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OBJECTIVE:    To enhance the use of fly ash for producing more sustainable concrete.

RESULTS: Concrete is the dominant material used in the 
construction of buildings and infrastructure.(1) However, the 
production of ordinary portland cement (OPC) is associated 
with substantial carbon dioxide (CO2) emissions, estimated 
at nearly 9 percent of the global carbon emissions.(2) To 
counteract the CO2 impact of OPC production and use, the 
industry has sought to replace OPC in concrete with 
supplementary cementitious materials (SCMs). Fly ash, a 
residue from the combustion of coal, is currently the only 
SCM available in sufficient abundance to replace OPC in 
concrete.(3) However, fly ash’s diverse chemical composition 
and the presence of crystalline (i.e., ordered) and 
noncrystalline (i.e., disordered) phases can make it difficult 
to use in concrete production. Although it is defined as 
either Class C or F, the specific composition of a certain fly 
ash can greatly affect the performance of the concrete with 
which it is mixed. Even similar fly ashes can result in vastly 
different concrete behavior. As a result, over the past 
decades, fly ash has had limited success as a high-volume 
substitute, replacing a limited amount of OPC in concrete 
(e.g., ≤25 percent by mass).(3)

With an unprecedented massive concrete and fly ash 
dataset collection of 40,000 data records, a research team 
conducted a series of experiments that used advanced 
material characterizations, machine-learning (ML) 
techniques, and numerical simulations to uncover the 
fundamental attributes governing the reactivity of fly ash 
and its suitability as an OPC replacement. This work aimed 
to enhance the use of fly ash for producing more 
sustainable concrete.

Using topological constraint theory and classical molecular 
dynamics simulations, the researchers developed an 
analytical model to predict the atomic topology of calcium 
aluminosilicate (CAS) glasses that make up the essential 
components of fly ash’s noncrystalline (i.e., glassy) phase, 
that is, the most reactive phase of fly ashes (which 
contribute to increasing concrete’s strength). This model 
could be used to accurately estimate the state of rigidity 
(flexible, isostatic, or stressed-rigid) of CAS glasses based 
on their chemical composition and temperature. The results 

revealed that the glass-forming ability of CAS glasses 
(which is closely related to the reactivity of fly ash) is 
encoded in its network topology (molecular structure), which 
is captured by the number of constraints per atom (nc). 
Importantly, this finding indicates that the nc of the 
amorphous phase of a fly ash can serve as a reliable 
structural proxy for its reactivity. The researchers then used 
an ML-based methodology to predict fly ash’s rigidity (i.e., 
nc) based on the sole knowledge of its bulk chemical 
composition. This approach can enable the rapid screening 
of reactive fly ashes via fast, inexpensive bulk 
characterization techniques (e.g., x-ray fluorescence). The 
team’s predictive model can be used to maximize the 
beneficial use of fly ashes obtained from routine power 
plant production and enhance the reclamation of reactive fly 
ashes that are presently stored in impoundments.

The researchers developed a generic theoretical framework 
that can produce reliable predictions of binder properties 
that bring together portland cement and fly ash [PC + FA] to 
create concrete. This framework relied on a deep forest 
(DF) model, which consists of an ensemble of decision 
trees. Each tree offers a distinct prediction, which depends 
on whether or not the condition attached to each of its 
branches are satisfied. The DF model is trained with a 
collection of experimental data on the strength development 
of binders containing various fractions of cement being 
replaced by fly ash. Furthermore, theoretical knowledge of 
fly ash’s composition-structure correlations and cement’s 
hydration mechanism (i.e., which is governed dimensionally 
by the number of constraints per atom nc previously 
mentioned) are infused into the DF model to boost its 
prediction performance. As a result, the DF model can 
accurately predict composition- and time-dependent 
hydration kinetics (i.e., the rate at which the reactive solids 
dissolve and react to form a cement paste) and compressive 
strength (the capacity of concrete to withstand loads before 
failure) of [PC + FA] binders. More importantly, the study 
derived a simple, closed-form analytical model that can 
robustly map the compositional attributions of cement and 
fly ash to the compressive strength of the binders.  
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This analytical model can offer important insights into the 
interactive effects of cement and fly ash on the strength 
development of [PC + FA] binders.

Due to the complex chemical reactions involved with 
cement hydration (the reaction between water and cement 
during the mixing process) and the interactions between 
different phases in concrete, reliable predictions of the 
strength of fly-ash-containing concrete materials (and many 
other key properties) remain unavailable through 
conventional approaches. As an alternative, ML offers a 
new pathway to developing powerful predictive models for 
concrete materials. After curating a collection of large-scale 
concrete datasets based on raw data obtained from actual 
concrete production, the research team demonstrated the 
potential of using different ML models to accurately predict 
the strength development of concrete. 

The researchers first compared the performance of several 
prevailing ML algorithms in predicting the 28-d compressive 
strength (the strength of concrete 28 d after being cast) 
based on the knowledge of the mixture proportion, where 
the tradeoff between model accuracy, simplicity, and 
interpretability across those ML algorithms was specifically 
studied. The research team also investigated the influence 
of the training dataset’s size on the accuracy of the team’s 
ML models—as high-quality concrete strength data is 
limited. In that regard, several techniques were studied that 
could be used to improve the efficiency of ML methods 
when applied to small concrete datasets. 

To enable the use of high-volume fly ash in concrete, the 
researchers also looked into using ML to infer the strength 
activity index (SAI) (an indicator of the quality of additional 

materials mixed into cement) of fly ashes based on the 
knowledge of their key material attributes. Based on a large 
fly ash dataset curated from the team’s testing records, the 
researchers trained an ML model that offered accurate 
predictions of the 28-d SAI based on the sole knowledge of 
the fly ash’s ASTM C618 attributes.(4) These models allowed 
the researchers to clarify how each of the chemical and 
physical attributes of fly ash affects their ability to replace 
cement in concrete.
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Figure 1. Schematic. Proposed ML-based screening approach. 

https://doi.org/10.1007/s13369-012-0181-x
https://doi.org/10.1016/j.resconrec.2016.04.016
https://doi.org/10.1016/j.resconrec.2016.04.016
https://doi.org/10.1016/j.cemconres.2010.11.012


EAR PROGRAM—RESEARCH RESULTS  |  3

RESOURCES: 

Gomaa, E., T. Han, M. ElGawady, J. Huang, A. Kumar. 2021. 
“Machine Learning to Predict Properties of Fresh and 
Hardened Alkali-Activated Concrete.” Cement and 
Concrete Composites 115, no. 103863. https://doi.
org/10.1016/j.cemconcomp.2020.103863, last accessed 
September 19, 2023.

Lapeyre, J., T. Han, B. Wiles, H. Ma, J. Huang, G. Sant, and 
A. Kumar. 2021. “Machine Learning Enables Prompt 
Prediction of Hydration Kinetics of Multicomponent 
Cementitious Systems.” Scientific Reports 11, no. 3922. 
https://doi.org/10.1038/s41598-021-83582-6, last 
accessed September 19, 2023.

Cook, R., T. Han, A. Childers, C. Ryckman, K. Khayat, H. Ma, 
J. Huang, and A. Kumar. 2021. “Machine Learning for 
High-Fidelity Prediction of Cement Hydration Kinetics in 
Blended Systems.” Materials & Design 208, no. 109920. 
https://doi.org/10.1016/j.matdes.2021.109920, last 
accessed September 19, 2023.

Han, T., S. A. Ponduru, R. Cook, J. Huang, G. Sant, and  
A. Kumar. 2022. “A Deep Learning Approach to Design 
and Discover Sustainable Cementitious Binders: 
Strategies to Learn from Small Databases and Develop 
Closed-Form Analytical Models.” Frontiers in Materials 8, 
no. 796476. https://doi.org/10.3389/fmats.2021.796476, 
last accessed September 19, 2023.

Bhat, R., T. Han, S. Akshay Ponduru, A. Reka, J. Huang,  
G. Sant, and A. Kumar. 2022. “Predicting Compressive 
Strength of Alkali-Activated Systems Based on the 
Network Topology and Phase Assemblages Using 
Tree-Structure Computing Algorithms.” Construction and 
Building Materials 336, no. 127557. https://doi.
org/10.1016/j.conbuildmat.2022.127557, last accessed 
September 19, 2023.

Han, T., S. A. Ponduru, A. Reka, J. Huang, G. Sant, and  
A. Kumar. 2023. “Predicting Dissolution Kinetics of 
Tricalcium Silicate Using Deep Learning and Analytical 
Models.” Algorithms 16, no. 1: 7. https://doi.org/10.3390/
a16010007, last accessed September 19, 2023.

Han, T., R. Bhat, S. A. Ponduru, A. Sarkar, J. Huang,  
G. Sant, H. Ma, N. Neithalath, and A. Kumar. 2023. “Deep 
Learning to Predict the Hydration and Performance of Fly 
Ash-Containing Cementitious Binders.” Cement and 
Concrete Research 165, no. 107093. https://doi.
org/10.1016/j.cemconres.2023.107093, last accessed 
September 19, 2023.

Ponduru, S. A., T. Han, J. Huang, and A. Kumar. 2023. 
“Predicting Compressive Strength and Hydration Products 
of Calcium Aluminate Cement Using Data-Driven 
Approach.” Materials 16, no. 2: 654. https://doi.org/10.3390/
ma16020654, last accessed September 19, 2023.

Song, Y., K. Yang, J. Chen, K. Wang, G. Sant, and M. Bauchy. 
2021 “Machine Learning Enables Rapid Screening of 
Reactive Fly Ashes Based on Their Network Topology.” ACS 
Sustainable Chemistry & Engineering 9, no. 7: 2639–2650. 
https://doi.org/10.1021/acssuschemeng.0c06978, last 
accessed September 19, 2023.

Ouyang, B., Y. Song, Y. Li, G. Sant, and M. Bauchy. 2021. 
“EBOD: An Ensemble-Based Outlier Detection Algorithm 
for Noisy Datasets.” Knowledge-Based Systems 231, no. 
14: 107400. https://doi.org/10.1016/j.knosys.2021.107400, 
last accessed September 19, 2023.

Ouyang, B., Y. Song, Y. Li, F. Wu, H. Yu, Y. Wang, Z. Yin,  
X. Luo, G. Sant, and M. Bauchy. 2021. “Using Machine 
Learning to Predict Concrete’s Strength: Learning from 
Small Datasets.” Engineering Research Express 3, no. 1: 
015022. https://doi.org/10.1088/2631-8695/abe344, last 
accessed September 19, 2023.

Ouyang, N., Y. Song, Y. Li, F. Wu, H. Yu, Y. Wang, G. Sant, 
and M. Bauchy. 2020. “Predicting Concrete’s Strength by 
Machine Learning: Balance Between Accuracy and 
Complexity of Algorithms.” ACI Materials Journal 117, no. 6. 
https://doi.org/10.14359/51728128, last accessed 
September 19, 2023.

Collin, M., Y. Song, D. P. Prentice, R. A. Arnold, K. Ellison,  
D. A. Simonetti, M. Bauchy, and G. N. Sant. 2023. “Fly 
Ash Degree of Reaction in Hypersaline NaCl and CaCl2 
Brines: Effects of Calcium-Based Additives.” Waste 
Management 170: 103–111. https://doi.org/10.1016/j.
wasman.2023.08.002, last accessed September 19, 2023.

Zhang, S., K. Wang, C. Jin, Y. Song, M. Bauchy, and G. Sant. 
2022. “Interpreting the Strength Activity Index of Fly Ash 
with Machine Learning.” Advances in Civil Engineering 
Materials 11, no. 2: 587–602. https://doi.org/10.1520/
ACEM20220024, last accessed September 19, 2023.

Song, Y., B. Ouyang, J. Chen, X. Wang, K. Wang, S. Zhang, 
Y. Chen, G. Sant, and M. Bauchy. 2022. “Decarbonizing 
Concrete with Artificial Intelligence.” In Computational 
Modelling of Concrete and Concrete Structures, eds.  
G. Meschke, B. Pichler, and J. G. Rots. Boca Raton: CRC 
Press, 168–176. 

https://doi.org/10.1016/j.cemconcomp.2020.103863
https://doi.org/10.1016/j.cemconcomp.2020.103863
https://doi.org/10.1038/s41598-021-83582-6
https://doi.org/10.1016/j.matdes.2021.109920
https://doi.org/10.3389/fmats.2021.796476
https://doi.org/10.1016/j.conbuildmat.2022.127557
https://doi.org/10.1016/j.conbuildmat.2022.127557
https://doi.org/10.3390/a16010007
https://doi.org/10.3390/a16010007
https://doi.org/10.1016/j.cemconres.2023.107093
https://doi.org/10.1016/j.cemconres.2023.107093
https://doi.org/10.3390/ma16020654
https://doi.org/10.3390/ma16020654
https://doi.org/10.1021/acssuschemeng.0c06978
https://doi.org/10.1016/j.knosys.2021.107400
https://doi.org/10.1088/2631-8695/abe344
https://doi.org/10.14359/51728128
https://doi.org/10.1016/j.wasman.2023.08.002
https://doi.org/10.1016/j.wasman.2023.08.002
https://doi.org/10.1520/ACEM20220024
https://doi.org/10.1520/ACEM20220024


4  |  EAR PROGRAM —RESEARCH RESULTS

EAR Program —Research Results EAR Program —Research Results

Song, Y., Y. Wang, K. Wang, G. Sant, and M. Bauchy. 2020. 
“Decoding the Genome of Cement by Gaussian Process 
Regression.” Presented at the 34th Annual Conference on 
Neural Information Processing Systems. Virtual: NeurIPS 
Foundation. https://ml4eng.github.io/camera_readys/38.pdf, 
last accessed September 19, 2023.

La Plante, E. C., I. Mehdipour, I. Shortt, K. Yang, D. Simonetti, 
M. Bauchy, and G. N. Sant. 2021. “Controls on CO2 
Mineralization Using Natural and Industrial Alkaline Solids 
Under Ambient Conditions.” ACS Sustainable Chemistry & 
Engineering 9, no. 32: 10727–10739. https://doi.
org/10.1021/acssuschemeng.1c00838, last accessed 
September 19, 2023.

Kai, Y. Y. Hu, Z. Li, N. M. Anoop Krishnan, M. M. Smedskjaer, 
C. G. Hoover, J. C. Mauro, G. Sant, and M. Bauchy. 2021. 

“Analytical Model of The Network Topology and Rigidity of 
Calcium Aluminosilicate Glasses.” Journal of the American 
Ceramic Society 104, no. 8: 3947–3962. https://doi.
org/10.1111/jace.17781, last accessed September 19, 2023.

Hu, Y., Z. Liu, K. Yang, N. M. Anoop Krishnan,  
M. M. Smedskjaer, G. Sant, and M. Bauchy. 2021. 

“Rigidity  Theory of Glass: Determining the Onset 
Temperature of Topological Constraints by Molecular 
Dynamics.” Journal of Non-Crystalline Solids 554: 120614. 
https://doi.org/10.1016/j.jnoncrysol.2020.120614, last 
accessed September 19, 2023.

Ford, E., K. Maneparambil, A. Kumar, G. Sant, and  
N. Neithalath. 2022. “Transfer (Machine) Learning 
Approaches Coupled with Target Data Augmentation to 
Predict the Mechanical Properties of Concrete.” Machine 
Learning with Applications, Vol. 8, June 2022, 100271, 
https://doi.org/10.1016/j.mlwa.2022.100271, last accessed 
September 19, 2023.

Ford, E., K. Maneparambil, S. Rajan, and N. Neithalath. 
2021. “Machine Learning-Based Accelerated Property 
Prediction of Two-Phase Materials Using Microstructural 
Descriptors and Finite Element Analysis.” Computational 
Materials Science 191, no. 110328.

Ford, E., S. Kailas, K. Maneparambil, and N. Neithalath. 
2020. “Machine Learning Approaches to Predict the 
Micromechanical Properties of Cementitious Hydration 
Phases from Microstructural Chemical Maps.” 
Construction and Building Materials 265, no. 120647.

Young, B. A., A. Hall, L. Pilon, P. Gupta, and G. Sant. 2019. 
“Can the Compressive Strength of Concrete Be Estimated 
from Knowledge of the Mixture Proportions? New Insights 
from Statistical Analysis and Machine Learning Methods.” 
Cement and Concrete Research 115, January: 379–388. 
https://doi.org/10.1016/j.cemconres.2018.09.006, last 
accessed November 7, 2022. 

Oey, T., S. Jones, J. W. Bullard, and G. Sant. 2020. 
“Machine Learning Can Predict Setting Behavior and 
Strength Evolution of Hydrating Cement Systems.” 
Journal of the American Ceramic Society 103, 480–490. 
https://doi.org/10.1111/jace.16706, last accessed 
November 7, 2022.

Liu, H., Z. Fu, K. Yang, X. Xu, and M. Bauchy. 2019. 
“Machine Learning for Glass Science and Engineering:  
A Review.” Journal of Non-Crystalline Solids 557, 119419. 
https://doi.org/10.1016/j.jnoncrysol.2019.04.039, last 
accessed November 7, 2022. 

Liu, H., Z. Fu, Y. Li, N. F. A. Sabri, and M. Bauchy. 2019. 
“Balance Between Accuracy and Simplicity in Empirical 
Forcefields for Glass Modeling: Insights From Machine 
Learning.” Journal of Non-Crystalline Solids 515, 133–142. 
https://doi.org/10.1016/j.jnoncrysol.2019.04.020, last 
accessed November 7, 2022.

Publication No.: FHWA-HRT-23-048 
HRTM-30/10-23(WEB)E 
https://doi.org/10.21949/1521995

https://ml4eng.github.io/camera_readys/38.pdf
https://doi.org/10.1021/acssuschemeng.1c00838
https://doi.org/10.1021/acssuschemeng.1c00838
https://doi.org/10.1111/jace.17781
https://doi.org/10.1111/jace.17781
https://doi.org/10.1016/j.jnoncrysol.2020.120614
https://www.sciencedirect.com/science/article/pii/S2666827022000123?via%3Dihub
https://doi.org/10.1016/j.cemconres.2018.09.006
https://doi.org/10.1111/jace.16706
https://doi.org/10.1016/j.jnoncrysol.2019.04.039
https://doi.org/10.1016/j.jnoncrysol.2019.04.020
https://doi.org/10.21949/1521995

