Executive Summary

In accordance with 23 USC 148 and pursuant to 23 CFR 924, the Arkansas State Highway and Transportation Department (AHTD) has prepared a Highway Safety Improvement Program (HSIP) Annual Report for State Fiscal Year 2013 (July 1, 2012 through June 30, 2013). The format of this report is consistent with the reporting guidelines issued by the Federal Highway Administration on February 13, 2013.

Program Structure

Program Administration

ow are Highway Safety Improvement Program funds administered in a State?
1 Central
District
☐Other: 1T
If District, how are the HSIP funds allocated?
□Formula
☐ Crash data
□Other: 1T

Describe how local roads are addressed as part of Highway Safety Improvement Program.

To address safety concerns on local roads, the AHTD continues to provide technical assistance and training programs on safety issues to local governments through its efforts by Planning and Research Division staff and the Technology Transfer Program. The AHTD continues to coordinate with the Arkansas State Police through the Traffic Records Coordinating Committee to implement eCrash and the CARE (Critical Analysis Reporting Environment) program that will allow law enforcement agencies to have better access to crash data on all public roads.

Furthermore, the AHTD recently enhanced its roadway data base by providing a linear referencing system for 12,665 miles of Federal-aid local roads. This allowed the location of a crash that occurs on Federal-aid local roads to be identified by geographical location. Based on this data, crash queries can be conducted to determine if there are locations with a high frequency of crashes. This data can be provided to a local government agency or a Metropolitan Planning Organization (MPO) upon request.

AHTD has provided a GIS and Aerial photograph driven tool, VISUAL-T, to the Arkansas State Police and various county and local law enforcement agencies to assist the agencies with providing an accurate crash location on the crash report. This tool has greatly enhanced both speed and accuracy in providing a crash location to the Crash Database.

Identify which internal par	rtners are involved with Highwa	ay Safety Improvement Program planning.
Check all that apply.		
☑Design		
☑Planning		
☑Maintenance		
☑ Operations		
☑Governor's Highway Safe	ety Office	
□ Other: 1T		
Briefly describe coordinati	on with internal partners.	
Coordination with internal	partners, along with the HSO, o	ccurs on different levels. Design, planning,
maintenance, operations a	nd the HSO are all on the SHSP of	committee. Coordination has also taken place
when addressing work zon	e safety, roadway departure saf	ety, and in the identification of infrastructure
and non-infrastructure pro	jects.	
Identify which external pa	rtners are involved with Highwa	ay Safety Improvement Program planning.
Check all that apply.		
☑Metropolitan Planning O	rganizations	
☑Governor's Highway Safe	ety Office	
☐ Local Government Associ	ciation	
☐ Other: Click here to ente	er text.	
	inistration practices used to imp	plement the HSIP that have changed since
the last reporting period.		
☐ Multi-disciplinary HSIP s	teering committee	
□Other: 1T		
•	s of Highway Safety Improveme	ent Program Administration on which you
would like to elaborate.		
	•	nich manages the HSIP, has hired an engineer.
		n HSM training workshop with FHWA in
		P 8-76 in March 2013. The TSS worked with
	•	nd has begun work with FHWA on the Work
with a focus on TZD.	ni Piani. The 133 also upuateu ti	ne SHSP (approved by FHWA in March 2013)
Program Methodology		
Select the programs that a	re administered under the HSIF).
☑Median Barrier	□Intersection	☐Safe Corridor

☑Horizontal Curve	☐ Bicycle Safety	☑Rural State Highway
☑Skid Hazard	☑Crash Data	☐Red Light Running
☑Roadway Departure	☑Low-Cost Spot Improvements	☑Sign Replacement and Improvement
□Local Safety	☐ Pedestrian Safety	☐Right Angle Crash
□Left-turn Crash	☐Shoulder Improvement	\square Segments
□Other:		
1 T		
For each program checked above,	enter the following information:	
Program: Below information	on applies to all programs checked	above.
ŭ		
Date of Program Methodo	logy: 7/7/2011	
What data types were use	d in the program methodology? Ch	ock all that apply
Crashes	Exposure	Roadway
☑All crashes	☑Traffic	Median width
☐ Fatal crashes only	□Volume	☐ Horizontal curvature
☑Fatal and serious injury crashes only		☑Functional classification
□Other: 1T	☑Lane miles	☐ Roadside features
	□Other:	☑Other:
	1T	Pavement, curve, lane and shoulder width, rural/urban, etc.
What project identification	n methodology was used for this pr	ogram? Check all that apply.
☑Crash frequency	.	,
☐ Expected crash frequen	cy with EB adjustment	
·	nage only (EPDO crash frequency)	
☐ Relative severity index		
☑Crash rate		
☐ Critical rate		
☐ Level of service of safety	y (LOSS)	
☐ Excess expected crash fi	, , , ,	
·	requency with EB adjustment	
•	requency using method of moment	S
☐ Probability of specific cr	· · ·	
,	, 1	

	\square Excess proportions of specific crash types	3
	□Other: 1T	
	Are local roads (non-state owned and open	rated) included or addressed in this program?
	No	
	If yes, are local road projects identified usi	ng the same methodology as state roads?
	If no, describe the methodology used to id	entify local road projects as part of this program.
	AHTD is working on a linear referencing sys	tem (LRS) for all public roads. It is also working
owar	d expanding its safety training options to loca	Is through the local technical assistance program
LTAP).	
	How are highway safety improvement pro	jects advanced for implementation?
	\square Competitive application process	
	\square Selection committee	
	☑Other: The project selection process is co	nsistent with the recent HSIP guidance and the
AHTD,	/FHWA HSIP process adopted in 2011. See at	tachment.
	Select the processes used to prioritize proj	ects for implementation. For the methods selected,
	indicate the relative importance of each pr	ocess in project prioritization. Enter either the
	weights or numerical rankings. If weights a	re entered, the sum must equal 100. If ranks are
	entered, indicate ties by giving both proces	sses the same rank and skip the next highest rank
	(as an example: 1, 2, 2, 4).	
	☐ Relative Weight in Scoring	
	☑Rank of Priority Consideration	
	Ranking based on B/C	1T
	Available funding	1T
	Incremental B/C	1T
	Ranking based on net benefit	1T
	Cost effectiveness	1T
	Other	The process is consistent with the AHTD/FHWA
	HSIP process adopted in 2011. See attachr	nent.
Nhat	proportion of highway safety improvement	program funds address systemic improvements?
19%	proportion of ingliway salety improvement	or ogram runus address systemic improvements:
.0,0		
	Highway safety improvement program fun	ds are used to address which of the following
	systemic improvements? Please check all t	hat apply.
	☑Cable median barriers	☐ Upgrade guard rails
	☐Rumble strips	\square Clear zone improvements
	\square Traffic control device rehabilitation	☐Safety edge
	☐ Pavement/shoulder widening	☐ Install/improve lighting

☐Install/Improve Signing	\square Add/upgrade/modify/remove traffic signal
☐Install/improve pavement	☐ Other:
marking/delineation	1T
What process is used to identify potential coun	termeasures?
☑Engineering Study	
□Road Safety Assessment	
□Other: 1T	
Identify any program methodology practices us	sed to implement the HSIP that have changed since the
last reporting period.	
☑Highway Safety Manual	
□Road Safety Audits	
☑Systemic Approach	
□Other: 1T	

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

Systemic approaches to addressing roadway departure safety is underway. AHTD is already implementing cable median barrier projects through a systemic process. With guidance from the Roadway Departure Safety Implementation Plan, a systemic approach to install signs, markings, and rumble strips is also under way.

Progress in Implementing Projects

Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

State Fiscal Year (July 1, 2012 through June 30, 2013)

Enter the programmed and obligated funding for each applicable funding category.

HSIP Project Funding						
Reporting Period 07/01/2012 to 06/30/2013						
Funding Category	Programmed	Obligated				
HSIP (Section 148)	23,864,000	25,146,777				
HRRRP (SAFETEA-LU)	0	0				
HRRR Special Rule	0	0				
Penalty Transfer - Section 154	15,660,000	28,625,004				
Penalty Transfer – Section 164	0	0				

Incentive Grants - Section 163	0	0
Incentive Grants (Section 406)	0	0
Other Federal-aid Funds (i.e. STP, NHPP)	98,108,000*	27,541,830*
State and Local Funds	28,176,000	9,679,544
Total	165,808,000	90,993,155

^{*}Includes signals, intersection/interchange improvements, passing lanes, Safe Routes to School, and safety related studies

How much funding is programmed to local (non-state owned and maintained) safety projects?

None directly

How much funding is obligated to local safety projects?

None directly

How much funding is programmed to non-infrastructure safety projects?

\$785,000

How much funding is obligated to non-infrastructure safety projects?

\$785,000

How much funding was transferred in to the HSIP from other core program areas during the reporting period?

\$10,285,611

How much funding was transferred out of the HSIP to other core program areas during the reporting period?

None

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

Develop a policy to systematically deploy the use of HSIP funds for the installation, improvement, and replacement of signs and raised pavement markers.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

Significant progress has been made towards the installation of cable median barriers to reduce or eliminate KA crashes on Interstates and other high speed routes.

General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

Project	Improvement Category	Output (miles)	HSIP Cost	Total Cost	Funding Cat.	Func. Class.	AADT	Speed	Roadway Ownership^	Relations	hip to SHSP
	cutegory	(mics)			Cuti				Ownership	*Emphasis Area	**Strategy
110516	Roadside	10.27	49,592	55,047	148	Interstate	2433	70	State Hwy.	3	В
110564	Roadside	9.82	267,975	297,452	148	Interstate	28000	70	State Hwy.	3	В
110576	Roadway	4.61	1,359,199	1,508,711	148	Interstate	28000	70	State Hwy.	2	С
020544	Roadside	15.47	3,377,725	3,749,275	148	Interstate	25500	65	State Hwy.	3	В
040472	Roadway	2.2	332,106	368,638	148	Minor Art.	4900	55	State Hwy.	2	D
040645	Roadside	5.1	974,476	1,081,668	148	Interstate/Oth er Fwy.	18667	55	State Hwy.	3	В
061218	Alignment	0.07	64,242	71,309	148	Urban Prin. Art. Other	28000	35	State Hwy.	2	Е
061328	Roadside	7.31	100,142	111,158	148	Interstate	74000	65	State Hwy.	3	В
061408	Roadway	1.0	123,385	136,957	148	Interstate	42000	65	State Hwy.	2	С
080273	Roadway	0.41	27,639	30,679	148	Urban Prin. Art. Other	18000	35	State Hwy.	2	D
080310	Alignment	0.91	557,047	618,322	148	Urban Prin. Art. Other	1100	55	State Hwy.	2	E
080465	Roadway	9.35	1,362,213	151,196	148	Interstate	32250	70	State Hwy.	3	В
090369	Roadside	4.96	1,364,714	1,514,833	148	Interstate	39000	70	State Hwy.	3	В
100768	Roadside	16.81	2,438,590	2,706,835	148	Interstate	13775	65	State Hwy.	3	В
012149	Roadside	17.27	246,179	273,259	148	Interstate	27667	70	State Hwy.	3	В
012166	Roadway	3.0	904,555	1,004,056	148	Interstate	25000	70	State Hwy.	3	С
012168	Roadside	27.7	4,436,244	4,924,231	148	Interstate	24800	70	State Hwy.	2	В
012169	Roadside	13.02	1,543,303	1,713,066	148	Interstate /Urban Prin. Art. Other	17250	65	State Hwy.	3	В
012170	Roadside	14.94	94,074	104,422	148	Interstate	25000	70	State Hwy.	3	В
012185	Non-Infrast.	0	8,506	9,442	148	NA	NA	NA	NA	NA	NA
012200	Roadway	11.84	2,930,090	3,252,400	148	Interstate	25000	70	State Hwy.	2	С
BB0403	Roadway	14.1	429,402	476,636	148	Interstate	26633	70	State Hwy.	2	С
BB0407	Roadway	7.46	800,391	888,434	148	Interstate	48167	65	State Hwy.	2	С
BB0614	Roadway	7.49	1,573,414	1,746,490	148	Interstate	22667	70	State Hwy.	2	С
BB0804	Roadway	7.4	693,837	770,159	148	Interstate	27000	70	State Hwy.	2	С
BB0806	Roadway	18.6	999,106	1,109,008	148	Interstate	29900	70	State Hwy.	2	С

BB1003	Roadway	7.82	588,261	652,970	148	Interstate	18500	70	State Hwy.	2	С
030425	Roadside	14.13	2,394,195	2,657,556	154	Urban Prin. Art. Other	9400	55	State Hwy.	3	В
050044	Roadway	0.73	45,698	50,725	154	Urban Prin. Art. Other	16000	35	State Hwy.	2	D
061309	Roadway	2.4	10,000	11,100	154	Minor Art.	8150	55	State Hwy.	2	D
061407	Roadway	2.56	865,183	960,353	154	Interstate	77000	65	State Hwy.	2	С
080466	Roadside	9.29	1,390,026	1,542,929	154	Prin. Art Other	6050	65	State Hwy.	3	В
012167	Roadside	64.6	6,166,368	6,844,668	154	Interstate	19400	70	State Hwy.	3	В
012170	Roadside	14.94	2,631,548	2,921,018	154	Interstate	25000	70	State Hwy.	3	В
012177	Roadside	36.96	7,031,189	7,804,620	154	Interstate	31943	70	State Hwy.	3	В
012179	Roadside	39.19	6,231,092	6,916,512	154	Urban Prin. Art Other	26667	70	State Hwy.	3	В
012190	Non-Infrast.	0	785,000	871,350	154	NA	NA	NA	NA	1	Α
012200	Roadway	11.84	663,948	736,982	154	Interstate	25000	70	State Hwy.	2	С
BB0105	Roadway	7.88	410,757	455,940	154	Interstate	30800	70	State Hwy.	2	С

^{*1=}Curbing aggressive driving; 2=Keeping vehicles in roadway; 3=Reducing head on and across median crashes

Progress in Achieving Safety Performance Targets

Overview of General Safety Trends

Present data showing the general highway safety trends in the state for the past five years.

Performance Measures*	2007	2008	2009	2010	2011
Number of fatalities	650	600	592	571	551
Number of serious injuries	3072	3471	3693	3331	3239
Fatality rate (per100MVMT)	2.01	1.86	1.79	1.70	1.67
Serious injury rate (per 100MVMT)	9.48	10.70	11.14	9.90	9.83

^{*}States should use a 5-year rolling average to present the performance measures

To the maximum extent possible, present this data by functional classification and ownership.

	2011						
Function Classification	Number of fatalities			Serious injury rate (per 100MVMT)			
Interstate	74	479	0.87	5.64			
Other Freeways	13	77	0.91	5.37			

^{**}A=Enhancement Speed enforcement; B=Installation of cable median barriers; C=Increase surface friction;

D=Widening/Passing lanes; E=Realignment

Other Principal Arterials	129	831	1.73	11.12
Minor Arterials	87	578	1.46	9.71
Major Collector	99	641	1.87	12.12
Minor Collector	5	12	0.66	1.58
Local	144	621	4.05	17.46

	2011				
Roadway Ownership	Number of fatalities	Number of serious injuries	Fatality rate (per 100MVMT)	Serious injury rate (per 100MVMT)	
State Highway System	417	2652	1.67	10.63	
City Streets and County Roads	134	587	1.67	7.33	

Describe any other aspects of the general highway safety trends on which you would like to elaborate.

The definition for reporting incapacitating injuries (which we use for reporting serious injuries) was updated in 2007 by Arkansas State Police. The trend for incapacitating injuries has followed fatalities except for the jump in 2008 and 2009. We think this can be partly explained by the updated definition used by law enforcement officers from 2007.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

Show table from template with 7 years

Older Driver/Pedestrian Performance Measures	2005	2006	2007	2008	2009	2010	2011
Fatality rate (per capita)	0.56	0.42	0.48	0.47	0.42	0.42	0.45
Serious injury rate (per capita)	16.04	12.73	15.69	18.03	18.12	17.17	16.40
Fatality and serious injury rate (per capita)	16.59	13.15	16.17	18.50	18.55	17.59	16.84

Show your calculations.

Rolling Average for 2009 and 2011 for Comparison

2011= SUM((2459/146)+(2533/144)+(2652/143)+(2627/142)+(2264/140))/5=17.5

2009= SUM((2652/143)+(2627/142)+(2264/140)+(1815/138)+(2240/135))/5=16.6

Does the older driver special rule apply to your state?

Yes

If yes, describe the approach to include respective strategies to address the increase in those rates in the State SHSP.

Current strategies listed in the SHSP to address older drivers will be considered. These strategies include:

- Improved roadway visibility features;
- Implementation of the FHWA Highway Design Handbook for Older Drivers;
- Education of older drivers on the safety risks resulting from reduced driving task performance;
- Education of older drivers on alternative transportation modes;
- Increase frequency of vision assessments for older drivers; and
- Promote the use of restricted drivers licenses for older drivers.

SHSP steering committee will review these strategies in the near future and determine if any changes are needed. This may also include an establishment of an older driver action plan and SHSP subcommittee.

Secondary Analysis

Older Pedestrians	2005	2006	2007	2008	2009	2010	2011
Fatalities	9	5	6	8	3	5	1
Serious injuries	10	8	6	6	4	7	7
Fatalities and serious injuries	19	13	12	14	7	12	8

The increase is not due to pedestrians.

<u>Assessment of the Effectiveness of the Improvements (Program Evaluation)</u>

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program? Select all that apply.

☑B/C ratio

☐ Policy change

☑Other: AHTD moving toward a systemic and risk-based approach to address safety.

What significant programmatic changes have occurred since the last reporting period? Select all that apply.

☑Shift focus to fatalities and serious injuries

☐ Organizational changes

☑More systemic programs included in HSIP

□Other: 1T

Briefly describe significant program changes that have occurred since the last reporting period.

More systemic projects have been programmed. Specifically, system-wide implementation of cable median barriers to address fatal and serious injuries. Other areas as mentioned previously to address roadway departure safety is underway.

SHSP Emphasis Areas

For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures. Show 5 tables for each year

HSIP-related SHSP Emphasis Areas	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
2011				
Roadway Departure	358	1998	1.08	6.06
Intersections	108	961	0.33	2.92
Work Zones	16	117	0.05	0.36

HSIP-related SHSP Emphasis Areas	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
2010				
Roadway Departure	358	2056	1.06	6.11
Intersections	132	945	0.39	2.81
Work Zones	16	89	0.05	0.26

HSIP-related SHSP Emphasis Areas	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
2009				
Roadway Departure	398	2311	1.20	6.97
Intersections	125	1095	0.38	3.30
Work Zones	23	93	0.07	0.28

HSIP-related SHSP Emphasis	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
Areas				

2008				
Roadway Departure	402	2096	1.24	6.44
Intersections	110	1042	0.34	3.20
Work Zones	12	113	0.04	0.35

HSIP-related SHSP Emphasis Areas	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
2007				
Roadway Departure	422	1945	1.30	6.00
Intersections	131	954	0.40	2.95
Work Zones	22	98	0.07	0.30

Groups of similar project types

Present the overall effectiveness of HSIP subprograms.

Before and After Crash Analysis

Job 012053, Shoulder Rumble Strips (Selected Sections) (Statewide)

	· ` `			
	24 Months Before Rumble Strips (2007-2008)	24 Months After Rumble Strips (2010-2011)	Percent Change	
Average Annual Daily Traffic (ADT)	5,501	5,664	3.0%	
Total Number of Crashes	3,275	2,677	(18.3%)	
Annual Crash Rate ¹	0.80	0.64	(20.0%)	
Number of Fatal Crashes	108	70	(35.2%)	
Number of Fatalities	123	84	(31.7%)	
Statewide Number of Fatalities	1,250	1,122	(10.2%)	
Number of Serious Injury Crashes	386	309	(20.0%)	
Number of Minor Injury Crashes	557	392	(29.6%)	
Number of Possible Injury Crashes	692	425	(38.6%)	
Number of PDO ² Crashes	1532	1481	(3.3%)	
Human Capital Crash Cost ^{3,5} , all severities	\$303.8 million	\$210.5 million	(30.7%)	
Comprehensive Crash Cost ^{4,5} , all severities	\$795.0 million	\$624.4 million	(21.5%)	
Average Annual Human Capital Crash Cost Savings	gs \$46.7 million			
Average Annual Comprehensive Crash Cost Savings	\$85.3 million			
Construction cost of Job 012053		\$0.9 million		
10 10 1 1 1 1 1 1 1 1 1 1 1 1				

¹ Crash Rate = number of crashes per year per million vehicle miles traveled

² PDO = Property Damage Only

 $^{^{3}}$ Human capital crash costs include monetary losses associated with medical care, emergency services, property damage, and lost productivity.

⁴ Comprehensive crash costs include human capital crash costs in addition to non-monetary costs related to the reduction in the quality of life in order to capture a more accurate level of the burden of injury. Comprehensive costs are generally used in analyses conducted by non-transportation state and federal agencies.

⁵ Crash costs were calculated using the costs provided in Table 4A-1 in the 2010 Highway Safety Manual and adjusted to July 2013 dollars based on the latest Consumer Price Index.

Before and After Crash Analysis

Highway 7 Centerline Rumble Strips¹

	36 Months Before Rumble Strips (2001-2004)	36 Months After Rumble Strips (2005-2007)	Additional 48 Months After (2008-2011)
Average Annual Daily Traffic (ADT)	1,970	1,940	1,773
Average Annual Number of Crashes	104.0	61.7	81.0
Average Annual Number of Fatal Crashes	3.7	1.3	1.5
Average Annual Number of Fatalities	3.7	1.3	1.5
Average Annual Number of Serious Injury Crashes	12.7	8.7	13.8
Average Annual Number of Minor Injury Crashes	26.3	14.3	14.8
Average Annual Number of Possible Injury Crashes	14.3	16.7	9.5
Average Annual Number of PDO ² Crashes	47.0	20.7	41.5

¹ Section 15 (LM 9.68-19.13); Section 16 (LM 0.00-19.34); Section 17 (LM 0.00-13.52); Section 18 (LM 0.00-14.21 and 14.80-25.33); Section 19 (LM 0.00-7.26) ² PDO = Property Damage Only

Before and After Crash Analysis

Job 012016, I-40 Cable Median Barrier (Biscoe-Brinkley)

	36 Months Before Cable Median Barrier	36 Months After Cable Median Barrier	
Average Annual Daily Traffic (ADT)	31,900	30,900	
Total Number of Crashes	95	108	
Number of Fatal Crashes	10	0	
Number of Fatalities	11	0	
Number of Serious Injury Crashes	5	6	
Number of Minor Injury Crashes	12	6	
Number of Possible Injury Crashes	27	16	
Number of PDO ¹ Crashes	41	80	
Human Capital Crash Cost ^{2,4} , all severities	\$18.82 million	\$2.44 million	
Comprehensive Crash Cost ^{3,4} , all severities	\$56.45 million	\$3.98 million	
Average Annual Human Capital Crash Cost Savings	\$5.46 million		
Average Annual Comprehensive Crash Cost Savings	\$17.49 million		
Construction cost of Job 012016	\$2.0	05 million	

Job 012016: I-40, Sections 42 and 43, Log Mile 204.50-213.00 (8.50 miles in length)

Before and After Crash Analysis

Job 110495, I-55 Cable Median Barrier (So. of Highway 64-James Mill Road)

	36 Months Before	36 Months After
	Cable Median Barrier	Cable Median Barrier
Average Annual Daily Traffic (ADT)	34,800	31,800
Total Number of Crashes	77	102
Number of Fatal Crashes	2	0
Number of Fatalities	2	0

Number of Serious Injury Crashes	7	2
Number of Minor Injury Crashes	4	4
Number of Possible Injury Crashes	34	24
Number of PDO ¹ Crashes	30	72
Human Capital Crash Cost ^{2,4} , all severities	\$5.95 million	\$1.98 million
Comprehensive Crash Cost ^{3,4} , all severities	\$15.00 million	\$3.05 million
Average Annual Human Capital Crash Cost Savings	\$1.32 million	
Average Annual Comprehensive Crash Cost Savings	\$3.98 million	
Construction cost of Job 012016	\$0.85 million	

Job 110495: I-55, Section 11, Log Mile 8.50-12.62 (4.12 miles in length)

Systemic Treatments

Present the overall effectiveness of systemic treatments.

HSIP Sub-program Types	Number of fatalities*	Number of serious injuries*	Fatality rate (per HMVMT)*	Serious injury rate (per HMVMT)*
**Cable Median	14	42	1.41	4.23
Barriers/Median				
Crossover Crashes				
on Interstates and				
Freeways				

^{*}For the target crash type Head On and Sideswipe Opposite Direction Crashes.

Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

1T

Provide project evaluation data for completed projects (optional).

Previous implementation of cable median barrier and rumble strip projects have shown a clear reduction in fatal and serious injury crashes.

¹PDO = Property Damage Only

²Human capital crash costs include monetary losses associated with medical care, emergency services, property damage, and lost productivity.

³Comprehensive crash costs include human capital crash costs in addition to non-monetary costs related to the reduction in the quality of life in order to capture a more accurate level of the burden of injury. Comprehensive costs are generally used in analyses conducted by non-transportation state and federal agencies. ⁴Crash costs were calculated using the costs provided in Table 4A-1 in the 2010 Highway Safety Manual, which are based on a 2005 FHWA report in 2001 dollars, and adjusting to July 2012 dollars based on the latest Consumer Price Index.

^{**} First year for data, 2011 only.