

Table of Contents

Table of Contents	2
Disclaimer	3
Executive Summary	4
Introduction	
Program Structure	6
Program Administration	6
Program Methodology	7
Project Implementation	
Funds Programmed	25
General Listing of Projects	
Safety Performance	30
General Highway Safety Trends	30
Safety Performance Targets	36
Applicability of Special Rules	38
Evaluation	39
Program Effectiveness	39
Effectiveness of Groupings or Similar Types of Improvements	40
Project Effectiveness	
Compliance Assessment	46

Disclaimer

Protection of Data from Discovery Admission into Evidence

23 U.S.C. 148(h)(4) states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section[HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data."

23 U.S.C. 409 states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data."

Executive Summary

The overall purpose of this program is to achieve a significant reduction in fatalities and serious injuries on all public roads through the implementation of highway safety improvement projects. Infrastructure improvement projects are selected and justified by proven data-driven approaches. All highway safety improvement projects should be chosen and implemented with the goal of reducing fatalities and serious injuries on public roads and the achievement of state safety targets. Some projects will directly impact these performance measures through the implementation of engineering countermeasures, while others may advance the data systems and analysis capabilities of the state to more accurately identify locations with the highest potential for safety improvements, evaluate the performance of highway safety improvement projects, or identify high risk roadway characteristics and driver behaviors.

In 2006, FHWA established a new approach to advancing safety by focusing on performance. In order to effectively meet performance targets, States must apply limited resources to the areas that are most likely to achieve results. The requirement to develop and regularly update a Strategic Highway Safety Plan (SHSP) ensures that this approach is maintained. NH annually tracks and reports performance measures including the numbers and rates of fatalities and serious injuries. Several other performance measures of specific interest to the State are listed in the NH SHSP.

New Hampshire has embraced the goals and vision of the national Toward Zero Deaths (TZD) initiative. The State named its SHSP New Hampshire Driving Toward Zero in recognition of the national plan, and created a public outreach program with the same name to promote change in New Hampshire's safety culture (see nhdtz.com). The initiative recognizes that even one traffic death is unacceptable and sets the aggressive goal of reducing all deaths on the nation's highways, a goal virtually achieved in the aviation industry in the past several decades. Dozens of public and private stakeholders from across the State have come together in a collaborative effort to update and implement the strategies in the SHSP. The vision of Driving Toward Zero is embodied in NH's goal of reducing the number of fatalities and serious injuries by 50% by 2030, equaling an annual reduction of 3.4%. Maine and Vermont share this target, and to that end Maine DOT and VTrans have formed a tristate collaborative partnership with NHDOT to more effectively reach the collective regional goal. NHDOT has also incorporated the reduction of fatalities into our Balanced Scorecard, representing one of the twelve Strategic Objectives of the NHDOT.

The concept of a focused approach has been further reinforced with requirements for data-driven decision making and resource allocation. 23 USC 148(c)(2), as amended by 1401(a)(1) of SAFETEA-LU, Identification and Analysis of Highway Safety Problems and Opportunities, delineates specific requirements for identifying safety problems and evaluating countermeasures. NHDOT has implemented the guidelines of the Highway Safety Manual (HSM), part D, in the selection and evaluation of safety improvements, wherever applicable. MAP21 and the subsequent FAST ACT have continued building on the concept of a safety data system that has the capability to identify key safety problems, establish their relative severity, and then adopt strategic and performance based goals to maximize safety. Recent improvements to the NH data system include the recent migration from the former Crash Management System (CRMS) to the current crash and citation database known by the moniker VISION, the compilation of the Model Inventory of Roadway Elements (MIRE) fundamental data elements (FDE), and the completion of the National Highway Traffic Safety Administration (NHTSA) Traffic Records Assessment. One of the key findings of the Traffic Records Assessment was that performance measures for data quality are needed, including measures of timeliness, accuracy, completeness, uniformity, integration and accessibility in order to guide improvements to the data and data systems.

The States are required to define a clear linkage between the behavioral NHTSA-funded Highway Safety Program and the FHWA-funded HSIP via the State's SHSP. The 2012 version (2nd edition) of the NH SHSP identified nine critical emphasis areas (CEA) to be addressed by safety stakeholders in NH, listed below. In 2014, the Education and Public Outreach committee was created thus forming the tenth CEA. This committee has developed documentation that states the challenge, primary focus, and goals for this new emphasis area. Ten critical emphasis areas: Distracted Driving, Impaired Driving, Speeding, Vehicle Occupant Protection, Teen Traffic Safety, Older Drivers, Vulnerable Roadway Users, Comprehensive Safety Data Improvement,

2019 New Hampshire Highway Safety Improvement Program Crash Locations, and Education and Public Outreach.

The 4 E's of safety (education, enforcement, engineering, and emergency medical services) should be considered in the selection and development of HSIP projects, however the primary intent of the HSIP is to target engineering improvements to infrastructure. Crash types of special interest have been identified in the crash locations CEA. The 3rd edition of the NH SHSP (2017-2021) has now been published, updating the 10 CEAs.

23 USC 148(a)(4) provides a sample listing of eligible highway safety improvement project types; however, it is important to note that only data-driven projects that target strategies identified in the State SHSP are eligible for funding in NH. Furthermore, given the limited funding available, funds should be prioritized to help ensure that projects with the greatest safety return will be the top priority. For example, addressing crashes involving animals is a possible eligible activity but since it is not addressed in the current version of the SHSP as a CEA or related strategy. Since higher safety needs have been identified, HSIP funds should not be used for that purpose in NH.

23 USC 148(e)(2) makes clear that other federal-aid funds are eligible to support and leverage the safety program. Improvements to safety features, such as guardrail, that are routinely provided as part of a broader Federal-aid project should be funded from the same source funds as the broader project when that safety feature is included in the broader project, not HSIP funds. This allows the HSIP funds to be reserved for stand-alone safety projects thereby allowing for true targeting of safety needs. This is consistent with the provision of separate funding for safety projects and with FHWA's long-standing position on the use of safety funds.

Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP Reporting Guidance dated December 29, 2016 and consists of five sections: program structure, progress in implementing highway safety improvement projects, progress in achieving safety outcomes and performance targets, effectiveness of the improvements and compliance assessment.

Program Structure

Program Administration

Describe the general structure of the HSIP in the State.

The NH HSIP is governed by a committee chaired by the NHDOT Assistant Director of Project Development and includes representatives from the NHDOT Bureaus of Highway Design, Traffic, Highway Maintenance, Rail & Transit, and Planning; RPCs, MPOs, municipalities, and the FHWA NH Division. The monthly committee meetings review the selection and progress of HSIP projects and initiatives, and program finances. Regional Planning Commissions are encouraged to incorporate the HSIP tenet of data driven project selection in their Transportation Improvement Plan development.

Where is HSIP staff located within the State DOT?

Design

How are HSIP funds allocated in a State?

• SHSP Emphasis Area Data

Describe how local and tribal roads are addressed as part of HSIP.

Municipally-maintained local roads and intersections are included in the screening with State-maintained sites and are evaluated using the same methodology. Traffic data are not available for the majority of rural collector or rural and urban local roads (functional class 8, 9, and 19), and therefore the volumes are estimated based on similar roads that have measured data. Urban and rural local roads are categorized separately from the other functional classes in network screening to account for the lower reliability of this estimated volume data. The State is working to improve volume data on the roads for which it is currently lacking. In addition, the State has involved municipal partners in two Every Day Counts 5 initiatives that will proceed in fiscal year 2020.

Identify which internal partners (e.g., State departments of transportation (DOTs) Bureaus, Divisions) are involved with HSIP planning.

- Design
- Districts/Regions
- Local Aid Programs Office/Division
- Maintenance

- Operations
- Planning
- Traffic Engineering/Safety
- Other-Administration

Describe coordination with internal partners.

The State's HSIP is centrally administered. The NHDOT selects candidates for improvement using historical network screening results which are then corroborated with recent crash data. While this project identification and selection method is more 'naive' and less rigorous than desired, it is nevertheless data-driven. The candidate locations are then disseminated to the NHDOT's safety partners via the HSIP Committee for review and comment. For all the candidate locations, the Committee will consider the scope and cost of the anticipated improvements in relation to the overall program funding constraints, and the improvement's expected benefit/cost ratio. Candidates not selected into the HSIP may be recommended for consideration via other funding programs.

To address the NHDOT's present deficit in data analysis expertise the Bureau of Highway Design has been reorganized to create a dedicated Safety Section tasked with administering the HSIP including the selection, evaluation, and delivery of infrastructure safety projects, and stewardship of the SHSP. This will enhance the NHDOT's safety capabilities by providing the necessary staff focused on this core federal program. The Safety Section continues to work with the assistance of the FHWA NH Division to regain and sustain the necessary tools and expertise for a rigorous data-driven safety program.

Identify which external partners are involved with HSIP planning.

- FHWA
- Governors Highway Safety Office
- Local Government Agency
- Regional Planning Organizations (e.g. MPOs, RPOs, COGs)

Describe coordination with external partners.

The HSIP committee meets monthly with internal and external partners. The NHDOT Bureau of Highway Design - Safety Section prepares and disseminates (by email) meeting agendas and notes, program financial data, and relevant project reports. This information is reviewed and discussed at the monthly meetings, with key items voted upon when necessary as dictated by the NHDOT HSIP Policy.

Describe other aspects of HSIP Administration on which the State would like to elaborate.

The FAST Act disqualified the use of HSIP funds for noninfrastructure projects. The NHDOT continues to work with our safety partners via the SHSP to advance non-infrastructure safety initiatives utilizing funding from NHTSA or other public or private sources.

Program Methodology

Does the State have an HSIP manual or similar that clearly describes HSIP planning, implementation and evaluation processes?

Yes

2019 New Hampshire Highway Safety Improvement Program FileName: New Hampshire HSIP Guidance2013.doc

The NH HSIP Manual is planned to be updated in FY 2020 to incorporate changes instituted with the passage of the FAST ACT as well as to document the evolution of our HSIP.

Select the programs that are administered under the HSIP.

- Bicycle Safety
- Horizontal Curve
- HRRR
- Intersection
- Left Turn Crash
- Local Safety
- Low-Cost Spot Improvements
- Median Barrier
- Pedestrian Safety
- Right Angle Crash
- Roadway Departure
- Rural State Highways
- Segments
- Shoulder Improvement
- Sign Replacement And Improvement

Program: Bicycle Safety

Date of Program Methodology:10/1/2013

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All Other-EPDO	crashes Traffic Volume	Other-Site Subtype

What project identification methodology was used for this program?

- Equivalent property damage only (EPDO Crash frequency)
- Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

2019 New Hampshire Highway Safety Improvement Program **Are local road projects identified using the same methodology as state roads?** Yes

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:50 Available funding:50

The NHDOT is creating the second edition of the NH Pedestrian and Bicycle Transportation Plan, last published in 2000, to identify opportunities for improving the efficiency and safety of non-motorized travel throughout the state.

Program: Horizontal Curve

Date of Program Methodology:10/1/2013

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway	
All crash	es Traffic	Functional	classification
Other-Run Off the Road	Volume	Other-Site Subtype	

What project identification methodology was used for this program?

• Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

2019 New Hampshire Highway Safety Improvement Program How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:50 Available funding:50

Program: HRRR

Date of Program Methodology:10/1/2013

What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
Fatal and serious injury crashes on Other-Run Off the Road	ly Traffic Volume	Other-site subtype

What project identification methodology was used for this program?

• Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:50 Available funding:50

Program: Intersection

Date of Program Methodology:10/1/2013

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway	
All	crashes Traffic	Functional	classification
Other-Run Off the Road	Volume	Other-Site Subtype	

What project identification methodology was used for this program?

• Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must

equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:50 Available funding:50

Program: Left Turn Crash

Date of Program Methodology:10/1/2013

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
Fatal and serious injury crashes on Other-Run Off the Road	ly Traffic Volume	Other-site subtype

What project identification methodology was used for this program?

• Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic Volume	Functional classification

What project identification methodology was used for this program?

- Crash frequency
- Other-RSA local agency

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Competitive application process
- Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
Fatal and serious injury crashes onl Other-Run Off the Road	ly Traffic Volume	Other-site subtype

What project identification methodology was used for this program?

- Expected crash frequency with EB adjustment
- Other-RSA request from local agencies

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Competitive application process
- Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All Other-Run Off the Road	crashes Traffic Volume	Functional classification

What project identification methodology was used for this program?

• Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? No

Describe the methodology used to identify local road projects as part of this program. no medians on local roads

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes		Exposure	Roadway
Fatal	crashes	only	

FatalcrashesonlyFatal and serious injury crashes only

What project identification methodology was used for this program?

- Crash frequency
- Equivalent property damage only (EPDO Crash frequency)
- Excess expected crash frequency using method of moments
- Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Competitive application process
- Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
Fatal and serious injury crashes o Other-Run Off the Road	nly Traffic Volume	Other-site subtype

What project identification methodology was used for this program?

• Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All Other-EPDO	crashes Traffic Volume	Other-Site Subtype

What project identification methodology was used for this program?

- Equivalent property damage only (EPDO Crash frequency)
- Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? No

Describe the methodology used to identify local road projects as part of this program. EPDO

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway	
All crashes	s Traffic	Horizontal	curvature
Fatal and serious injury crashes only	Volume	Roadside features	

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Competitive application process
- Other-HSIP Committee evaluation
- selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway	
Fatal and serious injury crashes onl	y Traffic	Median	width
Other-Run off the Road	Volume	Other-Site subtype	

What project identification methodology was used for this program?

• Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Competitive application process
- Other-HSIP Committee evaluation
- selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All Fatal and serious injury crashes	crashes Traffic only Volume	Roadside features

What project identification methodology was used for this program?

- Equivalent property damage only (EPDO Crash frequency)
- Expected crash frequency with EB adjustment

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Competitive application process
- Other-HSIP Committee evaluation
- selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Funding set-aside

What data types were used in the program methodology?

Crashes	Exposure	Roadway
Fatal and serious injury crashes of Other-Run Off the Road	nly Traffic Volume	Other-site subtype

What project identification methodology was used for this program?

- Expected crash frequency with EB adjustment
- Other-Run off the Road

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-HSIP Committee evaluation

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:50 Available funding:50

What percentage of HSIP funds address systemic improvements?

50

2019 New Hampshire Highway Safety Improvement Program HSIP funds are used to address which of the following systemic improvements?

- Add/Upgrade/Modify/Remove Traffic Signal
- Cable Median Barriers
- Horizontal curve signs
- Install/Improve Signing
- Rumble Strips
- Upgrade Guard Rails

The percentage of funds applied to systemic improvements is not fixed but varies annually depending on the availability of funds after consideration of other competing projects.

Technologies that the NHDOT does not yet use, but plans to investigate, include high friction surface treatment and durable pavement markings - possibly to include wet reflective materials - on higher class highways.

NHDOT is reviewing its rumble strip guidelines with the aim of adopting a design that will provide the safety benefits of rumble strips while reducing the nuisance exterior noise. The guideline will implement sinusoidal rumble strips to achieve this goal.

What process is used to identify potential countermeasures?

- Crash data analysis
- Engineering Study
- SHSP/Local road safety plan
- Stakeholder input

Does the State HSIP consider connected vehicles and ITS technologies? No

NHDOT has been following technological developments cooperatively with regional DOTs, but has not begun to implement specific infrastructure improvements to support connected vehicles and emerging ITS technologies.

Does the State use the Highway Safety Manual to support HSIP efforts?

Yes

Please describe how the State uses the HSM to support HSIP efforts.

The NHDOT uses the Highway Safety Manual, Part D, to support our project selection and evaluation of improvement alternatives. Crash modification factors are selected from the HSM and the CMF Clearinghouse website. The NHDOT strives to achieve an initial benefit-cost ratio of at least 2.0 for new projects to ensure that as the projects' scopes and costs evolve through the project development process, a favorable b-c ratio (greater than 1.0) can be sustained.

Describe other aspects of the HSIP methodology on which the State would like to elaborate.

The NHDOT Bureau of Highway Design has recently been reorganized, one important objective of which was the creation of a Safety Section tasked with administering the HSIP including the selection, evaluation, and

delivery of infrastructure safety projects, and stewardship of the SHSP. This new structure will enhance the NHDOT's safety capabilities by expanding upon our staff focused on this core federal program. The new Safety Section will also continue to work closely with FHWA to develop and sustain the NHDOT's data analysis capabilities needed to support our HSIP.

Project Implementation

Funds Programmed

Reporting period for HSIP funding.

Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

FUNDING CATEGORY	PROGRAMMED	OBLIGATED	% OBLIGATED/PROGRAMMED
HSIP (23 U.S.C. 148)	\$7,282,377	\$7,279,077	99.95%
HRRR Special Rule (23 U.S.C. 148(g)(1))	\$157,624	\$157,624	100%
Penalty Funds (23 U.S.C. 154)	\$0	\$0	0%
Penalty Funds (23 U.S.C. 164)	\$0	\$0	0%
RHCP (for HSIP purposes) (23 U.S.C. 130(e)(2))	\$1,303,559	\$1,303,559	100%
Other Federal-aid Funds (i.e. STBG, NHPP)	\$0	\$0	0%
State and Local Funds	\$0	\$0	0%
Totals	\$8,743,560	\$8,740,260	99.96%

How much funding is programmed to local (non-state owned and operated) or tribal safety projects?

0%

How much funding is obligated to local or tribal safety projects?

0%

Local safety projects are eligible for consideration for HSIP funding, but no specific program funding level has been established. Local projects are commonly identified via road safety audits.

How much funding is programmed to non-infrastructure safety projects? \$88,000

How much funding is obligated to non-infrastructure safety projects?

\$88,000

This programmed figure is not a set-aside and varies annually depending on the priorities. Non-infrastructure safety projects during the reporting period were limited to road safety audits.

How much funding was transferred in to the HSIP from other core program areas during the reporting period under 23 U.S.C. 126?

\$0

How much funding was transferred out of the HSIP to other core program areas during the reporting period under 23 U.S.C. 126?

\$0

NHDOT does not transfer funds into or out of HSIP.

Discuss impediments to obligating HSIP funds and plans to overcome this challenge in the future.

The State of New Hampshire Highway Fund, comprised of revenue from motor vehicle fuel taxes and other fees, is devoted to State-funded highway operations and maintenance. Thus New Hampshire's Federal highway funding, rather than being matched by State funds, is matched by Federal funds in the form of turnpike toll credits. The result is that highway safety funding in New Hampshire is entirely reliant on Federal funding. Any interruption of Federal highway funding would lead to a cessation of New Hampshire's highway safety program. Also, this lack of State highway funds also prevents the State of New Hampshire from being able to leverage the limited Federal safety funds by matching them with State funds, which could support an expanded safety program.

Describe any other aspects of the State's progress in implementing HSIP projects on which the State would like to elaborate.

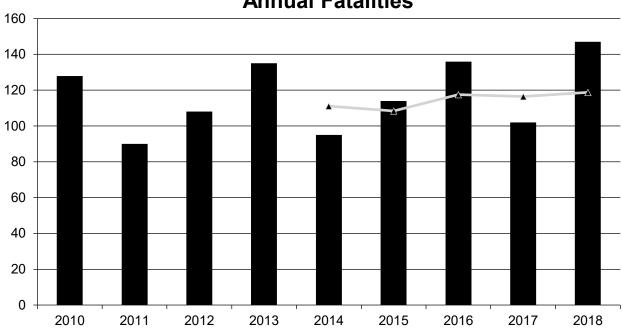
The NHDOT road safety audit application and selection process provides a predictable and objective means for communities to have their priority safety concerns addressed in a timely manner. Furthermore, the use of CMFs provides a data driven process for selecting and evaluating countermeasures.

List the projects obligated using HSIP funds for the reporting period.

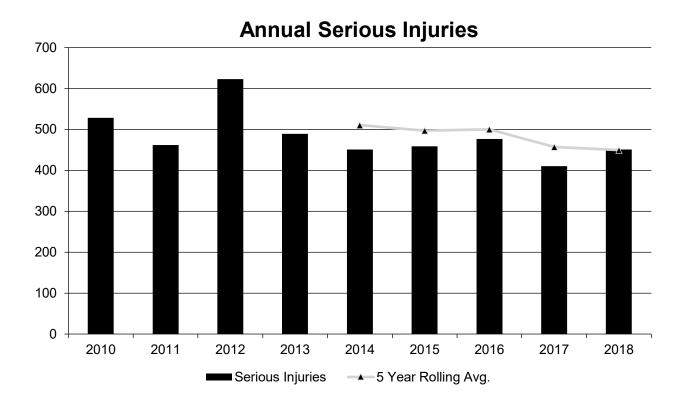
PROJECT NAME	IMPROVEMENT CATEGORY	SUBCATEGORY	OUTPUTS	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGORY	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATION	AADT	SPEED	OWNERSHIP	METHOD FOR SITE SELECTION	SHSP EMPHASIS AREA	SHSP STRATEGY
Belmont 16203	Intersection geometry	Auxiliary lanes - add left-turn lane	1	Intersections	\$60,500	\$60,500	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Other	12,534	40	State Highway Agency	Spot	Intersections	Reducing intersection crashes - offset turn lanes
Concord 24921	Intersection traffic control	Modify traffic signal timing - signal coordination	2	Intersections	\$190,311	\$190,311	HSIP (23 U.S.C. 148)	Urban	Principal Arterial- Other	14,580	40	State Highway Agency	Spot	Intersections	Reduce intersection crashes - traffic signals
Canterbury- Northfield 41057	Interchange design	Extend existing lane on ramp	1	Interchanges	\$59,208	\$59,208	HSIP (23 U.S.C. 148)	Rural	Minor Arterial	5,800	25	State Highway Agency	Spot	Intersections	Reduce intersection crashes
Statewide 41338	Intersection traffic control	Modify traffic signal - add backplates with retroreflective borders	192	Intersections	\$636,681	\$636,681	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0		State Highway Agency	Systemic	Intersections	Reduce intersection crashes - traffic signals
Statewide 40803	Roadside	Barrier- metal	14,000	Linear feet of guardrail replacements	\$1,074,257	\$1,074,257	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes - Guardrails & terminal units
Rochester 41849	Intersection geometry	Auxiliary lanes - add two-way left- turn lane	0.5	Miles	\$550,450	\$550,450	HSIP (23 U.S.C. 148)	Urban	Principal Arterial- Other	15,128	50	State Highway Agency	Spot	Intersections	Reduce intersection crashes
Derry 24861	Intersection geometry	Auxiliary lanes - add left-turn lane	1	Intersections	\$1,395,350	\$1,395,350	HSIP (23 U.S.C. 148)	Urban	Minor Arterial	12,868	45	State Highway Agency	Road safety audit	Intersections	Reduce intersection crashes - Traffic signals & offset turn lanes
Carroll- Whitefield- Jefferson 41781	Roadside	Barrier- metal	9,000	Linear feet of guardrail replacements	\$750,399	\$750,399	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes - Guardrails & terminal units
Colebrook- Dixville 41783	Roadside	Barrier- metal	11,000	Linear feet of guardrail replacements		\$928,843	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes - Guardrails & terminal units

PROJECT NAME	IMPROVEMENT CATEGORY	SUBCATEGORY	OUTPUTS	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGORY	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATION	AADT	SPEED	OWNERSHIP	METHOD FOR SITE SELECTION	SHSP EMPHASIS AREA	SHSP STRATEGY
Fitzwilliam 16211	Access management	Raised island - install new	1	Intersections	\$1,144,617	\$1,144,617	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Other	5,800	35	State Highway Agency	Road Safety Audit	Intersections	Reduce intersection crashes -
Statewide 41604	Roadside	Barrier- metal	18,700	Linear feet of guardrail replacements	\$645,618	\$645,618	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes Guardrail 8 terminal units
Statewide 28139	Roadway signs and traffic control	Curve-related warning signs and flashers	1	D6 - District wide	\$165,000	\$165,000	HSIP (23 U.S.C. 148)	Urban	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes Curve warning signs & devices
Statewide 28134		Curve-related warning signs and flashers	1	D1 - District wide	\$220,000	\$220,000	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes Curve warning signs & devices
Northumberland- Stratford 41898	Roadside	Barrier- metal	11,000	Linear feet of guardrail replacements	\$55,000	\$55,000	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0		State Highway Agency	Spot	Roadway Departure	Reduce lane departure crashes Guardrails 8 terminal units
Claremont 25621	Access management	Change in access - close or restrict existing access	2	Access points	\$33,000	\$33,000	HSIP (23 U.S.C. 148)	Urban	Minor Arterial	20,900	30	City or Municipal Highway Agency	Road Safety Audit	Intersections	Reduce intersection crashes Access management near intersections
Swanzey 40485	Intersection traffic control	Modify control - two-way stop to roundabout	1	Intersections	\$220,000	\$220,000	HSIP (23 U.S.C. 148)	Rural	Major Collector	5,700	30	State Highway Agency	Spot	Intersections	Reduce intersection crashes Roundabouts
Statewide 41899	Roadside	Barrier- metal	6,800	Linear feet of guardrail replacements	\$55,000	\$55,000	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes - Guardrails 8 terminal units
Statewide 41897	Roadside	Barrier- metal	14,600	Linear feet of guardrail replacements	\$55,000	\$55,000	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes - Guardrails 8 terminal units

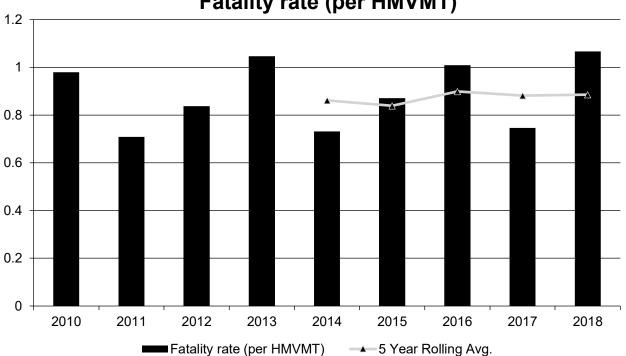
2019 New Hampshire Highway Safety Improvement Program


PROJECT NAME	IMPROVEMENT CATEGORY	SUBCATEGORY	OUTPUTS	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGORY	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATION	AADT	SPEED	OWNERSHIP	METHOD FOR SITE SELECTION	SHSP EMPHASIS AREA	SHSP STRATEGY
Tilton 29358	Intersection traffic control	Intersection flashers - add overhead (continuous)	1	Intersections	\$8,800	\$8,800	HSIP (23 U.S.C. 148)	Urban	Principal Arterial- Other	21,570	40	State Highway Agency	Road Safety Audit	Intersections	Reduce intersection crashes - Flashing beacons
Chester 41848	Intersection traffic control	Intersection traffic control - other	1	Intersections	\$82,500	\$82,500	HSIP (23 U.S.C. 148)	Rural	Major Collector	6,736	30	State Highway Agency	Road Safety Audit	Intersections	Reduce intersection crashes
Statewide 40921	Non- infrastructure	Road safety audits			\$60,500	\$60,500	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0			Systemic	Intersections	Reduce intersection crashes
Somersworth 42110	Non- infrastructure	Road safety audits	1	Locations	\$36,300	\$36,300	HSIP (23 U.S.C. 148)	Urban	Minor Arterial	5,000	40	State Highway Agency	Road Safety Audit	Intersections	Reduce intersection crashes
Statewide 41269	Roadside	Barrier- metal	10500	Linear feet of guardrail replacements	\$3300	\$3300	HSIP (23 U.S.C. 148)	Multiple/Varies	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Reduce lane departure crashes - Guardrails & terminal units

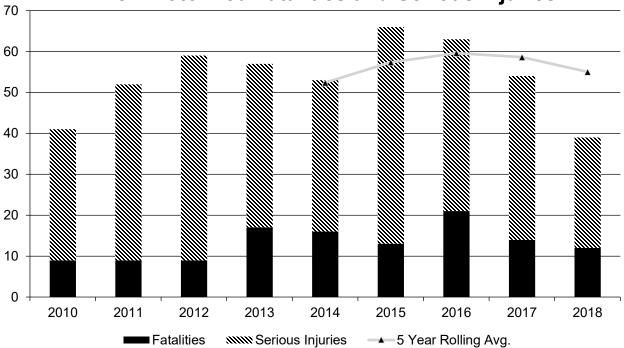
Safety Performance


General Highway Safety Trends

Present data showing the general highway safety trends in the State for the past five years.


PERFORMANCE MEASURES	2010	2011	2012	2013	2014	2015	2016	2017	2018
Fatalities	128	90	108	135	95	114	136	102	147
Serious Injuries	528	462	623	489	451	459	477	410	451
Fatality rate (per HMVMT)	0.980	0.708	0.838	1.046	0.732	0.871	1.009	0.746	1.067
Serious injury rate (per HMVMT)	4.041	3.632	4.832	3.790	3.477	3.505	3.540	2.997	3.275
Number non-motorized fatalities	9	9	9	17	16	13	21	14	12
Number of non- motorized serious injuries	32	43	50	40	37	53	42	40	27

Fatalities — 5 Year Rolling Avg.



Annual Fatalities

Serious injury rate (per HMVMT) Serious injury rate (per HMVMT) → 5 Year Rolling Avg.

Fatality rate (per HMVMT)

Non Motorized Fatalities and Serious Injuries

Data sources are prescribed by the regulations:

Fatalities: NHTSA Rate of Fatalities (HMVMT): NHTSA & HPMS Serious Injuries: NH Department of Safety (NHDOS) Rate of Serious Injuries (HMVMT): NHDOS & HPMS Non Motorized Fatalities & Serious Injuries: NHTSA & NHDOS

NHTSA – Fatality data is posted by NHTSA. The source is considered consistent and reliable. Data is available from 2007 allowing for the use of 5-yr averages for trend analysis.

HPMS – Traffic volume data is calculated by DOT and posted by FHWA. The source is considered consistent and reliable. Data is available from 2007 allowing for the computation of 5-yr averages for trend analysis.

DOS – Serious injury data for motorized and non-motorized crashes is gathered from the NHDOS Division of Motor Vehicle's VISION database and provided to the NHDOT. Sufficient annual data is available (via VISION and its predecessor, IDMS) to permit the computation of five-year averages for trend analysis. Some of the annual variation in the data may be due to the more subjective nature of determining what constitutes a serious injury crash. Model Minimum Uniform Crash Criteria (MMUCC) introduced in recent years have helped to standardize the definition and proper classification of serious injuries.

Describe fatality data source.

FARS

To the maximum extent possible, present this data by functional classification and ownership.

Year 2016

Functional Classification	Number of Fatalities (5-yr avg)	Number of Serious Injuries (5-yr avg)		Serious Injury Rate (per HMVMT) (5-yr avg)
Rural Principal Arterial (RPA) - Interstate				
Rural Principal Arterial (RPA) - Other Freeways and Expressways				
Rural Principal Arterial (RPA) - Other				
Rural Minor Arterial				
Rural Minor Collector				
Rural Major Collector				
Rural Local Road or Street				
Urban Principal Arterial (UPA) - Interstate				
Urban Principal Arterial (UPA) - Other Freeways and Expressways				
Urban Principal Arterial (UPA) - Other				
Urban Minor Arterial				
Urban Minor Collector				
Urban Major Collector				
Urban Local Road or Street				
other	0.35	2.36	0	0.02

Roadways	Number of Fatalities (5-yr avg)	Number of Serious Injuries (5-yr avg)	Fatality Rate (per HMVMT) (5-yr avg)	Serious Injury Rate (per HMVMT) (5-yr avg)
State Highway Agency				
County Highway Agency	0	0	0	0
Town or Township Highway Agency				
City or Municipal Highway Agency				
State Park, Forest, or Reservation Agency	0	0	0	0
Local Park, Forest or Reservation Agency	0	0	0	0
Other State Agency				
Other Local Agency	0	0	0	0
Private (Other than Railroad)				
Railroad	0	0	0	0
State Toll Authority	0	0	0	0
Local Toll Authority	0	0	0	0
Other Public Instrumentality (e.g. Airport, School, University)	0	0	0	0
Indian Tribe Nation	0	0	0	0
other	0.35	2.36	0	0.02

Year 2016

Due to the NH Department of Safety's migration from their former crash records database (known as CRMS) to a new MMUCC-compliant system (known as VISION), geolocated serious injury data is not yet available for querying by functional classification. The NHDOT continues to coordinate with our safety partners within state government to make this vital safety data available.

In the reporting of serious injury crashes by road ownership, an additional six serious injury crashes occurred on roads without VMT data. These crashes have been omitted from the table above as the tool does not allow entry of a crash number without an accompanying crash rate. **Safety Performance Targets**

Calendar Year 2020 Targets *

Number of Fatalities:118.8

Describe the basis for established target, including how it supports SHSP goals.

Trend analysis of the fatalities data produces mostly intuitive results. The 2018 five year average is 118.8 fatalities. Fatalities in the last decade have shown wide variation over a one to two year cycle, with the number of 2018 fatalities being the highest recorded value for the decade. The five year average of the number of fatalities also increased from 2017 to 2018, but with the five-year average trend line mostly attenuating the large annual increase. The annual fatalities rates and the five year averages exhibit similar patterns seen in the numbers of fatalities. The rising trend computed by the data is not acceptable as a target as it would be contrary to the core objective of the state's Driving Toward Zero initiative, thus a level trend has been selected as the target. A 2020 target of 118.8 fatalities (maintaining the 2018 five-year average) is recommended. The rising trend computed by the data is not acceptable as a target as it would be contrary to the core objective of the state's Driving Toward Zero initiative, at a level trend has been selected as the target. A 2020 target of 118.8 fatalities (maintaining the 2018 five-year average) is recommended. The rising trend computed by the data is not acceptable as a target as it would be contrary to the core objective of the state's Driving Toward Zero initiative.

Number of Serious Injuries:448.0

Describe the basis for established target, including how it supports SHSP goals.

Trend analysis shows reductions in both the number and rate of serious injuries. The computed 2020 targets represent 3.7% and 4.8% reductions respectively from the 2018 five year averages. The computed targets are substantially lower than any historical values within the analysis period (with the exception of 2017). A 2020 target of 448 serious injuries is recommended as it would be a more achievable goal consistent with the observed safety performance in recent years, yet would still represent the best serious injury performance in the decade. This target represents an annual reduction in the five year average of 0.2%.

Fatality Rate:0.885

Describe the basis for established target, including how it supports SHSP goals.

Trend analysis of the fatalities data produces mostly intuitive results. The 2018 five year average fatality rate is 0.885 per HMVMT. Fatalities in the last decade have shown wide variation over a one to two year cycle, with the number of 2018 fatalities being the highest recorded value for the decade. The five year average of the number of fatalities also increased from 2017 to 2018, but with the five-year average trend line mostly attenuating the large annual increase. The annual fatalities rates and the five year averages exhibit similar patterns seen in the numbers of fatalities. A 2020 target fatality rate of 0.885 fatalities per HMVMT (maintaining the 2018 five-year average) is recommended. The rising trend computed by the data is not acceptable as a target as it would be contrary to the core objective of the state's Driving Toward Zero initiative, thus a level trend has been selected as the target.

Serious Injury Rate: 3.269

2019 New Hampshire Highway Safety Improvement Program **Describe the basis for established target, including how it supports SHSP goals.**

Trend analysis shows reductions in both the number and rate of serious injuries. The computed 2020 targets represent 3.7% and 4.8% reductions respectively from the 2018 five year averages. The computed targets are substantially lower than any historical values within the analysis period (with the exception of 2017). A 2020 target serious injury rate of 3.269 fatalities per HMVMT is recommended as it would present a more achievable goal while still representing better performance than has been observed in the decade. This target represents an annual reduction in the five year average of 1.4%.

Total Number of Non-Motorized Fatalities and Serious Injuries:51.6

Describe the basis for established target, including how it supports SHSP goals.

Trend analysis shows a slightly declining trend and a 2020 target value of 53.1 non-motorized fatalities and serious injuries. Although the trend line is declining, the computed target value is actually higher than the 2018 five-year average performance. In this instance, a more aggressive target value would be appropriate. A 2020 target of 51.6 fatalities and serious injuries (i.e., maintaining the 2018 performance) is recommended. This target would be consistent with the performance trend since 2015 and would represent a more aggressive, although still realistic, performance level.

In concert with the collaborative and data-driven Strategic Highway Safety Plan, the annual safety performance targets have as their basis the SHSP's fundamental goal of reducing fatal crashes by half by the year 2030, with the ultimate goal of zero fatalities. A similar motivating goal drives the targets for serious injuries, both for motorized and non-motorized modes. The process of target setting, likewise, emulates the SHSP in that it is collaborative, involving many of the same safety stakeholders who are instrumental in the SHSP, and uses objective data-driven methods wherever possible to derive and inform the safety targets.

Describe efforts to coordinate with other stakeholders (e.g. MPOs, SHSO) to establish safety performance targets.

Building upon the successful target-setting practices that had been developed and documented in prior years, the NHDOT began the annual target-setting with a meeting among the safety stakeholders. A meeting among the principal participants in the target setting, including the NHDOT, the NH Office of Highway Safety (NHOHS), a representative MPO, and the FHWA NH Division was held in April 2019 to review and confirm the target-setting process to be undertaken. Using data provided by the NH Department of Safety (NHDOS) and Division of Motor Vehicles, the NHDOT compiled the data, computed draft targets, modified the targets as appropriate to consider the influence of potential external factors, and composed narratives to document and defend the selected targets. These draft targets were reviewed with the NHDOT HSIP Committee and the NHOHS, as well as NHDOT and NHDOS leadership for concurrence. The accepted targets for the three common safety performance measures (number of fatalities, rate of fatalities, number of serious injuries) were published by the NHOHS in their annual Highway Safety Plan.

Does the State want to report additional optional targets?

No

Describe progress toward meeting the State's 2018 Safety Performance Targets (based on data available at the time of reporting). For each target, include a discussion of any reasons for differences in the actual outcomes and targets.

Comparison of 2018 targets (from 2017 HSIP annual report) vs actual performance Fatalities: 2018 target = 113.2, 2018 actual = 118.8, 2017 actual = 116.4 [2018 did not achieve or make progress toward target] Fatality rate: 2018 target = 0.866, 2018 actual = 0.885, 2017 actual = 0.882 [2018 did not achieve or make progress toward target] Serious injuries: 2018 target = 499.8, 2018 actual = 449.6, 2017 actual = 457.2 [2018 performance achieved target] Serious injury rate: 2018 target = 3.847, 2018 actual = 3.359, 2017 actual = 3.464 [2018 performance achieved target] Non-motorized fatalities and serious injuries: 2018 target = 51.4, 2018 actual = 51.6, 2017 actual = 58.6 [2018 performance made significant progress toward target]

Discussion

NH fatal crash performance continues to show large variance on an annual or biannual cycle in recent years. The possible causes of the 2018 fatality spike have not been determined, although the same principal causes of fatalities are generally seen in both the higher and lower fatality years, namely impairment, distraction, speeding, and lack of restraint use. Safety stakeholders continue to work for the adoption of an adult seatbelt law as the most effective means of reducing the number of fatalities. The NHDOT is also investigating a potential shift in our infrastructure expenditures toward more systemic and fewer spot improvements, as a more effective application of our safety funds. It is also worth noting that NHDOT continues to not flex any HSIP funds.

Serious injury numbers continue to fall, but it should be acknowledged that some of this improvement is possibly due to better reporting accuracy resulting from the adoption of MMUCC standards. In the early years of this decade the large annual variation in serious injury numbers was believed to be at least partly attributed to inconsistencies in the diagnosis and reporting of serious injury crashes.

Non-motorized crash performance is showing favorable trends; however, because the crash numbers are relatively low they are subject to proportionally large statistical variation. NHDOT is embarking on a statewide effort to improve pedestrian crossings via the Every Day Counts 5 initiative.

Applicability of Special Rules

Does the HRRR special rule apply to the State for this reporting period? No

Provide the number of older driver and pedestrian fatalities and serious injuries 65 years of age and older for the past seven years.

PERFORMANCE MEASURES	2012	2013	2014	2015	2016	2017	2018
Number of Older Driver and Pedestrian Fatalities	21	22	33	23	23	20	30
Number of Older Driver and Pedestrian Serious Injuries	60	65	57	72	80	80	67

Evaluation

Program Effectiveness

How does the State measure effectiveness of the HSIP?

- Benefit/Cost Ratio
- Change in fatalities and serious injuries

Project locations are reviewed by 'naïve' evaluation of before/after safety performance.

Based on the measures of effectiveness selected previously, describe the results of the State's program level evaluations.

NHDOT's HSIP program is data driven using crash data to select candidate locations for improvement and CMFs to select and evaluate countermeasures based on their benefit/cost ratios. This creates a program that relies heavily on data and improves locations based on the severity of crashes and cost effective improvements. The program's goal is to reduce fatal and serious injury crashes on NH roadways by improving safety with the proposed improvements.

NHDOT's HSIP program also includes systemic projects. These projects improve safety statewide and have included several types of projects including the following: construction of median barriers on divided highways, installation of horizontal curve warning signs to comply with MUTCD, installation of retroreflective backplates on traffic signals, installation of centerline and shoulder rumble strips, and replacement of deficient guardrail and terminal units to meet current safety standards.

NHDOT feels these programs have reduced fatalities and serious injuries on NH roadways because these are all proven safety countermeasures, but this has not been corroborated with system-wide data analysis.

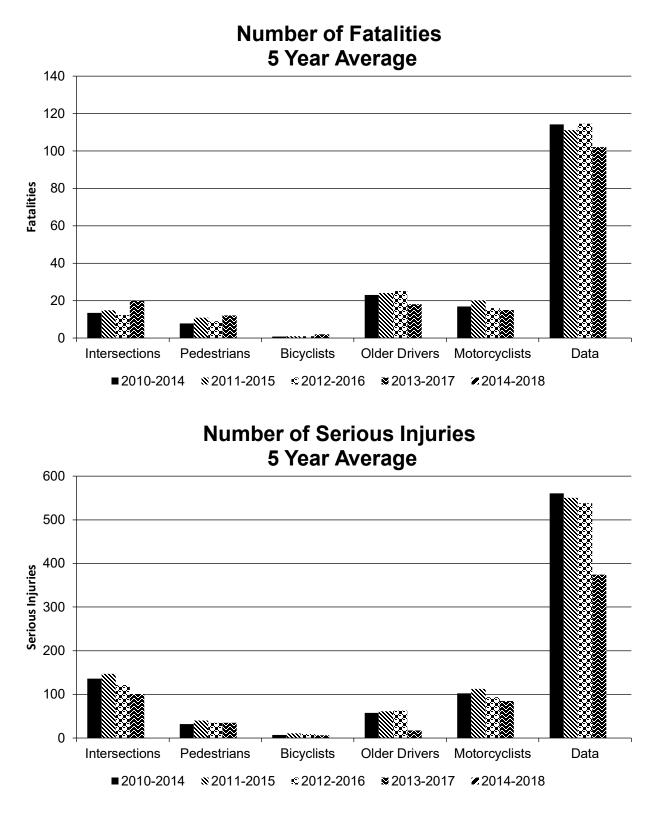
What other indicators of success does the State use to demonstrate effectiveness and success of the Highway Safety Improvement Program?

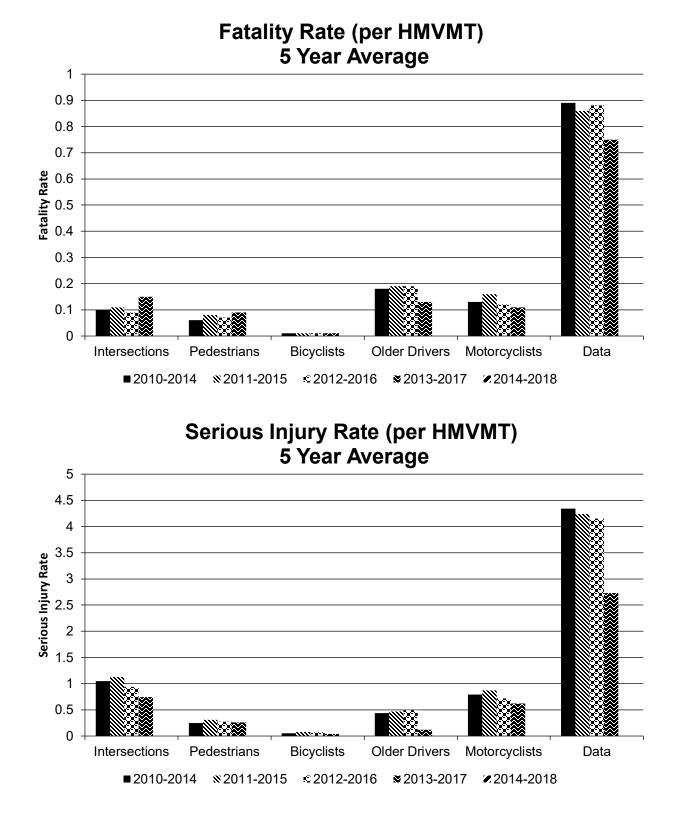
- # RSAs completed
- HSIP Obligations
- Increased awareness of safety and data-driven process
- More systemic programs
- Organizational change

At the start of FY 2018 the NHDOT Bureau of Highway Design expanded its Safety Section, which historically been comprised of one or two individuals, to five individuals to provide a more robust level of program support.

The NHDOT aims to continue to expand our RSA program by encouraging communities, via the RPCs and MPOs, to apply for RSAs. The RSA candidates are screened according to crash history, and the program has delivered worthwhile projects. The NHDOT also continues to deliver systemic projects with a recent emphasis on installing rumble strips, improving deficient guardrail elements, installing MUTCD-compliant curve warning signs, and enhancing signalized intersections with retroreflective backplates.

A planned initiative will continue system signal improvements by installing flashing yellow arrows to control permissive left turns currently operating under a green ball signal indication. Both the flashing yellow arrows and retroreflective backplates initiatives are planned to be expanded to municipal roadways as well.


2019 New Hampshire Highway Safety Improvement Program Describe significant program changes that have occurred since the last reporting period.


In response to frequent noise complaints related to 'standard' rumble strips, but in recognition of the proven safety value of rumble strips, NHDOT is updating our guidelines to incorporate 'sinusoidal' rumble strips in our standard practice. Using guidance from other State DOTs, the NHDOT was able to select a 'sinusoidal' design that provides the safety benefit proven to reduce lane departure crashes while reducing their undesirable exterior noise.

Effectiveness of Groupings or Similar Types of Improvements

Present and describe trends in SHSP emphasis area performance measures.

		Year 20 ⁴	17		
SHSP Emphasis Area	Targeted Crash Type	Number of Fatalities (5-yr avg)	Number of Serious Injuries (5-yr avg)	Fatality Rate (per HMVMT) (5-yr avg)	Serious Injury Rate (per HMVMT) (5-yr avg)
Intersections		20	101	0.15	0.74
Pedestrians		12	35	0.09	0.26
Bicyclists		2	6	0.01	0.04
Older Drivers		18	17	0.13	0.12
Motorcyclists		15	85	0.11	0.62
Data		102	374	0.75	2.73

Due to the NH Department of Safety's recent migration from their former crash records database (known as CRMS) to a new MMUCC-compliant system (known as VISION), geolocated serious injury data is not available for querying. Because of this data deficiency, the NHDOT is not able to provide actual 2018 counts for fatal crashes related to lane or roadway departure, or intersections, or serious injury crashes related to lane

departure. Rather than enter '0' for the missing data (and thereby skew the computed averages), 2018 values have been estimated to produce 5-year averages similar to the 2017 annual report.

Has the State completed any countermeasure effectiveness evaluations during the reporting period?

No

The NHDOT does not presently have the resources to conduct rigorous evaluations of countermeasure effectiveness; however, the NHDOT is an active participant in the project advisory committee of the FHWA pooled fund study for the Evaluation of Low-Cost Safety Improvements, which provides valuable data to support program decisions.

Project Effectiveness

Provide the following information for previously implemented projects that the State evaluated this reporting period.

LOCATION	FUNCTIONAL CLASS	IMPROVEMENT CATEGORY	IMPROVEMENT TYPE	PDO BEFORE	PDO AFTER	FATALITY BEFORE	FATALITY AFTER	SERIOUS INJURY BEFORE	SERIOUS INJURY AFTER	ALL OTHER INJURY BEFORE	ALL OTHER INJURY AFTER	TOTAL BEFORE	TOTAL AFTER	EVALUATION RESULTS (BENEFIT/COST RATIO)
Pittsfield 24842	Rural Minor Arterial	Intersection geometry	Auxiliary lanes - modify left- turn lane offset											
Whitefield P2953	Rural Principal Arterial (RPA) - Other	Roadway	Roadway - other	29.00	13.00	1.00		2.00		4.00	4.00	36.00	17.00	1.48
Statewide 15358	Rural Principal Arterial (RPA) - Other	Roadway	Rumble strips - center			4.00						4.00		
Derry 13249	Urban Principal Arterial (UPA) - Other	Intersection traffic control	Modify traffic signal - modernization/replacement	62.00	114.00		1.00		4.00	12.00	12.00	74.00	131.00	0.78
New London 14451A	Rural Principal Arterial (RPA) - Other	Roadway	Roadway narrowing (road diet, roadway reconfiguration)	23.00	56.00	1.00		3.00		6.00	6.00	33.00	62.00	19.05
Boscawen 13957A	Rural Principal Arterial (RPA) - Other		Intersection geometry - other	2.00	2.00			2.00		4.00	4.00	8.00	6.00	0.32
Holderness 15309	Rural Principal Arterial (RPA) - Other	Intersection geometry	Intersection geometrics - modify skew angle	7.00						1.00	1.00	8.00	1.00	3.61
Pittsfield 15622	Rural Principal Arterial (RPA) - Other		Modify traffic signal - modernization/replacement	13.00	2.00					7.00	7.00	20.00	9.00	1.65
Brentwood 15619	Rural Principal Arterial (RPA) - Other	Intersection traffic control	Modify traffic signal - modernization/replacement	9.00	12.00	1.00		1.00		14.00	14.00	25.00	26.00	36.86
Greenland 15618	Urban Principal Arterial (UPA) - Other	Intersection geometry	Auxiliary lanes - add left- turn lane	26.00	20.00				1.00	7.00	7.00	33.00	28.00	3.02
Boscawen 15621	Rural Principal Arterial (RPA) - Other	Intersection traffic control	Modify control - two-way stop to roundabout	14.00	16.00					6.00	6.00	20.00	22.00	0.55
Hampstead- Atkinson 15663	Urban Minor Collector	Intersection geometry	Auxiliary lanes - add right- turn lane	15.00	11.00	1.00				3.00	3.00	19.00	14.00	6.78

LOCATION	FUNCTIONAL	IMPROVEMENT CATEGORY	IMPROVEMENT TYPE	PDO BEFORE	PDO AFTER	FATALITY BEFORE	FATALITY AFTER	SERIOUS INJURY BEFORE	SERIOUS INJURY AFTER	ALL OTHER INJURY BEFORE	ALL OTHER INJURY AFTER	TOTAL BEFORE	TOTAL AFTER	EVALUATION RESULTS (BENEFIT/COST RATIO)
Lyme 15695	Rural Minor Collector	Intersection geometry	Intersection geometrics - modify skew angle	2.00	1.00					1.00	1.00	3.00	2.00	1.39
Effingham 16041	Rural Principal Arterial (RPA) - Other	Intersection traffic control	Intersection signing - add enhanced regulatory sign (double-up and/or oversize)	6.00	1.00	3.00				2.00	2.00	11.00	3.00	532.64
Epping 15693	Rural Principal Arterial (RPA) - Other	Intersection geometry	Through lanes - add additional through lane	56.00	49.00			1.00	1.00	18.00	18.00	75.00	68.00	1.16
Keene 20812	Urban Principal Arterial (UPA) - Other	Intersection traffic control	Modify control - two-way stop to roundabout	12.00	1.00			1.00		1.00	1.00	14.00	2.00	0.93
Swanzey 15697A	Rural Minor Arterial	Roadside	Removal of roadside objects (trees, poles, etc.)	9.00	3.00					9.00	9.00	18.00	12.00	375.83
Barrington 16201	Rural Principal Arterial (RPA) - Other	Intersection geometry	Auxiliary lanes - add left- turn lane	12.00	4.00			1.00		6.00	6.00	19.00	10.00	0.90
Barnstead 16200	Rural Principal Arterial (RPA) - Other	Intersection geometry	Auxiliary lanes - add left- turn lane	17.00	1.00			2.00		4.00	4.00	23.00	5.00	1.58
Candia 16413	Rural Minor Collector	Intersection geometry	Intersection geometrics - re-assign existing lane use	3.00	12.00			1.00		3.00	3.00	7.00	15.00	5.9

Compliance Assessment

What date was the State's current SHSP approved by the Governor or designated State representative?

07/19/2017

What are the years being covered by the current SHSP?

From: 2017 To: 2021

When does the State anticipate completing it's next SHSP update?

2021

Provide the current status (percent complete) of MIRE fundamental data elements collection efforts using the table below.

ROAD TYPE		NON LOCAL PAVED ROADS - SEGMENT		NON LOCAL PA ROADS - INTER		NON LOCAL PA ROADS - RAMP		LOCAL PAVED I	ROADS	UNPAVED ROAI	DS
	NO.)	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	
ROADWAY SEGMENT	Segment Identifier (12)	100	100					100	100	100	100
	Route Number (8)	100	100								
	Route/Street Name (9)	100	100								
	Federal Aid/Route Type (21)	100	100								
	Rural/Urban Designation (20)	100	100					100	100		
	Surface Type (23)	100	100					100	100		
	Begin Point Segment Descriptor (10)	100	100					100	100	100	100
	End Point Segment Descriptor (11)	100	100					100	100	100	100
	Segment Length (13)	100	100								
	Direction of Inventory (18)	100	100								
	Functional Class (19)	100	100					100	100	100	100
	Median Type (54)	80	2								
	Access Control (22)	100	100								

ROAD TYPE	MIRE NAME (MIRE	NON LOCAL PAV ROADS - SEGMEN		NON LOCAL PA ROADS - INTER		NON LOCAL PA ROADS - RAMPS		LOCAL PAVED I	ROADS	UNPAVED ROA	DS
	NO.)	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	
	One/Two Way Operations (91)	100	100								
	Number of Through Lanes (31)	100	100					100	100		
	Average Annual Daily Traffic (79)	100	100					100	100		
	AADT Year (80)	100	100								
	Type of Governmental Ownership (4)	100	100					100	100	100	100
INTERSECTION	Unique Junction Identifier (120)			100	100						
	Location Identifier for Road 1 Crossing Point (122)			100	100						
	Location Identifier for Road 2 Crossing Point (123)			100	100						
	Intersection/Junction Geometry (126)			100	100						
	Intersection/Junction Traffic Control (131)			5	5						
	AADT for Each Intersecting Road (79)			100	100						
	AADT Year (80)			100	100						
	Unique Approach Identifier (139)			100	100						
INTERCHANGE/RAMP	Unique Interchange Identifier (178)					5					
	Location Identifier for Roadway at Beginning of Ramp Terminal (197)					100	100				
	Location Identifier for Roadway at Ending Ramp Terminal (201)					100	100				
	Ramp Length (187)					100	100				

ROAD TYPE	MIRE NAME (MIRE	NON LOCAL PA ROADS - SEGM		NON LOCAL PA ROADS - INTER		NON LOCAL PA ROADS - RAMP		LOCAL PAVED	LOCAL PAVED ROADS UNPAVED RO		OS
	NO.)	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	
	Roadway Type at Beginning of Ramp Terminal (195)					100	100				
	Roadway Type at End Ramp Terminal (199)					100	100				
	Interchange Type (182)					5					
	Ramp AADT (191)					100	100				
	Year of Ramp AADT (192)					100	100				
	Functional Class (19)					100	100				
	Type of Governmental Ownership (4)					100	100				
Totals (Average Perc	ent Complete):	98.89	94.56	88.13	88.13	82.73	81.82	100.00	100.00	100.00	100.00

*Based on Functional Classification

NHDOT has completed data collection for all but four of the Fundamental Data Elements. Those elements are median type, intersection / junction traffic control, unique interchange identifier, and interchange type. All FDEs will be collected on roads of Function Class 1 through 7. Work is nearing completion on median types for State roads, while the data collection efforts are in their early stages for the remaining FDEs.

Describe actions the State will take moving forward to meet the requirement to have complete access to the MIRE fundamental data elements on all public roads by September 30, 2026.

NHDOT has completed data collection for all but four of the Fundamental Data Elements. Those remaining elements are median type, intersection/junction traffic control, unique interchange identifier, and interchange type. All FDEs will be collected on roads with function class 1 through 7. Data collection is nearing completion for median types on State roads, while the data collection is in its early stages for the remaining incomplete FDEs. Much of the data for the incomplete FDEs is available, but in formats incompatible with GIS. The collection and management of the MIRE FDEs occurs within the NHDOT's Bureau of Planning and Community Assistance - GIS Section and is stored in the roadway data inventory. We use an ArcGIS environment along with an Oracle database. This data is also shared on 'NH GRANIT', which is NH's statewide GIS clearinghouse. Most elements are collected and updated on an annual basis by staff in the Planning and Community Assistance Bureau. Existing collection methodologies include collection by visiting sites and entering data into a laptop, or using aerial imagery and other forms of imagery to locate elements. Nightly scripts are run to aggregate the data. We continue to investigate the use of more modern methods of data collection such as with tablets and mobile devices, via Lidar, and with other emerging technologies. All data collection and fund the collection of the data leveraging existing GIS tools and within the limitations of our resources.

Did the State conduct an HSIP program assessment during the reporting period?

No

Two assessments, a program self assessment and a safety data capabilities assessment, are scheduled for early FY 2019. The results will be reported next year. When does the State plan to complete its next HSIP program assessment.

Optional Attachments

Program Structure:

New Hampshire HSIP Guidance2013.doc Project Implementation:

Safety Performance:

Evaluation:

Compliance Assessment:

Glossary

5 year rolling average: means the average of five individuals, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area: means a highway safety priority in a State's SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project: means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT: means hundred million vehicle miles traveled.

Non-infrastructure projects: are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule: applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure: means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds: mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification: means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP): means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systematic: refers to an approach where an agency deploys countermeasures at all locations across a system.

Systemic safety improvement: means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer: means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.