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FOREWORD 

Data-driven safety analysis models help State and local agencies quantify safety data, identify 
high-risk roadway features, and predict the effects of proposed safety measures. However, even 
when a model performs well overall, it may not accurately represent the interactions between 
variables for a specific location or crash because the underlying relationships in the real world 
are unknown. One proposed solution is to generate realistic artificial datasets (RADs) with 
predetermined safety relationships built into them. Because these relationships are known, the 
RAD can serve as a testbed, revealing how well a model reflects those underlying cause-and-
effect relationships. 

This study describes the development of RAD for ramp terminals and speed change lanes at 
diamond interchanges. A web-based software was developed under the Federal Highway 
Administration’s Exploratory Advanced Research Program. The software provides the ability to 
generate RAD for multiple years and locations as well as access to pregenerated datasets. This 
report will be of interest to academics and researchers developing crash modification functions 
and statistical models to determine how the models best represent real-world relationships. 
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EXECUTIVE SUMMARY 

Data-driven methods are an important component of transportation safety decisionmaking. The 
U.S. Department of Transportation’s (USDOT) Strategic Plan (2022–2026) stresses the 
importance of using data-driven methods as part of the overall Safe System Approach toward 
achieving zero roadway fatalities.(1,2) These methods typically require analytical evaluation of 
predicted and expected crashes based on geometric and traffic characteristics and other 
contributing factors. One tool that could facilitate this evaluation is realistic artificial data 
(RAD).(3,1) RAD can be beneficial to highway safety research in several ways: assessing a new 
crash estimation method, comparing methods to analyze alternatives, and conducting human 
factors evaluation of behavioral and roadway countermeasures. Advancing RAD will also 
enhance the Federal Highway Administration’s (FHWA) efforts to encourage practitioners to 
apply data-driven methods to safety decisionmaking through programs such as Every Day 
Counts by expanding the number of tools available for safety analysis.(4) 

Although artificial data have been used in many diverse applications, such as security, image 
processing, surveys, cancer genomics, infrared spectroscopy, and geography, their use in 
transportation has been limited. The main goal of this Exploratory Advanced Research (EAR) 
Program project was to develop a framework to generate RAD for interchange facilities and to 
generate datasets using that framework. Even though interchanges are ubiquitous in our 
transportation network and carry significant traffic volumes, accurate crash data for such 
facilities are lacking throughout the United States. The scope of this project involves generating 
RAD for two types of crashes occurring at diamond interchanges—ramp terminal left-turn (LT) 
crashes and speed change lane (SCL) crashes. 

The data generation framework consists of three main steps. The first step identifies a set of 
contributing factors at the selected interchange facility (e.g., SCL, ramp terminal). Roadway, 
traffic, and driver contributing factors were synthesized from the literature from each selected 
facility. Sampling distributions were generated for each of the factors using observed data from 
Washington and Missouri. The RAD for these factors were then generated by repeatedly 
sampling the distributions for a given sample size (e.g., 500 sites). Data from other States were 
also considered. Highway Safety Information System data for interchange crashes were obtained 
for a 5-yr period. Data from Washington were the most complete and recent for the purposes of 
developing RAD, although data from California, Illinois, Maine, and Minnesota were also 
reviewed. In addition to Washington, interchange safety data from Missouri were also used. The 
Missouri data were acquired from Missouri DOT’s Transportation Management System as part 
of a recently completed Highway Safety Manual (HSM) calibration project.(5,6,7) 

The second step of the data generation process establishes the effect of each contributing factor 
on crash frequency. This information was also synthesized from published literature, HSM, and 
the Crash Modification Factors Clearinghouse.(8) When no reliable information was available for 
a particular variable, assumptions were made based on analyzing observed data from 
Washington and Missouri. 

The third step of the data generation process quantifies the combined effect of all contributing 
factors on crash frequency. This quantification was done in two stages. First, the research team 
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estimated the composite crash measure for a given site based on its roadway and traffic 
characteristics. They considered both individual effects of each factor and interaction effects 
between two or more factors in generating the composite measure. A site with a higher 
composite crash measure was likely to experience a higher crash frequency. In the second stage, 
the researchers converted the composite crash measure to realistic crash frequency (i.e., counts) 
using observed crash data. This conversion was done using a hierarchical Poisson approach, with 
parameters optimized for each level of the hierarchy using observed crash data. The research 
team adjusted the generated crash data distribution parameters to match the overall distributional 
shape and crash counts at individual sites. Once the crash counts were generated, they used the 
crash severity distributions to subdivide the overall crash counts into fatal, injury, and property 
damage only crashes. In addition to crash severity, crash-specific factors pertaining to the driver 
(e.g., distraction, age, gender), vehicle type, and roadway (e.g., road condition at the time of 
crash) were also generated for each crash. 

The researchers developed a model evaluation rubric to evaluate the performance of models 
developed using RAD with a scoring system of 0–100. Table 1 shows the six criteria and the 
maximum points assigned to each model. Because the primary goal of RAD is to evaluate the 
ability of models to accurately estimate the cause–effect relationships, model inference is 
weighed more than other criteria. 

Table 1. Criteria and scores for model evaluation. 

Criteria Points 
Descriptive analysis of data 10 
Model selection 10 
Training and testing data 10 
Overall prediction accuracy 20 
Model inference 50 
Total score 100 

The RAD datasets generated for LT and SCL facilities were used to test crash prediction models. 
Two teams estimated statistical models, while one team developed a series of machine learning 
models. Statistical models include various forms of negative binomial regression, whereas the 
machine learning models ranged from a simple ridge regression model to a complex deep 
learning model TabNet.(9) The model evaluation rubric was applied to the models developed by 
the three teams. All teams provided basic descriptive statistics of the RAD datasets. Overall 
scores (out of 100) ranged between 72 and 91, with the main difference in performance 
appearing in the model inference criteria. 

To facilitate the use of RAD, a web-based software was developed to provide access to RAD 
datasets. Figure 1 is a screenshot of the RAD website’s homepage showing the three types of 
data that are available for each of the two facility types. Figure 2 shows the workflow of the 
software. The users submit a RAD data request to the web server. The web server will call the 
RAD generator to produce a set of RAD datasets. Depending on the type of request, either a 
pregenerated dataset or a custom dataset will be produced. For custom datasets, an email 
notification with the download URL for the generated data will be sent to the user-provided 
email. 
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Source: FHWA. 
SHRP = Strategic Highway Research Program; NDS = Naturalistic Driving Study. 

Figure 1. Screenshot. Landing page with main menu options in the RAD software. 

 
Source: FHWA. 

Figure 2. Graphic. Software development workflow. 

The second type of RAD datasets developed in this project are the virtual reality (VR) simulation 
testbeds for crashes and near-crashes occurring at interchanges. The testbeds were developed 
using a four-step process:  

1. Analyze Strategic Highway Research Program (SHRP)2 Naturalistic Driving Study 
(NDS) videos. 

2. Develop crash diagrams. 
3. Create three-dimensional (3D) modeling of roadway and environment. 
4. Reconstruct crash in VR. 
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Step 1 involves obtaining and analyzing videos of safety-critical events occurring at 
interchanges. This step was accomplished using SHRP2 NDS data. A total of 114 crash and 
near-crash events involving left-turning vehicles and 310 events occurring on SCLs were 
evaluated to develop the testbeds. Both video and kinematic data for safety-critical events were 
used for reconstruction. 

The second step of the crash reconstruction process involves crash diagramming. This task 
entails drawing detailed trajectories of vehicles involved in the crash event. After drawing the 
trajectories, road signs are generated. Signs similar to those observed in the crash videos were 
generated because the actual crash locations were withheld due to privacy concerns. 

After extracting the vehicle trajectories and basic signage from the NDS videos, the third step 
involves creating the roadway and the environment using 3D modeling tools. Coded roadway 
elements include travel lanes, shoulders, medians, barriers, terrain, overpasses, pavement 
markings, etc. Environment elements include signage, overall lighting, and foliage next to the 
highway.The fourth and final step in the testbed development process involves creating a crash 
simulation. Vehicle information and the trajectories extracted in the first step were overlaid on 
top of the roadway and environment elements created in the second and third steps to reconstruct 
the crash. A commonly used simulation engine was used to create the testbeds. 

The researchers created a graphical user interface to facilitate the use of simulator testbeds 
created for LT and SCL crashes. Figure 3 shows a screenshot of the homepage of the user 
interface. A user has three visualization options (as shown in figure 4): 

• An aerial view is a recreated animation of a crash. 

• The 360-degree view places the user in the driver’s seat of the subject vehicle and 
provides the driver’s perspective of the crash. 

• The test-drive view is similar to the 360-degree mode, with the exception that the user 
actively controls the vehicle. 

Although aerial and 360-degree views are not interactive, the test drive mode gives control to the 
user to drive through the scenario and react to the conditions that led to a crash. 
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Source: FHWA. 

Figure 3. Screenshot. Main landing page of the simulator testbed user interface. 

 
Source: FHWA. 

Figure 4. Screenshot. User menu showing three visualization options. 

In summary, this EAR Program project developed synthetic datasets for interchange facilities for 
the first time. A three-step framework was developed to generate RAD. The developed datasets 
were then used by state-of-the-art statistical and machine learning approaches for modeling crash 
frequency and to ascertain the cause-and-effect relationships. A web-based software was 
developed to provide easy access to the RAD datasets. The software provides 196 pregenerated 
datasets and the option to submit custom data requests. The RAD dataset is provided in a 
spreadsheet format similar to the safety datasets obtained from State DOTs. The proposed 
framework is generic and can be used to generate RAD for other facilities, such as work zones, 
bicyclist/pedestrian facilities, innovative geometric designs, etc. 

This project also extended the idea of RAD by generating realistic simulation testbeds using 
NDS data. The VR RAD testbeds were developed with two intended purposes. First, the VR 
animations of crashes and near-crashes can be used for driver education. Because the testbeds 
were developed using actual crashes documented in the NDS, they provide a realistic experience 
that is more engaging. For example, outreach activities targeted at teen drivers can use the 
animations to help provide a realistic, immersive experience of a crash and to encourage safe 
driving practices in such circumstances. Lower hardware costs, a younger workforce, and 
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investments from technology companies in improving VR experience are all significant reasons 
to believe that the transportation industry will increasingly embrace VR-enabled training and 
education. 

A second purpose served by the VR testbeds is to assist with human factors research. For 
example, a driving simulator platform can readily use the testbeds to test the performance of 
safety countermeasures, such as in-vehicle driver information systems, roadside dynamic 
message signs, collision avoidance systems, etc. This purpose is well aligned with the USDOT’s 
National Roadway Safety Strategy’s Safe System Approach, which considers an overlapping set 
of safety measures: roadway countermeasures, behavioral interventions, enforcement, vehicle 
safety features, and emergency medical care. 
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CHAPTER 1. BACKGROUND 

Data are critical to understanding crash causation, which leads to the optimization of safety 
countermeasures. The Federal Highway Administration (FHWA) has been an active proponent 
of data-driven methods for safety decisionmaking. Through the Every Day Counts (EDC) 
program (EDC-3 and EDC-4), FHWA has been encouraging practitioners to apply a data-driven 
safety analysis (DDSA) approach to safety decisionmaking.(4) The DDSA advocates for a new 
line of thinking that relies on predicted and expected safety values using statistical methods. 
Many States now use DDSA approaches (75 percent per FHWA EDC website) to strategically 
invest in systemic treatments that target specific crash types rather than chasing high-crash 
locations and addressing them piecemeal. The U.S. Department of Transportation’s (USDOT) 
Research, Development, and Technology Strategic Plan (2018–2022) further reinforced the 
importance of reliable data and effective analytical tools in achieving the strategic safety goal of 
zero fatalities.(1) Specifically, the safety data initiative of the systemic safety approach “seeks to 
develop new and integrated data sources, analysis, and visualization techniques to enhance our 
understanding of crash risk and our ability to mitigate it.”(1) 

PROJECT MOTIVATION 

As described by Hauer, artificial realistic data (ARD) dataset can be a useful tool for research on 
highway safety.(3) Specifically, three areas where the use of ARD could be beneficial are: 
determining a sample size or assessing a new estimation method, comparing methods to analyze 
alternatives, and evaluating ways to generate multivariate models. Some of the common 
challenges in developing safety models include difficulties in identifying causal relationships in 
the data; the use of average values for variables, variable errors, missing variables, and complex 
variable dependencies, and the use of simple mathematical functions. ARD offers an innovative 
way to address these challenges by developing models that not only accurately predict crash 
frequency but also accurately explain the cause-and-effect relationships between crashes and the 
independent variables. 

Council et al. led the first ARD effort sponsored by FHWA to examine the performance of 
different modeling methods for cross-sectional studies.1 Using Highway Safety Information 
System (HSIS) data from Washington, a dataset was created consisting of 2,400 mi of 
homogenous segments of 0.02 mi each. Crashes were assigned to each of the segments based on 
certain known causal relationships. The case study examined single-vehicle-lane-departure 
crashes occurring on rural two-lane roadways. The crash and roadway data were then provided to 
a modeler not privy to the assumed causal relationships. The modeler was tasked with estimating 
regression models and deriving the causal relationships. The model results were then checked 
against the assumed relationships. This effort is one of the few endeavors in transportation to 
create synthetic data for safety modeling. 

 
1Council, F., E. Hauer, B. Lan, D. Harwood, and R. Srinivasan. 2017. Use of “Artificial Realistic Data” (ARD) 

to Assess the Performance of Cross-Sectional Analysis Methods in Capturing Causal Relationships Between 
Individual Roadway Attributes and Safety. Unpublished Report. Washington, DC: Federal Highway Administration. 
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PROJECT OVERVIEW 

In this Exploratory Advanced Research (EAR) Program project, this initial effort by Council et 
al. was extended by developing synthetic datasets for interchange facilities.2 Specifically, 
datasets were generated for crashes occurring at ramp terminals and speed change lanes (SCLs) 
of diamond interchanges. Diamond interchanges are one of the highly prevalent designs in the 
United States. These realistic artificial data (RAD) datasets were then used by state-of-the-art 
statistical and machine learning approaches for modeling crash frequency and to ascertain the 
cause-and-effect relationships. A web-based software was developed to easily access the RAD 
datasets. The software provides 196 pregenerated datasets and the option to submit custom data 
requests. The RAD dataset is provided in a spreadsheet format similar to the safety datasets 
obtained from State DOTs. 

RAD datasets can be used to test the performance of different safety modeling approaches. For 
example, if a modeler estimated different forms of statistical models using a crash dataset from a 
particular State DOT, the different models can only be compared using overall goodness-of-fit 
measures (e.g., prediction accuracy, likelihood value). Since the ground truth cause–effect 
relationships between independent and dependent variables are seldom known, the models 
cannot be compared by their ability to extract the true cause–effect relationships. RAD datasets, 
on the other hand, are created using cause–effect relationships that were established using 
literature reviews, subject matter expert interviews, and observed safety data from Washington 
and Missouri. Thus, different models can be compared based on overall goodness of fit as well as 
on model inference, that is, the model estimated cause–effect relationships versus the ground 
truth (assumed) relationships. If a model can satisfactorily extract these relationships from RAD 
data, the user can confidently apply that model to real data (e.g., from a State DOT) and generate 
reliable crash modification factors (CMFs). 

This project also expands the idea of RAD by generating realistic simulation testbeds using 
Strategic Highway Research Program (SHRP)2 Naturalistic Driving Study (NDS) data. The 
virtual reality (VR) RAD testbeds were developed with two intended purposes. First, the VR 
animations of crashes and near-crashes can be used for driver education. Since the testbeds were 
developed using actual crashes documented in the NDS, they provide an immersive, realistic 
experience that is engaging. For example, outreach activities targeted at teen drivers can use the 
animations to help provide a realistic, immersive experience of a crash and to encourage safe 
driving practices in such circumstances. Lower hardware costs, a younger workforce, and 
investments from technology companies in improving the VR experience are all significant 
reasons to believe that the transportation industry will increasingly embrace VR-enabled training 
and education. 

The second purpose of developing the VR testbeds of safety-critical events is to assist with 
human factors research to improve interchange safety. For example, a driving simulator platform 
can readily use the testbeds to test the performance of safety countermeasures, such as in-vehicle 
driver information systems, roadside dynamic message signs, collision avoidance systems, etc. 

 
2Council, F., E. Hauer, B. Lan, D. Harwood, and R. Srinivasan. 2017. Use of “Artificial Realistic Data” (ARD) 

to Assess the Performance of Cross-Sectional Analysis Methods in Capturing Causal Relationships Between 
Individual Roadway Attributes and Safety. Unpublished Report. Washington, DC: Federal Highway Administration. 
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This purpose is well aligned with the USDOT’s National Roadway Safety Strategy’s Safe 
System Approach, which considers an overlapping set of safety measures: roadway 
countermeasures, behavioral interventions, enforcement, vehicle safety features, and emergency 
medical care. 

STUDY SCOPE 

This project focused on two facilities of a diamond interchange. The first facility is the ramp 
terminal. Figure 5 shows a diamond interchange with two ramp terminals (one on the south side 
and one on the north side). Each site refers to one ramp terminal. The crash type of interest is the 
multivehicle crash occurring between vehicles turning left onto the entrance ramp of the freeway 
(shown as a left-pointing, curved arrow in the diagram) and the oncoming through vehicle on the 
crossroad (shown as a downward-pointing, straight arrow). In the RAD dataset, there is no 
spatial correlation between consecutively numbered sites. 

 
Original photo: Imagery © 2020 Maxar Technologies, map data © 2020 Google®. Modifications by FHWA (see 
acknowledgments section). 

Figure 5. Map. Example diamond interchange with two ramp terminals. 
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The second interchange facility is the freeway SCL. An SCL facility is an uncontrolled terminal 
between a ramp and a freeway. The schematic in figure 6 shows an entrance SCL measured from 
the gore point to the end of the taper.(5) Figure 7 shows a real-world example of an entrance SCL 
segment. 

 
© 2014 American Association of State Highway and Transportation Officials. 

Figure 6. Graphic. Entrance SCLs.(5) 

 
Original photo: Imagery © 2022 Maxar Technologies, Map data © 2022 Google®. Modifications by FHWA (see 
acknowledgments section). 

Figure 7. Map. Real-world example of an entrance SCL. 
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CHAPTER 2. LITERATURE REVIEW 

The research team reviewed literature from two different domains. First, studies documenting the 
development and use of synthetic data were reviewed. Second, due to the focus of this project on 
interchange safety, literature pertaining to the understanding of crash causation at interchanges 
was examined. While the synthetic data review provided information on available data 
generation methods, the interchange safety review helped to obtain information on the key 
independent variables, their impact on crash frequency, and the state-of-the-practice crash 
prediction models. 

SYNTHETIC DATA 

Although the concept of artificial or synthetic data is new in transportation, its use has been 
demonstrated in other disciplines. A literature review revealed studies have demonstrated the 
successful development, evaluation, and application of artificial datasets. 

Generation of Synthetic Data 

Probabilistic models and deep generative models are two main methods for synthetic data 
generation. Probabilistic models focus on mimicking the structure and distribution of real data, 
whereas deep generative models focus on replicating the structure of real data and the 
information it contains. The Bayesian network and the Markov model are two popular 
probabilistic models, and deep generative models include variational autoencoder and generative 
adversarial networks (GAN). In Ping et al., a synthetic data generation tool called 
DataSynthesizer was proposed using the Bayesian network.(10) Zhang et al. proposed a Bayesian 
network to generate synthetic high-dimensional data.(11) The Markov chain approach can be 
applied to generate temporal synthetic data, such as solar states for a smart grid.(12) Islam et al. 
presented a data augmentation technique to reproduce crash data.(13) GAN have been used to 
generate synthetic health data and sensor data.(14,15) A method called TGAN was proposed by Xu 
and Veeramachaneni to synthesize tabular data using GAN.(16) 

Ichim provided an overview of several methods of generating synthetic data, such as probability 
distribution, Latin hypercube sampling, information preserving statistical obfuscation, data 
shuffling, and multiple imputations.(17) The author proposed the use of a quantile-based bootstrap 
strategy and tested it using survey data. Bootstrapping has also been used in other studies by 
Barth et al., Jia and Culver, and Thanathamathee and Lursinsap (2013).(18–20) Other methods that 
have been used include Hadoop, convolutional neural network (CNN), genetic algorithm, 
Bayesian Hierarchical model, and n-spheres.(21–25) 

Evaluation of Synthetic Data 

The quality of synthetic data is critical to its widespread adoption. One straightforward method 
to evaluate the quality of synthetic data is to compare the distribution of each variable with the 
original dataset, but this method does not consider joint distributions of variables. To overcome 
the limitations, the synthetic and original datasets can be compared by visualizing the joint 
distribution of high-dimension data with dimension-reduction techniques. The relative 
performance of two machine learning algorithms on the synthetic dataset and the original dataset 
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can be used to measure the quality of synthetic data. A good synthetic dataset should preserve 
the same relative performance as the original dataset.(26) 

In this project, a rubric was developed to evaluate the synthetic datasets that were developed. A 
rubric contains three main components: evaluative criteria; quality definition for those criteria at 
different levels, and a scoring strategy.(27) The goal is to create a rubric grading system to rank 
different models based on their performance, which will be helpful for modelers to revise and 
improve their models. Standard rubrics are created based on expert review and general rules of 
thumb.(28) 

Applications of Synthetic Data 

Patki et al. developed and used a synthetic data vault to create synthetic data for five datasets.(29) 
A crowdsourced experiment was then performed in which data scientists were asked to create 
predictive models with both the synthetic data and real data. The results showed that there was 
no significant difference in the models developed from the synthetic data and real data. Carlucci 
et al. created a synthetic database of depth images, and experiments to test the database on two 
publicly available object datasets showed that the features obtained from processing the synthetic 
data were stronger.(22) In a research study, Soltana et al. developed and tested an approach to 
generate synthetic test data using synthetic data for citizens’ records in a public administration 
system.(30) The case study demonstrated that the results met the criteria for both logical validity 
and statistical representation. 

von Neumann-Cosel et al. demonstrated the successful application of synthetic datasets in a 
simulated environment through research in which a lane-tracking algorithm was tested.(31) The 
use of synthetic images was innovative as lane-tracking algorithms are usually evaluated with 
real camera data and then verified using ground truth data. The study found that specific output 
parameters of image processing algorithms could be tested using synthetic images. The 
implementation of the simulation environment to test the lane-tracking algorithm allowed the 
process for investigating various scenarios to be automated, thus reducing the required extent of 
testing on actual roads. 

Synthetic datasets have also been implemented successfully in various applications in civil 
engineering. Jia and Culver investigated several synthetic flow generation methods to develop 
flow records for hydrological calibration to address the challenges created by the limited 
availability of historical flow data.(19) The methods were tested using a case study at Buck 
Mountain Run in Albemarle, VA. The results showed that the best combination of methods was 
the bootstrapped artificial neural network for low- and medium-flow predictions and a modified 
drainage area ratio for the highest 10 percent of synthetic flows. In another study, Naess and 
Claussen used synthetic data to assess the performance of different estimators for the prediction 
of values for long return periods such as wind loads.(32) Sakshaug and Raghunathan used a 
Bayesian Hierarchical method to generate synthetic datasets for estimating small areas.(24) 
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INTERCHANGE SAFETY MODELING 

State of the Practice Review 

Freeway interchanges consist of freeway segments, SCLs, entrance and exit ramp segments, and 
ramp terminals (intersections). Given the important role freeways play in carrying high traffic 
volumes, the safety of interchanges is an important concern. American Association of State 
Highway and Transportation Officials’ (AASHTO) Highway Safety Manual (HSM) was updated 
in 2014 to provide safety performance functions (SPFs) and CMFs for different freeway 
facilities, including interchanges.(5) However, there are several important limitations related to 
the use of SPFs and CMFs.(33) The first practical limitation is the amount of data required for 
calibration. For example, the predictive method for basic freeway segments in the HSM requires 
a total of 14 data elements, whereas the method for ramps requires 10 elements. Unfortunately, 
collecting and analyzing data for several of these elements require a high level of effort, as noted 
in National Cooperative Highway Research Program (NCHRP) Project 17-45 (e.g., length and 
radii of horizontal curves, length of/offset to median barriers, clear zone width), which can 
inhibit the effective utilization of these tools.(34) The authors noted challenges in transferability of 
models to other contexts, which may be reflective of differences in geometric characteristics in 
the areas where these studies have been conducted. In addition, a recent meta-analysis of SPFs 
for freeway merge and diverge areas found that existing research in this area has been largely 
inconsistent.(35) For example, the effect of deceleration length on safety was reported to be 
significant in some studies and insignificant in others. Collectively, these results reinforce 
another limitation noted in the HSM in that the SPFs must be calibrated to reflect local driver 
populations, conditions, and environments. 

Another limitation to the use of SPFs and CMFs is specific to the ramp terminal facility type. A 
review of the literature for on-ramp terminal crashes shows that most studies are constrained by 
the lack of crash data specific to this type of freeway geometric element. As such, several studies 
rely on simulations to address the situations of analyzing scenarios that help improve safety and 
traffic flow through these sections.(36,37) 

Determining whether a crash should be located on a ramp terminal is not as straightforward as it 
seems. The NCHRP 17-45 project, which influenced the production of the HSM chapter on 
freeway interchanges, includes extensive discussions of the process and criteria for identifying 
interchange ramp-terminal crashes.(34) In the analysis of this study to generate RAD, the crashes 
utilized were collected from Missouri and Washington, which have both taken extensive 
measures to locate and identify such crashes. Washington, in their reporting of freeway crashes 
for the HSIS database, included an intersection-related variable that makes the process more 
manageable. Missouri is also able to provide on-ramp terminal crash data at specifically selected 
locations due to a previously completed research study.(6,7) This project overcame a tremendous 
data challenge by using Washington and Missouri ramp terminal crash data. 

A few studies have attempted to create localized SPFs for interchange ramp terminals by locating 
and analyzing crashes within specific study areas for specific States.(38–40) An SPF is a calibrated 
relationship between collision frequency, traffic volume, and other characteristics of a site.(40) 
Typically, there are several variables employed in these analyses, which are justified by 
extensive literature in the transportation safety field. These variables include those components 
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influenced by factors such as traffic volume (exposure), roadway geometry, and traffic signal 
timing, as described in the literature. 

Some of the most common variables utilized in the existing literature (table 2) include annual 
average daily traffic (AADT) and average daily traffic (ADT) values, clearance intervals as a 
factor for traffic signal timing, and roadway geometric elements such as roadway surface type, 
number of lanes, median type and width, and shoulder widths. 

Table 2. Variables used in the safety and operational performance analysis of interchange 
facilities. 

Independent variable Studies that feature the selected variable 
Segment length Parajuli et al.;* Le and Porter; Park, Fitzpatrick, and Lord; Claros, 

Edara, and Sun (2017).(40–43) 
Speed limit Wang, Qin, and Noyce;* Chen et al. (2011a); Bonneson and 

Zimmerman; Fang, Elefteriadou, and Elias; Claros, Edara, and 
Sun (2016).(38,44–47) 

Number of lanes Elefteriadou et al.; Parajuli et al.;* Le and Porter; Claros, Edara, 
and Sun (2017); Chen at al. (2011a); Claros, Edara, and Sun 
(2016); Wang et al.; Chen et al. (2011b)(37,40,41,43,44,47–49) 

ADT Elefteriadou et al.; Torbic et al.; Le and Porter; Park, Fitzpatrick, 
and Lord; Chen et al. (2011b), Liu et al.(37,39,41,42,49,50) 

AADT Wang, Qin, and Noyce;* Parajuli et al.;* Claros, Edara, and Sun 
(2017); Chen et al. (2011a); Claros, Edara, and Sun (2016); Wang 
et al.(38,40,43,44,47,48) 

Surface type Chen et al. (2011b); Liu et al.(49,50) 

Median width Park, Fitzpatrick, and Lord; Claros, Edara, and Sun (2017); Wang 
et al.(42,43,48) 

Lane width Fang, Elefteriadou, and Elias(46) 

Shoulder width Park, Fitzpatrick, and Lord(42) 

Terminal spacing Wang, Qin, and Noyce;* Claros, Edara, and Sun (2016)(38,47) 

Signal timing Elefteriadou et al.; Wang, Qin, and Noyce;* Bonneson and 
Zimmerman; Fang, Elefteriadou, and Elias(37,38,45,46) 

Traffic control type Torbic et al.;* Claros, Edara, and Sun (2016 and 2017)(39,43,47) 

Interchange 
configuration 

Torbic et al.;* Parajuli et al.;* Fang , Elefteriadou, and Elias; 
Claros, Edara, and Sun (2016).(39,40,46,47) 

*Studies used in the generation of SPFs for interchange ramp terminals. 

In an extensive study on the safety performance of ramp terminals, Parajuli et al. collected data 
from 380 ramp terminals in Ontario, QC, Canada.(40) In that study, six different 
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ramp-terminal-specific SPFs were developed, accounting for the factors of geometry type, traffic 
control type, and crash severity level. 

Wang, Qin, and Noyce presented interesting insights into the effects of yellow or all-red interval 
timing on crash safety at interchange ramp terminals, as well as terminal spacing and exclusive 
right turn phases.(38) Their study suggested that the crash frequency will increase with the 
deficient yellow or all-red intervals and with the increase in terminal spacing. 

Crash Modeling Methods and CMFs 

Many statistical, machine learning, and deep learning methods have been applied in the study of 
crash modeling. For statistical methods, generalized linear model, Poisson, and zero inflated 
negative binomial are often employed to model crash frequency.(51) The Poisson distribution has 
the advantage of simulating the unobserved heterogeneity for a smaller dataset, whereas the 
negative binomial distribution can simulate a dataset with a lot of zeros and a long tail.(52,53) The 
Poisson-Gamma model can reflect the skewness of the data and be more tunable with a gamma 
prior.(54) In this EARP project, a modified version of the Poisson-Gamma model is applied to 
generate the synthetic data. 

Iranitalab and Khattak applied various machine learning methods for predicting crash severity, 
including k-nearest neighbor (KNN), support vector machine (SVM), decision tree, and random 
forest.(55) For deep learning methods, Huang et al. used CNN for highway crash detection and 
risk estimation.(56) A long short-term memory–CNN based model was proposed to predict 
real-time crash risk on arterials.(57) 

The CMF Clearinghouse is an online repository of CMFs for various types of facilities. The 
research team queried CMFs for interchange-related facilities. The CMF Clearinghouse also cites 
the studies from which a given CMF is derived. Table 3 provides a summary of these studies, 
including the independent variables used in the model and the data used for model development. 
Table 3 lists seven studies. The State data from these studies include Florida, California, 
Washington, and Texas; Florida data were used by five of the seven studies. 

  



 

 16 

Table 3. Interchange-related studies listed in CMF Clearinghouse. 

Study Title Authors Data General Variables (Number and Types) 
Safety Evaluation of Geometric 
Design Criteria for Spacing of 
Entrance–Exit Ramp Sequence and 
Use of Auxiliary Lanes 

Le and Porter(41) Digital mapping and satellite imaging applications, 
primarily Google® Earth™ and Google Maps™;  
the online interchange database available through the 
Washington State DOT Interchange Viewer; HSIS 
database. 

21 variables: AADT, segment length, high occupancy 
vehicle indicator, crash count (by types), California 
interstate indicator, Washington interstate indicator. 

Evaluating the Effects of Freeway 
Design Elements on Safety 

Park, Fitzpatrick, 
and Lord(42) 

Texas DOT geometric database and Texas crashes 
electronic database. Crash data for 5 yr (1997–2001). 

10 variables: number of lanes, ADT, segment length, 
shoulder width (inside and outside), lane width, 
median width, barrier presence indicator, curvature, 
on-ramp density, crash counts (no PDO). 

Selecting Optimal Deceleration 
Lane Lengths at Freeway Diverge 
Areas Combining Safety and 
Operational Effects 

Chen, Zhou, and 
Lin(58) 

Three-year crash data (2004–2006) obtained from the 
crash database maintained by Florida DOT. Freeway 
segments selected from the Florida Highway System. 

6 variables: deceleration lane length, total crash 
count, average crash frequency, crash index, average 
percentage of severe crashes, delay. 

How Lane Arrangements on 
Freeway Mainlines and Ramps 
Affect Safety of Freeways with 
Closely Spaced Entrance and Exit 
Ramps 

Liu et al.(50)  Three-year crash data (2004–2006) obtained from the 
crash database maintained by Florida DOT. Only 
crashes that occurred on the deceleration lanes were 
included in the study. 

10 variables: number of lanes, ADT, posted speed 
limit (indicator), right shoulder width, arrangements 
(indicator), road surface condition, land type, road 
surface type, right shoulder type. 

Safety Evaluation of 
Truck-Related Crashes at Freeway 
Diverge Areas  

Wang et al.(48) Truck-related crash data collected at selected freeway 
exit ramp segments in the State of Florida. 
Geometric data and traffic data were collected from the 
Florida Roadway Characteristics Inventory database. 

12 variables: injury severity (KABCO)(59), 
deceleration length, number of lanes, shoulder width, 
median width, speed limit, speed limit difference 
between highway and ramp, curve (indicator), grade 
(indicator), AADT, truck AADT, ramp AADT. 

Identifying Crash Distributions and 
Prone Locations by Lane Groups at 
Freeway Diverging Areas 

Chen et al.(44) Interstate freeways in Florida; 3 yr (2004–2006) of crash 
data for 326 sites. Total of 7,872 crashes were reported 
with average value of 4.78, 12.82, 10.23, and 15.41 
crashes per year. 

10 variables: crash types, number of freeway lanes, 
lane unbalanced exit ramp (indicator), number of 
lanes on exit ramp, deceleration length, freeway ADT, 
exit ramp ADT, right shoulder type. 

Operational and Safety 
Performance of Left-Side 
Off-Ramps at Freeway Diverge 
Areas 

Zhou et al.(60) Crash data collected at 74 freeway segments in Florida, 
with 11 sites for left-side off-ramps and 63 sites for the 
right-side off-ramps. 

8 variables: left-side off-ramp (indicator), log AADT 
on Freeway, log AADT on ramp, crash counts, 
number of lanes, posted speed limit, ramp length, 
deceleration lane length. 

PDO = property damage only.
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CHAPTER 3. METHODOLOGY 

SELECTION OF INDEPENDENT VARIABLES 

The first step of the data generation process identifies a set of factors expected to contribute to 
crash occurrence at the selected interchange facility (e.g., SCL, ramp terminal). This step was 
guided by the literature reviewed in chapter 2. Roadway, traffic, and driver contributing factors 
were synthesized from the literature. Table 4 lists the 21 factors identified for left-turn (LT) 
crashes involving crossroad vehicles turning left onto the entrance ramp to the freeway. The 
factors include exposure (traffic), signal control, geometric design, environment (e.g., lighting), 
and driver characteristics. Table 5 shows the 19 factors for SCL crashes. The SCL factors were 
similar to LT factors, except for signal control. 

Table 4. Contributing factors for LT crashes at entrance ramp. 

Variable Description 
aadt AADT of the crossroad facility 
left_turn_aadt AADT of LT movement onto the entrance ramp 

presence_of_left_turn_lane Presence of LT lane on the crossroad 

number_of_left_turn_lanes Number of LT lanes on the crossroad 

signal_control_type Type of LT signal control scheme 
functional_class Functional classification of the crossroad facility 
jurisdiction Jurisdiction where the site is present 
no_lanes Total number of lanes on the crossroad (in both directions) 
terrain Terrain of the crossroad at the ramp terminal 
horizontal_alignment Horizontal alignment of the crossroad at the ramp terminal 
intersection_angle Intersection skew angle 
median_presence Presence of median on the crossroad approach 
channelization_presence Presence of LT channelization 
speed_limit Speed limit on the crossroad approach (in miles per hour) 
road_surface_cond Road surface condition when the crash occurred 
light_condition Time of the day when the crash occurred 
visibility Visibility when the crash occurred 
gender Gender of the driver in the left-turning vehicle 
age Age of the driver in the left-turning vehicle 
distraction Whether the left-turning driver was distracted 
vehicle_type Type of vehicle making the LT 
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Table 5. Contributing factors for SCL crashes. 

Variable Description 
SCL_len Length of SCL segment (in miles) 
Jurisdiction Jurisdiction where the site is present 
No_Lane Total number of freeway lanes at the start of SCL segment (does 

not include acceleration lanes) 
Terrain Terrain of the SCL segment 
Horizontal_alignment Horizontal alignment of the SCL segment 
Median_Width Width of the median (in feet) 
Inside_Shoulder_Width Width of the shoulder on the left-hand side (in feet) 
Outside_Shoulder_Width Width of the shoulder on the right-hand side (in feet) 
Speed_Limit Speed limit on the SCL segment (in miles per hour) 
Freeway_AADT AADT on the freeway (in one direction) 
Ramp_AADT AADT on the entrance ramp 

Ramp_Truck_AADT Annual average daily truck traffic on the entrance ramp 

road_surface_cond Road surface condition when the crash occurred  

light_condition Time of the day when the crash occurred 

visibility Visibility when the crash occurred 

gender Gender of the driver at fault in the crash 

age Age of the driver at fault in the crash 

distraction Whether the driver was driving while distracted 

vehicle_type Type of vehicle 

Sampling distributions were generated for each of the factors reported in table 4 and table 5 
using observed data from Washington and Missouri. When factors were correlated to each other 
(e.g., AADT and number of lanes, jurisdiction, and terrain), joint sampling distributions were 
generated. The RAD for these factors were then generated by repeatedly sampling the 
distributions for a given sample size (e.g., 500 sites). 

HSIS data for interchange crashes were obtained for a 5-yr period to help generate RAD. 
Washington was the most complete and recent (2013–2017) for the purposes of RAD, although 
data from California, Illinois, Maine, and Minnesota were also reviewed. In addition to 
Washington, interchange safety data from Missouri were also used in developing RAD. The 
Missouri data were acquired from Missouri DOT Transportation Management System database 
as part of a recently completed HSM Calibration project.(6,7) 

Interchange schematics and the milepost where the crash occurred were analyzed together to 
determine if a crash occurred in the SCLs. Crash reports do not indicate whether a crash was a 
SCL crash. Washington State DOT (WSDOT) publishes schematics of all interchanges and 
locations online.(61) For this project, drawings of 205 diamond interchanges were analyzed for 
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Washington. The interchange schematics provide further information regarding the crossroad 
segment and ramp terminals that made it possible to query all the crashes that occurred at the 
various possible locations.(61) A similar process was used to extract crash data from 75 diamond 
interchanges in Missouri. Google® Maps Road Application Programming Interface™ was used 
to extract speed limit values for the interchange sites. 

Extracting LT crash data for ramp terminals was straightforward, whereas extracting crashes for 
SCL facilities involved additional steps. Figure 8 shows the four SCL facilities at a diamond 
interchange, two related to the exit and two related to the entrance.(7) 

 
© 2016 Missouri DOT. Modifications: FHWA (see acknowledgments section). 

Figure 8. Graphic. Components of SCLs at an interchange.(7) 

The mileposts of the “gore” and “taper” points that demarcate the SCLs as a portion of the 
freeway segment are provided in the schematic drawings. To correctly identify the location of 
crashes as related to the SCL by direction and location, the direction of travel (increasing or 
decreasing milepost) and location of SCL (merging or diverging from the ramp) were also 
extracted from the schematics. 

The next step in the data collection process involved locating the potential crashes that occurred 
at the SCLs. Geographic information systems (GIS) software(62) and HSIS shapefile crash data 
were used to map all the crashes by using their geolocations. From the earlier process of locating 
ramp terminal crashes, the Global Positioning System coordinates of the ramp terminals gathered 
in the process were useful in defining a spatial boundary for filtering the most likely candidates 
of the SCL crashes. Using a 1-mi buffer from the ramp terminal geolocations, an initial filtering 
was done to reduce the number of potential crashes under study. An example of the process for 
spatially locating crashes is shown in figure 9. 
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© 2022 Esri, NGA, USGS, FEMA, King County, WA State Parks GIS, Esri, HERE, Garmin, SafeGraph, 
GeoTechnologies, Inc., METI/NASA, USGS, Bureau of Land Management, EPA, NPS, US Census Bureau, USDA 
(see acknowledgments section). 

Figure 9. Screenshot. Example of process for spatially locating crashes. 

After the potential crashes were identified, the crash data were merged with location data, and a 
two-stage filter defining the location parameter of the crashes with respect to the SCLs was used 
to filter and select the crashes that occurred within the footprint of the SCLs. This process 
utilized the milepost, road inventory, and direction of travel variables to do the matching and 
selection. 
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The final processes involved aggregating the crashes by location to get the number of crashes 
that occurred at each SCL site. After this aggregation was performed, the SCL files were 
matched to the corresponding segment locations in the “roadlog” file in the same manner as was 
done for the crashes, by defining the spatial location and filtering the potential one-to-one 
matches. The result of this multistep process was the proper identification of the crashes that 
occurred on the speed changes lanes as distinct from the mainline and ramp crashes. 

ESTABLISHMENT OF CAUSE–EFFECT RELATIONSHIPS 

The second step of the data generation process establishes the effect of each contributing factor 
on crash frequency. This information was also synthesized from the literature reviewed in 
chapter 2, HSM, and the CMF Clearinghouse.(5,8) When no reliable information was available for 
a particular variable, cause–effect relationships were established based on analyzing observed 
safety data from diamond interchanges in Washington and Missouri. 

GENERATION OF CRASH DATA 

The third step of the data generation process quantifies the combined effect of all contributing 
factors on crash frequency. This quantification was done in two stages. First, a composite crash 
score was estimated for a given site based on its roadway and traffic characteristics. Both 
individual effects of each factor and interaction effects between two or more factors were 
considered in generating the composite score. This score is transient and has no practical 
significance other than the fact that a site with a higher composite crash score is likely to 
experience a higher crash frequency. In the second stage, the composite crash score was 
converted to realistic crash frequency (i.e., counts) using observed crash data. This conversion 
was done using a hierarchical Poisson approach with parameters optimized for each level of the 
hierarchy using observed crash data. Figure 10 shows an example of the generated crash data 
distribution (12-A) and the observed distribution (12-B). The distribution parameters were 
adjusted to match the overall shape and crash counts at individual sites. Due to the prevalence of 
zero crash sites, it is challenging to identify the parameter values that help produce an accurate 
count of nonzero crashes. In the example shown in figure 10, the RAD process performs 
reasonably well at generating nonzero crashes, including the very low numbers of high-crash 
count sites. 



 

 22 

 
Source: FHWA. 

A. Generated crash data distribution. 

 
Source: FHWA. 

B. Observed crash distribution. 
Figure 10. Graphs. Generated crash data distribution and observed distribution. 

Once the crash counts were generated, crash severity distributions were used to subdivide the 
overall crash counts into fatal, injury, and property damage only (PDO) crashes. The low crash 
count values per site did not allow for generating realistic data for all KABCO severities.(59) In 
addition to crash severity, crash-specific factors pertaining to the driver (e.g., distraction, age, 
gender), vehicle type, and roadway (e.g., road condition at the time of the crash) were also 
generated for each crash. 
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CHAPTER 4. LT CRASHES AT INTERCHANGE RAMP TERMINALS 

RAD datasets were generated for LT crashes at interchange ramp terminals. The datasets are in a 
tabular format and include separate files for crash contributing factors, crash counts, and 
individual crash characteristics. A screenshot of the RAD folder is shown in figure 11. The 
“RAD_input_variables” contains data pertaining to geometric and traffic characteristics, whereas 
the “RAD_crash_data” contains crash data for each interchange site. In the example shown in 
figure 11, data for a 5-yr period (assumed to be 2013–2017) was generated. Characteristics of 
crashes occurring in a particular year are provided in the file with the corresponding year in the 
title (“2013_crash_characteristics” provides crash severity and driver and vehicle information for 
2013). Table 6 describes each of the 17 variables and their format in the input variable and crash 
datasets. Depending on the variable, its value could be numerical or categorical. Crash 
characteristics are described in table 7. The crash characteristics include driver, vehicle, road, 
environment, and crash. 

 
Source: FHWA. 

Figure 11. Screenshot. Files in RAD folder. 

Table 6. Variables in the RAD dataset for LT crashes at ramp terminals. 

Variable Description Values 
site id Unique identification number for 

each ramp terminal site 
Numerical 

aadt AADT of the Crossroad facility Numerical 
left_turn_aadt AADT of LT movement onto the 

entrance ramp 
Numerical 
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Variable Description Values 
presence_of_left_turn_lane Presence of LT lane on the crossroad Binary: Yes, No 

number_of_left_turn_lanes Number of LT lanes on the crossroad Numerical 

signal_control_type Type of LT signal control scheme  
 

Categorical: 
PP—protected and 
permitted 
PO—protected only 
FYA—permitted 

functional_class Functional classification of the 
crossroad facility 

Categorical:  
rural minor arterial 
(6) 
urban principal 
arterial (14) 
urban minor arterial 
(16) 
 

jurisdiction Jurisdiction where the site is present Categorical: 
urban, rural 

no_lanes Total number of lanes on the 
crossroad (in both directions)  

Numerical 

terrain Terrain of the crossroad at the ramp 
terminal 

Categorical: 
level, rolling, 
mountainous 

horizontal_alignment Horizontal alignment of the 
crossroad at the ramp terminal 

Categorical:  
tangent, curve 

intersection_angle Intersection skew angle Categorical: 
90 degrees, <90 
degrees 

median_presence Presence of median on the crossroad 
approach 

Binary:  
yes, no 

channelization_presence Presence of LT channelization Binary:  
yes, no 

speed_limit Speed limit on the crossroad 
approach (in miles per hour) 

Numerical 

Crashes per site per year Total number of crashes occurring at 
a site in a year 

Numerical 

Crashes per site per year by 
severity 

Number of crashes by severity for 
each site in a year 

Numerical 
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Table 7. Additional variables specific to individual crashes for LT crashes at ramp 
terminals. 

Variable Description Values 
crash_id Unique identification for each 

crash 
N/A  

gender Gender of the driver in the left-
turning vehicle 

Binary:  
female, male 

age Age of the driver in the left-
turning vehicle 

Categorical: 
young age (<25 yr), middle age 
(25–65 yr), old age (>65 yr) 

distraction Whether the left-turning driver 
was distracted  

Binary: 
yes, no 

vehicle_type Type of vehicle making the LT Binary: 
passenger vehicle, truck  

road_surface_cond Road surface condition when 
the crash occurred  

Binary:  
dry, wet 

light_condition Time of the day when the crash 
occurred 

Binary: 
day, night 

visibility Visibility when the crash 
occurred 

Binary: 
clear, poor visibility 

severity Crash severity Categorical: 
FI (fatal, disabling, and minor injury) 
PDO 

date Date of the crash (mo/dd/year) N/A 
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CHAPTER 5. SCL CRASHES AT INTERCHANGES 

This chapter describes the RAD datasets generated for SCL facilities at diamond interchanges. 
The generated datasets are in a tabular format and include separate files for crash contributing 
factors, crash counts, and individual crash characteristics. The “RAD_input_variables” contains 
data pertaining to geometric and traffic characteristics, whereas the “RAD_crash_data” contains 
multivehicle crash data for each interchange site. Characteristics of crashes occurring in a 
particular year are provided in the file with the corresponding year in the title (e.g., 
“2013_crash_characteristics” provides crash severity, driver, and vehicle information for 2013). 
Table 8 describes each of the 15 variables and their format in the input variable and crash 
datasets. Ten different crash characteristics are described in table 9. As can be expected, some of 
the input variables for SCLs are different from those reported for ramp terminals. The length of 
the SCL segment, inside and outside shoulder widths, freeway and ramp AADT, and truck 
volume are examples of variables unique to SCL datasets. 

Table 8. Variables in the RAD dataset for SCL facilities. 

Variable Description Values 
site id Unique identification number for each SCL 

segment site 
Numerical 

SCL_len Length of SCL segment (in miles) Numerical 
Jurisdiction Jurisdiction where the site is present Categorical: 

urban, rural 
No_Lane Total number of freeway lanes at the start of 

SCL segment (does not include acceleration 
lanes) 

Numerical 

Terrain Terrain of the SCL segment Categorical: 
level, rolling 

Horizontal_alignment Horizontal alignment of the SCL segment Categorical:  
tangent, 
curve 

Median_Width Width of the median (in feet) Numerical 
Inside_Shoulder_Width Width of the shoulder on the left-hand side (in 

feet) 
Numerical 

Outside_Shoulder_Width Width of the shoulder on the right-hand side 
(in feet) 

Numerical 

Speed_Limit Speed limit on the SCL segment (in miles per 
hour) 

Numerical 

Freeway_AADT AADT on the Freeway (in one direction) Numerical 
Ramp_AADT AADT on the entrance ramp Numerical 
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Variable Description Values 
Ramp_Truck_AADT Annual average daily truck traffic on the 

entrance ramp 
Numerical 

Crashes per site per year Total number of crashes occurring at a site in a 
year 

Numerical 

Crashes per site per year by 
severity 

Number of crashes by severity for each site in 
a year 

Numerical 

Table 9. Additional variables specific to individual crashes. 

Variable Description Values 
crash_id Unique identification for each 

crash 
N/A  

gender Gender of the driver at fault in 
the crash 

Binary:  
Female, male 

age Age of the driver at fault in the 
crash 

Categorical: 
young age (<25 yr), middle age 
(25–65 yr), old age (>65 yr) 

distraction Whether the driver was driving 
while distracted 

Binary: 
yes, no 

vehicle_type Type of vehicle Binary: 
passenger vehicle, truck  

road_surface_cond Road surface condition when 
the crash occurred  

Binary:  
dry, wet 

light_condition Time of the day when the crash 
occurred 

Binary: 
day, night 

visibility Visibility when the crash 
occurred 

Binary: 
clear, poor visibility 

severity Crash severity Categorical: 
FI (fatal, disabling, and minor injury) 
PDO 

date Date of the crash (mo/dd/year) N/A 
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CHAPTER 6. MODEL EVALUATION RUBRIC 

This section presents a rubric that can be used to evaluate the performance of models developed 
using RAD. The score has a range of 0–100. Table 10 shows the six criteria and the maximum 
points assigned to each model. The six criteria try to capture different complexities in modeling; 
the composite score balances tradeoffs in the modeling process. The criteria and points were 
determined based on a review of literature. Model inference is weighed more than other criteria 
because the primary goal of RAD is to evaluate the ability of models to accurately estimate the 
cause–effect relationships. 

Table 10. Criteria and scores for model evaluation. 

Criteria Points 
Descriptive analysis of data 10 
Model selection 10 
Training and testing data 10 
Overall prediction accuracy 20 
Model inference 50 
Total score 100 

Grading for each criterion follows a rating procedure. The number of ratings can vary across the 
criteria and will be described next. 

DESCRIPTIVE ANALYSIS 

This criterion pertains to the calculation of basic summary statistics (e.g., mean, standard 
deviation), scatterplots of response variables and predictors, and correlation matrix. Rating 1, 
100 percent of the maximum score of 10 points, is assigned for providing the basic statistics. 
Rating 2, 70 percent of 10 points, is assigned for partial descriptive statistics. Rating 3, 
40 percent of 10 points, is assigned when very limited descriptive statistics are provided. The 
score for this criterion is computed by multiplying the percentage (based on rank) and 10 points 
(maximum possible score for the criterion). 

MODEL SELECTION 

The selection of independent variables for inclusion in the model is an important step in 
developing a model. Use of a variable selection process and parameter tuning earns Rating 1 
(100 percent of total criterion score). Limited justification of the variable selection process earns 
Rating 2 (60 percent), and no justification earns Rating 3 (0 percent). 

TRAINING AND TESTING  

It is a good practice to split the overall dataset into training and testing datasets to accurately 
assess model performance. A Rating 1 (100 percent of maximum possible score of 10 points) is 
assigned when a model performance on a testing dataset is provided. Additional goodness-of-fit 
measures using cross-validation data folding may also be provided. No points were assigned for 
models when they were not evaluated using a testing dataset. 
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OVERALL MODEL PERFORMANCE 

Model performance can be reported using various goodness-of-fit measures. Examples include 
mean squared error (MSE), confusion matrix, and log-likelihood. Reporting a minimum of two 
measures of performance is recommended. Five ratings are established for this criterion based on 
MSE and confusion matrix. Rating 1 (100 percent of maximum possible score of 20 points) for 
MSE <1 or >90 percent accuracy of confusion matrix. Rating 2 (80 percent) for MSE <1.5 or 
>80 percent accuracy of confusion matrix. Rating 3 (70 percent) for MSE <2 or >70 percent 
accuracy of confusion matrix. Rating 4 (50 percent) for MSE <2.5 or >60 percent accuracy of 
confusion matrix. Rating 5 (30 percent) for MSE <3 or >50 percent accuracy of confusion 
matrix. 

MODEL INFERENCE 

Model inference entails a model’s ability to explain the cause–effect relationship between an 
independent variable and outcome (e.g., crash frequency). As table 10 shows, the highest number 
of points (50) are assigned to this criterion. Count regression models can generate CMFs that 
explain the cause–effect relationship. Other surrogate measures (e.g., partial dependence values) 
may be used for machine learning models. Ratings are awarded based on the ratio of estimated 
CMF to true CMF. The ratings are as follows: 

• Rating 1 (100 percent of total score) when the ratio is between 0.9 and 1.1. 
• Rating 2 (90 percent of score) when the ratio is either between 0.5 and 0.9 or between 1.1 

and 1.5. 
• Rating 3 (70 percent) when the ratio is either between 0.1 and 0.5 or between 1.5 and 1.9. 
• Rating 4 (50 percent) when the ratio is either smaller than 0.1 or greater than 1.9. 
• Rating 5 (30 percent) is awarded when the CMF values are computed but do not satisfy 

Rating 4. 
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CHAPTER 7. MODEL TESTING USING RAD DATASETS 

To illustrate the use of RAD, sample RAD datasets generated for LT and SCL facilities were 
used to test the performance of crash prediction models. Two teams estimated statistical models, 
while one team developed a series of machine learning models. The teams developing the 
models were not privy to the RAD generation procedures to allow for an unbiased estimation of 
the cause–effect relationships. The detailed model parameters and results of each of the teams 
are provided as a separate document to FHWA. This chapter first summarizes the models 
developed by each team and then presents the evaluation results for the models using the rubric 
presented in chapter 6. 

TEAM 1 MODELS 

A variety of models were tested, and the resultant models presented in this report represent the 
best models in terms of various fit criteria. Some unobserved heterogeneity was determined to 
exist in the dataset. A few parameters in the models were determined to be random as a result 
with statistically significant standard deviations. The level of unobserved heterogeneity appears 
to be limited, however, with no more than three parameters being determined to be random. The 
intercept in all three models appears to be random. This observed outcome indicates that a basic 
random effect is seen to be prevalent in all three datasets. Any unobserved heterogeneity over 
and above the random effect is typically attributed to the number of LT lanes and speed limit (for 
the freeway speed change dataset). This obtained result indicates that LT lanes appear to be 
influenced by stochastic effects that are not captured explicitly in the datasets. The speed limit 
effect is similar in that variations in speed limits are not sufficiently captured by speed limit 
indicators alone; instead, the indicators captured the underlying processes that represent a 
continuous distribution of unobserved effects that are at play with respect to speed limits. Such 
processes may be capturing the effect of driving behavior. 

The team presented findings on the statistical significance of the estimated coefficients, the 
marginal effects of the associated parameters, and the convergent goodness-of-fit measures, such 
as log-likelihood, Akaike information criterion (AIC), and the Bayesian information criterion 
(BIC). 

TEAM 2 MODELS 

A series of count data models were estimated to investigate the relationship between various 
site-specific factors and the number of head-on/LT crashes that occurred at each ramp terminal in 
the RAD. 

First, a series of simple negative binomial models were estimated where crashes were regressed 
against individual variables of interest. The initial analysis focused on understanding the 
relationship between crashes and AADT. In the research literature, this relationship is generally 
accounted for in one of two ways: AADT is logged and treated as an offset variable, with its 
parameter being constrained to be equal to one, or AADT is included as a covariate in 
logarithmic form. When treated as an offset, an explicit assumption is introduced that crashes 
will increase proportionately with traffic volume. In contrast, empirical data often show that 
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crashes tend to increase at a decreasing rate, with this effect often characterizing the effects of 
increasing congestion and lower speeds at higher ranges of volumes. 

As noted in the previous paragraph, when treated as an offset, the parameter estimate on 
log(AADT) is constrained to be equal to one. In effect, this means that a 1-percent increase in 
traffic volume would be associated with a 1-percent increase in crashes. 

The degree to which the effects of other variables change with respect to how AADT is 
introduced in the model was also of interest. Several design parameters of interest, such as the 
type of LT signal phasing that is introduced, the number of travel lanes on the crossroad, and the 
speed limit, among other factors, may be influenced by AADT. To this end, results from the 
following three negative binomial models are presented: 

• A series of models for crashes versus each individual variable of interest. 

• A series of models for crashes versus each individual variable of interest, along with 
log(AADT) as an offset. 

• A series of models for crashes versus each individual variable of interest, along with 
log(AADT) treated as a covariate. 

Forecasting accuracy measures were calculated based on the difference between the predicted 
crashes and crashes provided in the data for the training dataset. The following measures have 
been included: the mean absolute deviation, the sum squared error, MSE, the root mean square 
error, and the standard deviation of errors. CMFs were presented for the statistically significant 
variables. 

TEAM 3 MODELS 

Seven machine learning models were developed to predict crash counts using the RAD dataset, 
ranging from a simple ridge regression model to a complex deep learning model TabNet.(9) The 
seven models are: ridge regression, KNN, SVM, decision tree, random forest, XGBoost,(63) and 
TabNet.(9) The first five models are commonly used machine learning models found in most 
introductory textbooks. XGBoost is an implementation of gradient-boosted decision trees. 
XGBoost is well-known for its speed and good performance in Kaggle (machine learning) 
competitions. It usually works well for structured or tabular data, which is a good match for the 
RAD dataset. TabNet is a deep learning model specifically designed for tabular data learning. It 
uses sequential attention to choose which features to reason from at each decision step and 
achieves state-of-the-art performance for tabular data modeling. TabNet uses masked 
self-supervised learning to learn representation for categorical columns and then uses them in the 
prediction to improve the results. 

In this study, the crash count prediction was formulated as a regression problem since the range 
of crash counts is relatively large for a classification task and is not deterministic. For models 
that need a validation dataset, a portion of the training dataset was used for validation. 

The performance of machine learning models on testing dataset (20 percent of the entire dataset) 
were reported using MSE, relative squared error (RSE), and R-square. Partial dependence plots 
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were generated to extract the cause–effect relationships. Partial dependence shows the 
dependence between the target response and the input feature of interest, marginalizing over the 
values of all other input features. The partial dependence values were used to compute CMFs and 
95 percent confidence interval values for CMFs. 

EVALUATION OF MODELS 

The model evaluation rubric proposed in chapter 6 was applied to the models developed by the 
three teams. All teams provided basic descriptive statistics of the RAD datasets. Samples of these 
statistics can be found in the appendix. Thus, all teams received the maximum score of 10 points 
on this criterion. Model selection criterion entails justification of the inclusion of independent 
variables in the crash frequency models. When sufficient details were provided on the variable 
selection process and the tuning of parameters, a score of 10 was assigned. A score of 8 was 
assigned to some models when there was missing information on variable selection. The next 
criterion of training and testing dataset involved not using the entire RAD dataset for model 
estimation. A test dataset not used for model estimation can provide a good evaluation of any 
model overfitting. Teams receiving the data were asked to divide the dataset into training and 
testing datasets for a robust evaluation. Thus, all models received a score of 10. Overall model 
performance evaluation involves assessing the ability of the models to accurately predict the 
crash frequency for a site. The goodness-of-fit measures reported varied between statistical and 
machine learning models. Statistical models reported AIC, BIC, and likelihood values, whereas 
machine learning models reported MSE and RSE values. Overall model performance scores are 
shown in table 11. Finally, the ability of a model to explain the cause–effect relationship between 
an independent variable and the outcome (i.e., crash frequency) was evaluated. Marginal effects 
and CMFs were provided for some statistical models. Partial dependence plots and 
pseudo-CMFs were provided for the machine learning models. The scores for this criterion 
ranged between 30 and 45 for the different models. 

Table 11. Evaluation of the statistical and machine learning models developed using RAD 
datasets. 

Criteria 
Maximum 

Score 
Team 1 

LT 
Team 2 

LT 
Team 3 

LT 
Team 1 

SCL 
Team 2 

SCL 
Team 3 

SCL 
Descriptive statistics 10 10 10 10 10 10 10 
Model selection  10 8 8 10 8 8 10 
Training and testing data  10 10 10 10 10 10 10 
Overall model performance 20 14 16 16 14 14 16 

Model inference  50 30 30 35 35 35 45 
Total score  100 72 74 81 77 77 91 

In summary, the statistical models developed by Teams 1 and 2 had similar performances. The 
machine learning models developed by Team 3 outperformed the statistical models, especially in 
the model inference criterion. The CMFs computed from Team 3 models were closer to the true 
CMFs, thus explaining the assumed cause–effect relationships. The performance of machine 
learning models on the SCL RAD dataset was found to be better than their performance on the 
ramp terminal dataset. One possible reason for the superior performance of machine learning 
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models over count regression models is their ability to better capture the nonlinear relationships 
between crash frequency and the independent variables. 

One other use of RAD is to allow researchers to compare the performance of different models 
estimated using different observed data. Consider, for example, two studies developing crash 
frequency models for SCLs—Study A is using observed data from State A, and Study B is using 
observed data from State B. How to accurately assess the CMFs generated from the two studies? 
How to determine which CMFs explain the true cause–effect relationships between crash 
frequency and the corresponding input variables (e.g., freeway AADT, SCL length)? RAD can 
help answer these questions. The research teams conducting the two studies apply their modeling 
approaches to the same RAD dataset. The rubric offered in chapter 6 can be used for comparing 
the model performance along with statistical tests such as goodness of fit, marginal effects, 
variable variance, etc. Alternatively, the comparison may also be made by only using the model 
inference criterion, that is, comparing the CMFs generated using the RAD dataset to the known 
CMFs (i.e., those used to develop RAD). The modeling approach that performs the best on the 
RAD dataset is more likely to explain the true cause–effect relationship in observed data. Thus, 
in the above example, if the performance of the model developed in Study A on the RAD dataset 
is better than the performance of the model developed in Study B, Study A is likely to also 
produce more reliable CMFs when using observed data. This type of testing was not conducted 
in this project due to the lack of readily available models (and CMFs) for interchange ramp 
terminals and SCLs already estimated using data from different datasets. 
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CHAPTER 8. SOFTWARE DEVELOPMENT 

RAD SOFTWARE DEVELOPMENT 

The software development of this project includes the implementation of a RAD generator and 
the website that can serve real-time user requests. Figure 12 shows the workflow of the software. 
The users submit a RAD request to the web server. The web server will call the RAD generator 
to produce a RAD dataset. Depending on the type of request, either a pregenerated dataset or a 
custom dataset will be generated. For custom datasets, an email notification with the download 
URL for the generated data will be sent to the user-provided email. 

 
Source: FHWA. 

Figure 12. Graphic. Software development workflow. 

WEB DEVELOPMENT 

For web development, HTML5, CSS, and JavaScript programming languages are used for 
front-end user interface implementation, and PHP scripting language is used in the backend to 
provide web services. 

The website developed in this project includes the following seven functionalities:  

1. User authentication. 
2. Custom RAD request handler. 
3. Running time estimator. 
4. Multijob scheduler. 
5. Email notification. 
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6. Pregenerated RAD downloads. 
7. VR animation and simulator testbeds. 

User Authentication 

To ensure only authenticated users have access to the RAD datasets, a password authentication 
method is used. Anyone who wants access to the website will be redirected to the login page and 
must enter their credentials to proceed. Figure 13 shows a screenshot of the login page. The 
landing page after logging into the website is shown in figure 14. 

 
Source: FHWA. 

Figure 13. Screenshot. User authentication page. 

 

 
Source: FHWA. 

Figure 14. Screenshot. Landing page with main menu options in the RAD software. 
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Custom RAD Request Handler 

After logging into the website, the user will have the option to submit custom RAD requests to 
the server. The users need to enter three input parameters (see figure 15): the number of sites, the 
number of years of RAD, and an email address to receive the dataset once generated. Once the 
RAD request is submitted to the web server, the RAD request handler calls the RAD generator to 
create the dataset. 

 
Source: FHWA. 

Figure 15. Screenshot. Custom RAD request handler. 

Running Time Estimator 

After the users submit their RAD request, the running time estimator will provide a notification 
with the estimated time needed to complete the job to the users on the website. If the users think 
the job will take too long, they can click the cancel button in the popup window to cancel the 
RAD request and modify the input parameters to resubmit a new request, which takes less time, 
or the user can click the OK button in the popup window to proceed if they are satisfied with the 
estimated running time. Figure 16 shows an example of the popup window message for a custom 
query. 

 
Source: FHWA. 

Figure 16. Screenshot. Running time estimator for custom query. 
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Multijob Scheduler 

There could be multiple users submitting requests at the same time, or one user may submit 
different requests within a short timeframe. These situations could result in heavy workload for 
the server and increase the waiting time for users. To solve this problem, a multijob scheduler 
has been implemented on the server side to facilitate the speed of this RAD software. The 
multijob scheduler uses multithreading and can handle five requests simultaneously. The 
schedular uses a first come, first serve mechanism to process jobs. In the future, if the number of 
requests increases to a situation that the current multijob scheduler could not handle, the server 
capabilities can be enhanced to address the increasing demand. 

Email Notification 

The email notification function allows the users to receive an email stating their requests have 
finished, and they can download the RAD through the URL provided in the email. This function 
is convenient because it eliminates wait times and even allows the submission of multiple RAD 
data requests. 

Download Pregenerated RAD 

In addition to submitting custom RAD requests, users can also download pregenerated RAD 
datasets. There are pregenerated RAD datasets for 16 combinations of number of sites and years. 
For each combination, five different pregenerated datasets are provided. To download a 
pregenerated RAD, the users select the number of sites and years they want and then click 
download, and they will randomly get one dataset from the five pregenerated datasets for the 
chosen combination. Figure 17 shows the pregenerated RAD window where the users select the 
two input parameters. 

 
Source: FHWA. 

Figure 17. Screenshot. Window to download pregenerated RAD. 

VR Animation and Simulator Testbeds 

This web page includes crash recreation animation software and data files for different scenarios. 
A screenshot of the web page is shown in figure 18. 
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Source: FHWA. 

Figure 18. Screenshot. Web page for VR animation and simulator testbeds. 
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CHAPTER 9. SIMULATOR TESTBED DEVELOPMENT 

This chapter presents the approach used to develop VR simulation testbeds for crashes and 
near-crashes occurring at interchanges. These testbeds serve two main purposes. First, they can 
be used as a crash visualization tool for public education. Second, the testbeds will enable safety 
researchers to evaluate human factors countermeasures (behavioral, technology, etc.) to improve 
interchange safety. The testbeds were developed using a four-step process shown in figure 19. 

 
Source: FHWA. 

Figure 19. Graphic. Four-step process to develop testbeds. 

Step 1 involved obtaining and analyzing videos of safety-critical events occurring at 
interchanges. This step was accomplished using SHRP2 NDS data. The NDS dataset was 
obtained for all junction-related crash, near-crash, and baseline events. The dataset consisted of 
41,479 events. To identify the LT and SCL events, a series of data reductions were applied to 
filter the data based on precipitating event, event nature, traffic control, and event severity. The 
data reduction yielded 114 crash and near-crash events involving left-turning vehicles and 310 
events occurring on SCLs. Forward-view videos were reviewed for each of the 114 events to 
determine the relative location of the events within the interchange footprint (i.e., crossroad, 
SCL, ramp segment, etc.). Two locations were of particular interest in this study—crossroad 
crashes involving left-turning vehicles and SCL crashes. Figure 20 and figure 21 show 
schematics of an LT crash occurring on the crossroad. The subject vehicle could be either the 
vehicle turning left onto the entrance ramp or the oncoming through vehicle. 
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Source: FHWA. 

Figure 20. Graphic. LT crash event. 

 
Source: FHWA. 

Figure 21. Graphic. LT near-crash event. 

Of the 310 events occurring on SCLs, 179 occurred on entrance SCLs and 131 on exit SCLs. The 
NDS time series data provide event data at 0.1-s intervals, including the distance between 
follower and leader, relative velocity, and headway. These data were used to manually validate 
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and further filter the events occurring on entrance and exit SCLs. Figure 22, figure 23, and figure 
24 show schematics of three types of SCL events that were reconstructed: near-crash at entrance 
SCL, crash at exit SCL on freeway, and crash at exit SCL on deceleration lane. 

 
Original graphic: © 2014 AASHTO. Modifications: FHWA (see acknowledgments section). 

Figure 22. Graphic. Near-crash event within entrance SCL.(5) 

 
Original graphic: © 2014 AASHTO. Modifications: FHWA (see acknowledgments section). 

Figure 23. Graphic. Crash event within exit SCL on freeway lane.(5) 

 
Original graphic: © 2014 AASHTO. Modifications: FHWA (see acknowledgments section). 

Figure 24. Graphic. Crash event within exit SCL on deceleration lane.(5) 

Both video and kinematic data for safety-critical events were used for reconstruction. The event 
information included time of day, weather, vehicle status, vehicle trajectory, surrounding traffic, 
road conditions, signage, and pavement markings. 

Crash 
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The second step of the crash reconstruction process involves crash diagramming. This task 
entails drawing detailed trajectories of vehicles involved in the crash event. Figure 25 shows an 
example of trajectories of two vehicles, V1 and V2. 

 
Source: FHWA. 

Figure 25. Graphic. Drawing vehicle trajectories in a computer-aided design program. 

After drawing the trajectories, the road signs are generated. Due to privacy concerns, the actual 
locations of the crashes were not available for the NDS dataset. Signs similar to those observed 
in the crash videos were generated because the actual crash locations are not known. Figure 26 
shows an example of this step. 
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Source: FHWA. 

A. Plan view of vehicle trajectories and overhead sign. 

 
© 2022 Virginia Tech Transportation Institute. 

B. Screenshots from NDS videos. 
Figure 26. Graphic and Photographs. Extracting roadway signs from NDS videos. 

After extracting the vehicle trajectories and basic signage from the NDS videos, the third step 
involves creating the roadway and the environment using three-dimensional (3D) modeling tools. 
Coded roadway elements include travel lanes, shoulders, medians, barriers, terrain, overpasses, 
pavement markings, etc. Figure 27 provides an example of a highway and an overpass structure 
created during this step. Environment elements include signage, overall lighting, and foliage next 
to the highway. 

 
Source: FHWA. 

Figure 27. Graphic. Example of a highway and an overpass structure. 

The fourth and final step in the testbed development process involves creating a crash 
simulation. Vehicle information and the trajectories extracted in the first step are overlaid on top 
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of the roadway and environment elements created in the second and third steps to reconstruct the 
crash. A commonly used simulation engine was used to create the testbeds. Figure 28 shows a 
screenshot of simulating a car in the software. Scripts were written to add background traffic to 
the simulation. 

 
Source: FHWA. 

Figure 28. Screenshot. Simulating vehicles in a simulation-optimized runtime build. 

The researchers created a graphical user interface to facilitate the use of simulator testbeds 
created for LT and SCL crashes. Screenshots of the user interface are shown in figure 29, figure 
30, figure 31, and figure 32. A user has three visualization options, as shown in figure 30. An 
aerial view is a recreated animation of a crash. The 360-degree view places the user in the 
driver’s seat of the subject vehicle and provides the driver’s perspective of the crash. The test-
drive view is similar to the 360-degree mode, with the exception that the user actively controls 
the vehicle. Although the aerial and 360-degree views are not interactive, the test-drive mode 
gives control to the user to drive through the scenario and react to the conditions. 

 
Source: FHWA. 

Figure 29. Screenshot. Main landing page of the simulator testbed user interface. 
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Source: FHWA. 

Figure 30. Screenshot. User menu showing three visualization options. 

 
Source: FHWA. 

Figure 31. Screenshot. Aerial view of an SCL crash. 

 
Source: FHWA. 

Figure 32. Screenshot. SCL crash shown in 360-degree view. 
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CHAPTER 10. CONCLUSIONS AND CONSIDERATIONS FOR FUTURE RESEARCH 

This project generated two types of RAD datasets for safety research. Tabular data similar to 
what modelers typically use to conduct safety evaluation studies are the first type of RAD. Users 
have the option to either download pregenerated datasets or to run custom queries for any 
number of sites and years. The chapter 6 proposed rubric enabled the chapter 7 development of 
statistical and machine learning models by using these tabular RAD datasets and making a 
comparison of their relative performance. The strength of different modeling methods in 
extracting the cause–effect relationships between the dependent and independent variables can 
be tested by comparing their performance with assumed cause–effect relationships. Although the 
rubric standardizes the evaluation process and accommodates the differences in performance 
measures (e.g., goodness of fit) across different modeling methods, it might still be challenging 
to compare methods by using different measures of effectiveness. To encourage the application 
of new statistical and machine learning approaches or variations of existing approaches, the RAD 
datasets can be introduced in graduate courses at universities. Since the datasets are ready to use 
(i.e., have gone through a quality assurance and a quality control process), researchers do not 
have to expend effort in obtaining the data, processing, and preparing them for model 
development. A student competition organized by the Transportation Research Board or other 
professional transportation societies could further encourage the use of RAD to discover new 
modeling approaches.  

The second type of RAD datasets generated in the study were the VR testbeds. These testbeds, 
developed using actual crash videos from NDS, offer a realistic and engaging way to support 
driver education and countermeasure evaluation studies. Improving interchange safety involves 
implementing effective behavioral and engineering countermeasures. The testbeds provide 
human factors researchers with a starting point (i.e., a fully developed ramp terminal or an SCL 
section with signage and traffic). The modeler can easily add interventions to the testbed and 
conduct human factors evaluations. The developed testbeds are hardware agnostic and can be 
used across different visualization options—head-mounted devices, driving simulators, 
3D projection systems (e.g., CAVE (cave automatic virtual environment)). The use of VR 
testbeds can be encouraged through a VR hackathon where users are asked to implement novel 
safety countermeasures, in the simulation, and evaluate their effectiveness. 

This project demonstrated the proposed RAD framework for creating new RAD datasets for 
interchange facilities, although the same framework can be applied to generate artificial data for 
other roadway facilities. Of particular interest would be those facilities for which it is difficult to 
obtain accurate and complete real crash data. Examples of such facilities include work zones, 
alternative intersections (e.g., diverging diamond, J-turns), and bicycle facilities. The RAD 
software developed in this project can easily be extended to include data for additional facilities. 
Another direction for future research entails the application of VR testbeds to evaluate some 
behavioral and roadway countermeasures. For example, a driving simulator experiment can be 
set up using a testbed developed for SCLs, and the effect of different driver alert systems 
(e.g., in-vehicle, dynamic message signs) can be evaluated using study participants. 
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APPENDIX. DESCRIPTIVE STATISTICS OF SAMPLE RAD DATA 

This appendix presents tables of descriptive statistics of crash frequency and various potential 
contributing factors for a sample RAD dataset of 400 sites and 5 yr. Table 12, table 13, table 14, 
table 15, and table 16 provide data pertaining to ramp terminal sites, whereas table 17, table 18, 
table 19, table 20, and table 21 provide data for SCL facilities. 

Table 12. Descriptive statistics of crash frequency (RAD with 400 LT crash sites). 

Statistic 2013 2014 2015 2016 2017 
Mean 0.49 0.64 0.56 0.52 0.55 
Median 0 0 0 0 0 
Standard 
deviation 

1.04 1.40 1.20 0.97 1.31 

Minimum 0 0 0 0 0 
Maximum 9 11 13 6 12 

Table 13. Descriptive statistics of crossroad AADT (RAD with 400 LT crash sites). 

Statistic 2013 2014 2015 2016 2017 
Mean 15,776 16,091 16,413 16,742 17,076 
Median 14,074 14,354 14,642 14,934 15,233 
Standard 
deviation 

2,959 3,018 3,078 3,140 3,203 

Minimum 2,000 2,040 2,080 2,122 2,164 
Maximum 40,000 40,800 41,616 42,448 43,297 

Table 14. Descriptive statistics of left-turn AADT (RAD with 400 LT crash sites). 

Statistic 2013 2014 2015 2016 2017 
Mean 1,376 1,597.6 1,629.6 1,662.2 1,695.4 
Median 1,566.8 1,403 1,431 1,459.5 1,489 
Standard 
deviation 

297 315 309 315 322 

Minimum 160 163 166 169 173 
Maximum 4,302 4,388 4,475 4,565 4,656 

Table 15. Descriptive statistics of independent variables (RAD with 400 LT crash sites). 

Variable Description Values 
presence_of_left_turn_lane Presence of LT lane on the 

crossroad 
Yes—234 (58.5 percent) 
No—166 (41.5 percent) 

number_of_left_turn_lanes Number of LT lanes on the 
crossroad 

0—166 (41.5 percent) 
1—199 (49.8 percent) 
2—35 (8.7 percent) 

signal_control_type Type of LT signal control 
scheme  

PP—132 (33 percent) 
PO—91 (22.8 percent) 
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Variable Description Values 
 FYA—177 (44.3 percent) 

functional_class Functional classification of 
the crossroad facility 

Rural minor arterial—12 
(3 percent) 
Urban principal arterial—211 
(53 percent) 
Urban minor arterial—172 
(43 percent) 

jurisdiction Jurisdiction where the site is 
present 

Urban—383 (95.7 percent) 
Rural—17 (4.3 percent) 

no_lanes Total number of lanes on the 
crossroad (in both 
directions)  

2—126 (31.5 percent) 
4—221 (55.3 percent) 
6—53 (13.2 percent) 

terrain Terrain of the crossroad at 
the ramp terminal 

Level—177 (44.2 percent) 
Rolling—186 (46.5 percent) 
Mountain—37 (9.3 percent) 

horizontal_alignment Horizontal alignment of the 
crossroad at the ramp 
terminal 

Tangent—293 (73.2 percent) 
Curve—107 (26.8 percent) 

intersection_angle Intersection skew angle 90 degrees—313 (78.2 
percent) <90 degrees—87 
(21.8 percent) 

median_presence Presence of median on the 
crossroad approach 

Yes—207 (51.8 percent) 
No—193 (49.2 percent) 

channelization_presence Presence of LT 
channelization 

Yes—180 (45 percent) 
No—220 (55 percent) 

speed_limit Speed limit on the crossroad 
approach (in miles per hour) 

20 mph—10 (2.5 percent) 
25 mph—52 (13 percent) 
30 mph—30 (7.5 percent) 
35 mph—202 (50.5 percent) 
40 mph—38 (9.5 percent) 
45 mph—26 (6.5 percent) 
50 mph—23 (5.8 percent) 
55 mph—16 (4 percent) 
60 mph—3 (2.5 percent) 

Table 16. Descriptive statistics of crash frequency (RAD with 400 SCL sites). 

Statistic 2013 2014 2015 2016 2017 
Mean 0.73 0.76 0.69 0.8 0.75 
Median 0 0 0 0 0 
Standard 
deviation 

2.93 2.73 2.85 3.92 2.67 

Minimum 0 0 0 0 0 
Maximum 12 13 13 16 13 
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Table 17. Descriptive statistics of freeway AADT (RAD with 400 SCL sites). 

Statistic 2013 2014 2015 2016 2017 
Mean 43,365 44,232 45,117 46,019 46,939 
Median 36,237 36,961 37,700 38,545 39,224 
Standard 
deviation 

11,876 12,113 12,355 12,602 12,855 

Minimum 2,076 2,117 2,159 2,203 2,247 
Maximum 193,551 197,422 201,370 205,397 209,505 

Table 18. Descriptive statistics of ramp AADT (RAD with 400 SCL sites). 

Statistic 2013 2014 2015 2016 2017 
Mean 5,957 6,076 6,198 6,322 6,448 
Median 5,388 5,496 5,606 5,718 5,832 
Standard 
deviation 

1,204 1,228 1,253 1,278 1,303 

Minimum 37 37 38 39 40 
Maximum 18,565 18,936 19,315 19,701 20,095 

Table 19. Descriptive statistics of ramp truck AADT (RAD with 400 SCL sites). 

Statistic 2013 2014 2015 2016 2017 
Mean 1,115.5 1,137.3 1,160 1,183.2 1,206.9 
Median 754 769 784 799.5 815.5 
Standard 
deviation 

333 340 346 353 360 

Minimum 3 3 3 3 3 
Maximum 7,001 7,141 7,283 7,429 7,578 

Table 20. Descriptive statistics of roadway geometric variables (RAD with 400 SCL sites). 

Statistic 
SCL Segment Length 

(mi) 
Median 

Width (ft) 

Inside 
Shoulder 
Width (ft) 

Outside 
Shoulder 
Width (ft) 

Mean 0.25 48.59 7.79 10.72 
Median 0.27 50 7.29 10.67 
Minimum 0.05 10.96 3.02 6.04 
Maximum 0.67 188.95 22.98 15.79 
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Table 21. Descriptive statistics of other independent variables (RAD with 400 SCL sites). 

Variable Description Values 
Jurisdiction Jurisdiction where the site is 

present 
Urban—216 (54 percent) 
Rural—184 (46 percent) 

No_Lane Total number of freeway lanes at 
the start of SCL segment (does not 
include acceleration lanes) 

1—15 (3.8 percent) 
2—208 (52 percent) 
3—163 (40.7 percent) 
4—14 (3.5 percent) 

Terrain Terrain of the SCL segment Level—269 (67.3 percent) 
Rolling—131 (32.7 percent) 

Horizontal_alignment Horizontal alignment of the SCL 
segment 

Tangent—299 (74.7 
percent) 
Curve—101 (25.3 percent) 

Median Barrier Presence of a median barrier Yes—184 (46 percent) 
No—216 (54 percent) 

Median_Width Width of the median (in feet) 50 ft—10 (2.5 percent) 
55 ft—19 (4.8 percent) 
60 ft—163 (40.8 percent) 
65 ft—21 (5.2 percent) 
70 ft—187 (46.7 percent) 
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