriveCLIP performed better than the 
traditional deep models on all three datasets.

Further investigations into the CLIP approach used 
single- and multiframe CLIP images and integrated 
a model known as VideoCLIP.(17) These models input 
images and predict distraction based on actions 
performed by drivers. The researchers trained and 
tested the models on two datasets. The single-frame 
CLIP outperformed traditional models, while the 
multiframe-based model achieved higher accuracy 
on one dataset and VideoCLIP on the other.

The	researchers	explored	the	impact	of	different	
camera angles and integrated sensor information 
(e.g., gyroscope) on detecting and classifying 
distracted driving. After exploring various camera 
angles, the researchers found that the driver-facing 
view yielded the best performance. Behaviors like 
eating, yawning, and singing were challenging 
for frame-based models to distinguish clearly but 
were handled better by VideoCLIP. The results 
showed	that	this	framework	offered	state-of-the-art	
performance on zero-shot transfer and video-based 
CLIP for predicting the driver’s state on two  
public datasets.

Driver Maneuver Models
Another feature the research team set out to 
add to the Deep InSight platform was an end-to-
end pipeline for automatically annotating NDS 
videos frame by frame into various driving events, 

including lane changes, left–right turns, horizontal 
curve maneuvers, and stop and lane-keeping 
events. Previous approaches treated vehicle 
maneuvering	as	a	classification	issue,	but	time	
series segmentation is also important to these tasks. 
To address this need, the researchers developed 
an energy-maximization algorithm (EMA) capable 
of extracting driving events of varying durations 
and frequencies from continuous data. Heuristic 
algorithms (arrived at through trial and error) were 
used to classify events with highly variable patterns 
like stops and lane keeping. Four ML models were 
implemented to classify segmented driving events, 
and their accuracy and transferability were assessed 
over multiple data sources.(18)

Methodology
The model’s development involved the following 
five-stage	methodology	(figure	7):

1. Data preprocessing: The input data was 
normalized through standard preprocessing.

2. Event segmentation: EMA was used to 
segment events and nonevents.

3. ML	classification:	Four	ML	algorithms	were	
used to classify the events.

4. Heuristics	classification:	A	heuristic	algorithm	
classified	nonevents	as	lane-keeping	and	
stop events.

5. Model	output:	The	final	output	resulted	in	
frame-by-frame video annotation.

Source: FHWA.
Figure 7. Flowchart. Driver maneuver model development.(18)
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Results
The tests indicated that the gyroscope reading is a 
good parameter to use in extracting driving events.  
It showed consistent accuracy across all four 
models. All four models had comparable accuracies 
to studies that used similar models. The highest 
accuracy model achieved 98.99 percent, followed  
by the other models at 97.75 percent, 97.71 percent, 
and 97.65 percent.

The researchers concluded that implementing a 
segmentation-classification	pipeline	significantly	
improved both the accuracy of driver maneuver 
detection and the transferability of shallow and 
deep ML models across diverse datasets. Future 
work should consider using video data for analyzing 
distracted driver behavior by using predictive 
models—such as eye detection and object detection 
models—to better understand driver behavior.

VIDEO QUALITY ENHANCEMENT
One of the main drawbacks of NDS datasets is  
low-resolution	video	captured	from	affordable	sensors 
and cameras. Nonprofessional-grade cameras result 
in challenging image conditions, such as low light 
and “noise” (i.e., random variations in brightness 
or color that can obscure image details). Models 
trained using clear images are less accurate when 
applied to poor-quality videos. CV algorithms that 
can	enhance	the	brightness	of	these	video	files	
without losing critical details are desirable. 

Quality may be further degraded when images  
are compressed for storage. Some image 
compression formats discard chunks of an image 
to reduce its size. The greater the compression, the 
more obvious the visual losses become, exhibiting 
chunks across the image known as compression 
artifacts. Deep-learning models perceive these 
chunks	as	features,	which	affect	the	model’s	ability	
to classify or predict data. When low light and 

compression exist in the same image, working with 
the images becomes even more challenging.

The researchers explored the use of deep-learning 
generative adversarial network (GAN) models to 
enhance the video quality.(19) Using two neural 
networks—the generator and the discriminator—
GANs create new data instances that are virtually 
indistinguishable from the real data in the training 
set. Given some input and noise, the generator 
creates images similar to the original image. The 
discriminator receives both the original and newly 
generated data and evaluates how realistic the  
input from the generator seems. As the training 
continues, the generator learns to improve the 
images it creates until it can fool the discriminator.

The research team enhanced the quality of low-light 
videos in the datasets and conducted experiments 
on vehicle detection and artifact generation. The 
team used CycleGAN, a GAN variant that consists of 
two sets of generator-discriminator pairs, to translate 
daytime images to nighttime images and vice versa 
to test for detection in low-light scenarios.(20)

The results of the vehicle detection experiments 
showed that applying denoising and enhancement 
methods to the NDS data was not straightforward. 
The team had some success but found that 
enhancing the low-light images increased the overall 
brightness and the visibility of noise in the images. 
The artifact generation experiments resulted in 
randomly generated light source artifacts in images 
despite the model accurately translating most of 
the image features. The researchers determined 
that well-known low-light enhancement models 
or denoising models cannot be directly applied to 
improve detection performance. The lessons learned 
from	these	experiments	could	influence	future	 
work on processing low-light images with more 
accuracy using GAN-based models to generate 
more accurate low-light images from well-annotated 
daytime images.
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CONCLUSIONS AND NEXT STEPS

The research team built Deep InSight, a 
comprehensive, cloud-based platform that 
encourages collaboration and multidisciplinary 

research on NDS video data in a centralized and 
standardized destination. The platform is cost 
efficient,	accessible,	scalable,	and	secure.	Deep	
InSight’s repository of publicly available and privately 
collected	NDS	datasets	significantly	enhances	the	
scope and impact of NDS by providing integrated 
tools for data annotation and ML modeling to analyze 
data and investigate driver behavior.

The advanced models for face detection and 
recognition, driver behaviors, and driver vehicle 
maneuvers developed for this project are available 
through the platform. By serving as a repository for 
models, research teams can use the platform to 
test their models and compare them with archived 
models from other research teams working with  
the same datasets.

The Deep InSight platform is currently assessed at 
TRL 4, meaning it has been validated in a laboratory 
setting. Plans to enhance the platform’s functionality 
and usability include several critical expansions:

•  Develop additional operational requirements,  
such as training and labeling time and 
computational resources, to optimize the 
platform’s performance.

•  Test the platform with NDS datasets from  
several universities to provide diverse data  
inputs and validation scenarios.

•  Enrich performance metrics to provide 
comprehensive insights into the operational 
environment,	helping	to	fine-tune	the	 
platform’s functionality.

•  Measure the framework’s impact on  
research agility, evaluating how much more 
efficient	research	processes	can	become	 
by implementing Deep InSight.

•  Address data collection limitations in  
traditional NDS, including delayed data 
processing, limited scalability, narrow focus,  
and	insufficient	data-mining	analysis.

•  Enable a new Naturalistic Health and  
Mobility Data (NMHD) platform. NMHD will  
provide a cutting-edge, privacy-aware, and 
economical approach for observing subject 
mobility and health data.

 
 

The research team built Deep InSight, a 
comprehensive, cloud-based platform that 

encourages collaboration and multidisciplinary 
research on NDS video data in a centralized and 

standardized destination. The platform is cost 
efficient, accessible, scalable, and secure.
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Getting Involved With the EAR Program
To take advantage of a broad variety of scientific and engineering discoveries, the  
EAR Program involves both traditional stakeholders (State department of transportation 
researchers, University Transportation Center researchers, and Transportation 
Research Board committee and panel members) and nontraditional stakeholders 
(investigators from private industry, related disciplines in academia, and research 
programs in other countries) throughout the research process.

Learn More
For more information, see the EAR Program website at https://highways.dot.gov/research/
research-programs/exploratory-advanced-research/exploratory-advanced-research-
overview. The site features information on research solicitations, updates on ongoing 
research, links to published materials, summaries of past EAR Program events, and 
details on upcoming events.

https://highways.dot.gov/research/research-programs/exploratory-advanced-research/exploratory-advanced-research-overview
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EAR Program Results
As a proponent of applying ideas across traditional research fields  
to stimulate new problem-solving approaches, the EAR Program 
strives to develop partnerships with the public and private sector. 
The program bridges basic research (e.g., academic work funded  
by National Science Foundation grants) and applied research  
(e.g., studies funded by State DOTs). In addition to sponsoring 
projects that advance the development of highway infrastructure 
and operations, the EAR Program is committed to promoting  
cross-fertilization with other technical fields, furthering promising 
lines of research and deepening vital research capacity.
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