

Disclaimer	3
Protection of Data from Discovery Admission into Evidence	3
Executive Summary	4
ntroduction	
Program Structure	5
Program Administration	5
Program Methodology	7
Project Implementation	28
Funds Programmed	28
General Listing of Projects	30
Safety Performance	36
General Highway Safety Trends	36
Safety Performance Targets	41
Applicability of Special Rules	44
Evaluation	
Program Effectiveness	
Effectiveness of Groupings or Similar Types of Improvements	
Project Effectiveness	49
Compliance Assessment	51
Optional Attachments	54
Glossary	55

Disclaimer

Protection of Data from Discovery Admission into Evidence

23 U.S.C. 148(h)(4) states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section[HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.

23 U.S.C. 148(h)(4) states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section[HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.23 U.S.C. 409 states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data."

Executive Summary

Maine has a data driven approach for HSIP project selection, assessing various aspects of crash performance. Before and After crash results comparisons on safety projects have consistently shown performance improvement over the years. HSIP selection process is re-evaluated each year to see if there are opportunities for enhancement and for improved alignment for the state's SHSP.

Spot improvement project selection, particularly with regard to intersection safety, has been driven by HSM methodology this year, using our custom GIS intersection network screening process which computes excess crashes with EB adjustment for urban and rural stop and signal-controlled intersections on public highways in Maine regardless of jurisdiction. We continue to identify High Crash Locations each year as an additional consideration in prioritizing our spot improvement project candidates.

We continue to work on collecting the necessary MIRE data elements to expand our network screening to highway segments. We are currently working towards obtaining cross slope information for the second lane of 2-lane rural highways using our ARAN 9000 by driving these roadways in the opposite direction of our normal pavement condition network collection activities as time and weather allows. We started the development of our custom GIS road segment screening tools that will assess the safety our highway network using excess crashes with EB adjustment in accordance with the HSM.

In addition to spot improvements projects, Maine has used lane departure crash data to systemically evaluate our highway network for potential center line rumble strip locations as well as median cable barrier locations and has funded safety projects for both countermeasures. Due to continuing noise concerns expressed by residents, Maine's rumble strip program for non-interstate roadways installations are of the sinusoidal type. We have received far fewer noise complaints on highways receiving these "mumble strips". We continue to use data to identify horizontal curves that could benefit from the installation of edge line rumble strips to mitigate went-off-road crashes on these curves. The first installations of these curve enhancements were included in our 2020 statewide rumble strip contract.

Due to the COVID-19 pandemic, Maine's 2020 annual VMT was approximately 12.48% lower than 2019 levels, at one point being about 25% below "normal" then trending back upward in the fall towards but not reaching 2019 levels. Our current projection for 2021 annual VMT is 3-4% lower than that experienced in 2019.

Despite lower volumes in 2020, the number of fatalities in Maine was like 2019's count. This has resulted in a significantly higher fatality rate than anticipated.

Unlike fatalities, Maine experienced a reduction in the number of serious injuries and only a very small increase in the serious injury rate during 2020. There were approximately 80 fewer serious injuries on Maine's highways during 2020 which is very encouraging, and this helped to mitigate the impact of lower VMT last year on our serious injury rate. Despite the slight "bump in the road" of 2020 our serious injury numbers and rates continue in a downward trend.

2021 Safety Performance Targets were successfully coordinated internally, with Maine's Highway Safety Office (Bureau of Highway Safety) and MPO partners. The 2020 Safety Performance Targets previously established did not account for the significant drop in VMT we have experienced and the effect that would have on our calculated crash rates but we expect to meet four of our five targets with only our 2020 fatality rate not being met.

Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP Reporting Guidance dated December 29, 2016 and consists of five sections: program structure, progress in implementing highway safety improvement projects, progress in achieving safety outcomes and performance targets, effectiveness of the improvements and compliance assessment.

Program Structure

Program Administration

Describe the general structure of the HSIP in the State.

MaineDOT's HSIP program is managed by the Office of Safety which is led by a director level position that reports directly to the Chief Engineer. The Office of Safety consists of a highway safety engineering section, crash records section, and ADA Coordinator providing a single unit within the Department with the resources needed to perform data-driven safety analysis and coordinate safety candidate identification and evaluation efforts.

In addition to identification of safety candidates through data driven analysis and network screening, the Office of Safety coordinates regularly with a wide variety of resources within MaineDOT including Regional Operations, Local Roads, our Active Transportation Planner, Traffic Engineering, and Regional Planners to identify additional areas of concern and potential safety and spot improvement candidates and to ensure that HSIP funding is being used for projects that support the initiatives and strategies identified in Maine's Strategic Highway Safety Plan.

The Department's Safety/Mobility Committee was created within MaineDOT and is comprised of a cross representation of MaineDOT functional areas that meets quarterly to review and coordinate work on potential safety and mobility projects, and to provide input on prioritization of HSIP projects for inclusion in the work plan. This committee is co-chaired by the Safety Office Director and the State Traffic Engineer.

Where is HSIP staff located within the State DOT?

Other-Office of Safety

The Office of Safety at MaineDOT reports directly to the Chief Engineer.

How are HSIP funds allocated in a State?

- SHSP Emphasis Area Data
- Other-Use Benefit Cost Criteria

Describe how local and tribal roads are addressed as part of HSIP.

Local roads are included with the state-wide project candidates. Maine captures crash and roadway data for all public roads and can evaluate all locations within the state based on similar crash and benefit/cost performance comparisons. Local safety project requests based on crash concerns are reviewed and evaluated as part of the candidate screening process using our network safety screening tools and methods.

Maine has an on-line public crash data query tool available to them to help with local analysis - and MPOs/RPOs have utilized this tool and praise its capabilities. The Office of Safety is also available to provide data and technical assistance to MPOs and municipalities that would like help evaluating their safety areas of concern.

Identify which internal partners (e.g., State departments of transportation (DOTs) Bureaus, Divisions) are involved with HSIP planning.

- Design
- Districts/Regions
- Maintenance
- Planning
- Traffic Engineering/Safety

Describe coordination with internal partners.

Though the Office of Safety is the primary unit responsible for the development of HSIP project candidates, we coordinate with other units throughout the organization daily. Candidates generated from data-driven safety analysis or identified through other means are field reviewed through road safety audits or assessments that generally involve our region traffic engineers, regional planners, and active transportation planner. We also include other subject matter experts throughout the Department as warranted based on the type of safety issues we are investigating. Other systemic and spot improvement HSIP candidates are generated by our Transportation Analysis Unit in the Bureau of Planning and Traffic Engineering Group in the Bureau of Maintenance and Operations. Appropriate countermeasures are evaluated by the Office of Safety for each candidate using the Highway Safety Manual and checked to make sure the proposed candidate is an HSIP eligible activity in support of the Strategic Highway Safety Plan. This results in a vetted list of projects recommended for funding ranked in order of safety benefit/cost.

In our experience, safety and mobility concerns are most often inextricably linked and MaineDOT strives to consider both throughout the project evaluation process. To that end, the Department formed a new Safety/Mobility Committee charged with functioning as a formal vehicle for communication and coordination of all work being performed in both areas. The Safety/Mobility Committee is co-chaired by the Director of the Office of Safety, and State Traffic Engineer and permanent members of this committee come from the following units within the Department:

- Office of Safety (Engineering)
- Office of Safety (Crash Records)
- M&O (Traffic Engineering)
- M&O (Region Traffic Engineer)
- M&O (ITS Manager)
- Planning (Regional Planner)
- Planning (Active Transportation Planner)
- Planning (Transportation Analysis)
- Project Development (Multimodal Program Director)
- FHWA Maine Division (Safety & Operations Engineer)

The Safety/Mobility committee generates a prioritized list of projects recommended for funding to the Department's Core Executive Team for final approval and inclusion in the work plan.

Identify which external partners are involved with HSIP planning.

• FHWA

- Governors Highway Safety Office
- Law Enforcement Agency
- Local Government Agency
- Local Technical Assistance Program
- Regional Planning Organizations (e.g. MPOs, RPOs, COGs)

Describe coordination with external partners.

The MaineDOT Office of Safety has continuing communications and good relationships with all State, local and Federal partners. In addition to standard state partners such as the Bureau of Highway Safety, we also coordinate with Bureau of Motor Vehicles and DHS for alcohol/drug-related issues. In addition, we regularly work with AAA, Maine Motor Transport Association, Maine Turnpike, Bicycle Coalition of Maine, United Bikers of Maine (motorcycles) and others. We look for input from all and communicate out to them when needed. One means of communicating and coordinating with these external partners is through the Maine Transportation Safety Coalition (MTSC) which meets quarterly for the purpose of coordination.

Our coordination efforts with our MPO/RPO partners occurs on an ongoing basis as well in addition to the performance target setting activities required each year. We try to include these partners in our road safety audit/assessment efforts and obtain their assistance in reviewing High Crash Locations within their respective areas for further investigation by the Office of Safety. These partners are also included in our annual regional "synergy" meetings as part of the work plan development process to coordinate all project work including safety work.

Program Methodology

Does the State have an HSIP manual or similar that clearly describes HSIP planning, implementation and evaluation processes?

Yes

MaineDOT currently has a new HSIP Manual in draft form pending final approval by our Safety/Mobility Committee and Engineering Council.

Select the programs that are administered under the HSIP.

- Bicycle Safety
- Horizontal Curve
- Intersection
- Left Turn Crash
- Local Safety
- Low-Cost Spot Improvements
- Median Barrier
- Pedestrian Safety
- Right Angle Crash
- Roadway Departure
- Rural State Highways
- Segments
- Shoulder Improvement
- Sign Replacement And Improvement
- Skid Hazard
- Wrong Way Driving
- Other-Median Cable Barrier -install completed in 2014
- Other-Speed management
- Other-Guard rail/end treatment upgrades

Program: Bicycle Safety

Date of Program Methodology:8/1/2014

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Other-As speci

What data types were used in the program methodology?

Crashes

Roadway

- All crashes
 Fatal and serious injury crashes only
- VolumePopulation

Traffic

Roadside features

What project identification methodology was used for this program?

Exposure

•

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Probability of specific crash types
- Relative severity index

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:2 Ranking based on net benefit:1

Program: Horizontal Curve

Date of Program Methodology: 4/1/2017

What is the justification for this program?

Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Other-Being evaluated as a systemic need

What data types were used in the program methodology?

Crashes

Exposure

•

Roadway

- All crashes • Fatal and serious injury crashes only
- Traffic Volume
- Other-Highway Corridor Priority
- Horizontal curvature •
- Functional classification
- Roadside features

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Other-Systemic approach being used to identify corridors of most exposure
- Probability of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Other-Benefit to Cost ranking
- selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Ranking based on B/C:2

Available funding:1

Program: Intersection

Date of Program Methodology:4/1/2017

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashesFatal and serious injury crashes only	• Traffic • Volume	 Functional classification Roadside features Other-MaineDOT's Highway Corridor Priority classifications

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Other-HSM-based screenings

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-Benefit to Cost

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Ranking based on B/C:1

Available funding:2

Program: Left Turn Crash

Date of Program Methodology:8/1/2014

What is the justification for this program?

- Addresses SHSP priority or emphasis area
- Other-Part of intersection strategy along with center left turn lane considerations

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
A 11		

- All crashes
- Fatal and serious injury crashes only

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Relative severity index

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-Benefit/Cost Prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:1 Available funding:2

Program: Local Safety

Date of Program Methodology:8/1/2014

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashesFatal and serious injury crashes only	TrafficVolume	Horizontal curvatureRoadside features

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Relative severity index

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Other-Usually work with MaineDOT's Local Roads unit
- selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Available funding:2 Ranking based on net benefit:1

Program: Low-Cost Spot Improvements

Date of Program Methodology:8/1/2014

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashesFatal and serious injury crashes only	TrafficVolume	Horizontal curvatureFunctional classificationRoadside features

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:2

Cost Effectiveness:1

Program: Median Barrier

Date of Program Methodology:7/1/2010

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Other-Systemic need

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Other-limited access highway	Median width

What project identification methodology was used for this program?

- Other-Risk factors noted above.
- Probability of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

No

Are local road projects identified using the same methodology as state roads?

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:1

Program: Pedestrian Safety

Date of Program Methodology:1/1/2018

What is the justification for this program?

- Addresses SHSP priority or emphasis area
- Other-increasing number of pedestrian fatalities

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes	Exposure	Roadway
 All crashes Fatal and serious injury crashes only 	TrafficVolume	Horizontal curvatureFunctional classificationRoadside features

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

- Other-These projects are normally coordinated through MaineDOT's Bike/Ped coordinator
- selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:2 Cost Effectiveness:1

Program: Right Angle Crash

Date of Program Methodology:8/1/2014

What is the justification for this program?

- Addresses SHSP priority or emphasis area
- Other-Part of Intersection Strategies

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes

Roadway

- All crashes
- Fatal and serious injury crashes only

What project identification methodology was used for this program?

Exposure

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Relative severity index

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

Other-Benefit/Cost Prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:1 Available funding:2

Program: Roadway Departure

Date of Program Methodology:4/1/2017

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Other-Systemic funding - such as for centerline rumble strips

What data types were used in the program methodology?

Crashes

Exposure

Roadway

- All crashes
 Fatal and serious injury crashes only
- Traffic
- Volume
 - Lane miles

- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other-Posted speed limit

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Level of service of safety (LOSS)
- Other-Systemic for both Head On and Went Off Road (WOR). Curves will be focus for WOR

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:2 Ranking based on net benefit:1

Program: Rural State Highways

Date of Program Methodology:8/1/2014

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program? Funding set-aside

What data types were used in the program methodology?

Crashes

Roadway

TrafficVolume

What project identification methodology was used for this program?

Exposure

• Other-Coordinated with towns where speed concerns are expressed

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:1

Program: Segments

Date of Program Methodology:4/1/2017

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Other-Systemic funding - such as for centerline rumble strips

What data types were used in the program methodology?

Crashes

Exposure

All crashes

- Traffic
- Fatal and serious injury crashes only
- Volume
- Lane miles

Roadway

- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other-Posted speed limit

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Level of service of safety (LOSS)
- Other-Systemic for both Head On and Went Off Road (WOR). Curves will be focus for WOR

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Available funding:2 Ranking based on net benefit:1

Program: Shoulder Improvement

Date of Program Methodology:8/1/2014

What is the justification for this program?

- Addresses SHSP priority or emphasis area
- Other-Lane Departure, Bicycles, Pedestrians

What is the funding approach for this program?

What data types were used in the program methodology?

Crashes

Exposure

Roadway

- All crashes
- Fatal and serious injury crashes only

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types
- Relative severity index

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• Other-Benefit/Cost Prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C:1 Available funding:2

Program: Sign Replacement And Improvement

Date of Program Methodology:8/1/2014

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Competes with all projects

All crashes

only

Fatal and serious injury crashes

What data types were used in the program methodology?

Crashes

Exposure

Traffic

Volume

Roadway

- Horizontal curvature
- Functional classification
 - Roadside features

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:2 Ranking based on net benefit:1

Program: Skid Hazard

Date of Program Methodology:8/1/2014

What is the justification for this program?

• Addresses SHSP priority or emphasis area

• FHWA focused approach to safety

What is the funding approach for this program?

Competes with all projects

What data types were used in the program methodology?

Crashes

Exposure

Roadway

- All crashes
- Fatal and serious injury crashes only

What project identification methodology was used for this program?

- Crash frequency
- Crash rate
- Critical rate
- Excess proportions of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Ranking based on B/C:1 Available funding:2

Program: Wrong Way Driving

Date of Program Methodology:12/31/2017

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Funding set-aside

What data types were used in the program methodology?

Crashes

Roadway

- All crashes •
 - Fatal crashes only
- Other-Laregely driven by ramp design components
- Fatal and serious injury crashes onlv

What project identification methodology was used for this program?

Exposure

- Other-Maine State Police input
- Other-ramp design
- Probability of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

Are local road projects identified using the same methodology as state roads?

How are projects under this program advanced for implementation?

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Program: Other-Median Cable Barrier -install completed in 2014

Date of Program Methodology:7/1/2016

What is the justification for this program?

Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Other-Department saw this as a systemic need

What data types were used in the program methodology?

Exposure

Crashes

All crashes

Median width

Roadway

• Other-Limited access roadway

What project identification methodology was used for this program?

• Probability of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

No

Are local road projects identified using the same methodology as state roads?

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:1

Program: Other-Speed management

Date of Program Methodology:10/1/2017

What is the justification for this program?

• Addresses SHSP priority or emphasis area

What is the funding approach for this program?

Funding set-aside

What data types were used in the program methodology?

Crashes

Exposure

Roadway

- Traffic
- Volume

What project identification methodology was used for this program?

• Other-Coordinated with towns where speed concerns are expressed

Are local roads (non-state owned and operated) included or addressed in this program?

Are local road projects identified using the same methodology as state roads?

How are projects under this program advanced for implementation?

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Program: Other-Guard rail/end treatment upgrades

Date of Program Methodology:10/1/2017

What is the justification for this program?

- Addresses SHSP priority or emphasis area
- Other-State looking to make sure current standards met, especially in high speed/high volume locations

What is the funding approach for this program?

Funding set-aside

What data types were used in the program methodology?

Crashes

Exposure

Roadway

- Traffic
- Volume
- Other-posted speed limit

What project identification methodology was used for this program?

• Other-Evaluation of hardware

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

• selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Available funding:2 Other-Selection of locations of need as noted above:1

What percentage of HSIP funds address systemic improvements?

60

HSIP funds are used to address which of the following systemic improvements?

- Add/Upgrade/Modify/Remove Traffic Signal
- Install/Improve Pavement Marking and/or Delineation
- Install/Improve Signing
- Rumble Strips
- Upgrade Guard Rails
- Wrong way driving treatments

What process is used to identify potential countermeasures?

- Crash data analysis
- Data-driven safety analysis tools (HSM, CMF Clearinghouse, SafetyAnalyst, usRAP)
- Engineering Study
- Road Safety Assessment
- SHSP/Local road safety plan
- Stakeholder input

Does the State HSIP consider connected vehicles and ITS technologies?

Yes

Describe how the State HSIP considers connected vehicles and ITS technologies.

MaineDOT continues to expand the use of ITS technologies and has assigned an ITS manager position within the Traffic Engineering section in the Bureau of Maintenance and Operations. The Department is in the process of creating our Transportation Management Center (TMC) and evaluating the deployment of additional technologies. The ITS Manager has a permanent/formal seat on the Department's newly-formed Safety/Mobility Committee, and the Director of the Office of Safety participates on the ITS Steering Committee.

Does the State use the Highway Safety Manual to support HSIP efforts?

Yes

Please describe how the State uses the HSM to support HSIP efforts.

MaineDOT has created and deployed a web-based GIS application to perform network safety screening of intersection assets in accordance with the HSM. Specifically, we have chosen to screen using excess expected average crash frequency with EB adjustment as our methodology. We have extended this method further by computing excess crash costs to provide weight and focus to those facilities that are experiencing the most severe injuries and fatalities in our efforts to lessen the number and severity of these events. We are continuing to acquire the necessary MIRE data elements to perform similar screening on roadway segments but that is a work in progress. The Department also uses HSM methods to perform alternative countermeasure analysis for individual locations and prioritization of projects recommended for funding.

Project Implementation

Funds Programmed

Reporting period for HSIP funding.

Calendar Year

Enter the programmed and obligated funding for each applicable funding category.

FUNDING CATEGORY	PROGRAMMED	OBLIGATED	% OBLIGATED/PROGRAMMED		
HSIP (23 U.S.C. 148)	\$14,552,481	\$7,637,343	52.48%		
HRRR Special Rule (23 U.S.C. 148(g)(1))	\$0	\$0	0%		
Penalty Funds (23 U.S.C. 154)	\$4,434,860	\$4,345,031	97.97%		
Penalty Funds (23 U.S.C. 164)	\$0	\$0	0%		
RHCP (for HSIP purposes) (23 U.S.C. 130(e)(2))	\$582,835	\$863,301	148.12%		
Other Federal-aid Funds (i.e. STBG, NHPP)	\$0	\$0	0%		
State and Local Funds	\$0	\$0	0%		
Totals	\$19,570,176	\$12,845,675	65.64%		

How much funding is programmed to local (non-state owned and operated) or tribal safety projects?

0%

How much funding is obligated to local or tribal safety projects?

0%

MaineDOT's Office of Infrastructure Safety and our Local Roads Center are available to provide data and technical assistance to towns to help towns prioritize safety investments within their areas of responsibility. Highways within tribal areas are considered as part of our statewide safety analysis and eligible for safety project candidate funding identified as part of that analysis. There are no specific funding allocations for projects on either local or tribal road systems.

How much funding is programmed to non-infrastructure safety projects?

0%

How much funding is obligated to non-infrastructure safety projects?

0%

How much funding was transferred in to the HSIP from other core program areas during the reporting period under 23 U.S.C. 126?

How much funding was transferred out of the HSIP to other core program areas during the reporting period under 23 U.S.C. 126?

0%

Discuss impediments to obligating HSIP funds and plans to overcome this challenge in the future.

None. MaineDOT Safety Office continues to work with internal and external partners to coordinate and integrate safety and seek the best opportunities to cost-effectively improve traffic safety. This process continues to be enhanced over time.

Describe any other aspects of the State's progress in implementing HSIP projects on which the State would like to elaborate.

2020 construction costs in Maine were much higher than expected for most all types of projects, not just safety projects. Contractors in Maine have had difficulty finding qualified workers to increase their capacity to take on more work, and have had difficulty procuring materials needed to perform the work.

Maine's leading crash exposure continues to be Lane Departure, experiencing 70% of state-wide fatalities in this category. Additional systemic safety opportunities are being evaluated to achieve a better funding mix that is reflective of SHSP priorities and to address these lane departure crashes. 2016 was the first year where we fielded calls on public noise-related concerns. MaineDOT's 2018-2020 statewide rumble strip contracts specified that only sinusoidal center line rumble strips would be installed. This has substantially reduced the number of noise complaints we have received from the public.

MaineDOT used data-driven analysis to screen for horizontal curves with significant crash experience and identified specific areas where edge line/center line rumble strips could be installed in the vicinity of the curve to decrease the likelihood of went-off-road crashes. These were programmed for installation in 2020.

Although not necessarily directly translating to HSIP funding, but certainly contributing to safety planning, there is continued dialogue with MPO's/RPO's on local safety needs and a cooperative approach on safety performance target setting.

Pedestrian traffic fatalities are still a concern and a focused outreach program continued to be delivered throughout the state in 2020. This program includes public engagement and road safety audits and seeks to identify potential bike/pedestrian hazard mitigation that could be funded through HSIP or other fund sources. MaineDOT is also in the process of developing a pedestrian safety toolbox to identify appropriate safety countermeasures for locations with demonstrated vehicle/pedestrian crash exposure.

General Listing of Projects

List the projects obligated using HSIP funds for the reporting period.

PROJECT NAME	IMPROVEMEN T CATEGORY	SUBCATEGORY	OUTPUT S	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGOR Y	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATIO N	AADT	SPEE D	OWNERSHI P	METHOD FOR SITE SELECTIO N	SHSP EMPHASIS AREA	SHSP STRATEGY
016336.19 - RSMS SIGNS SOFTWARE 2019		Data collection	1	Local Road Sign Inventory AppDev	\$4427.11	\$8410.89	HSIP (23 U.S.C. 148)	Multiple/Varie s	Local Road or Street	0		Town or Township Highway Agency	Systemic	Data	
018769.20 - STATEWIDE, INTERSTATE STRIPING	Roadway delineation	Longitudinal pavement markings - remarking	231.98	Miles	\$1215000	\$1610628.18	HSIP (23 U.S.C. 148)	Multiple/Varie s	Principal Arterial- Interstate	0		State Highway Agency	Systemic	Lane Departure	Explore pavement markings and sign enhanceme nt opportunities
019002.00 - ARUNDEL,INT OF ALFRED & NEW RD	Intersection geometry	Add/modify auxiliary lanes	0.744	Miles	\$1907389.7 9	\$2120237.39	Penalty Funds (23 U.S.C. 154)	Rural	Multiple/Varies	16,30 3	40	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
019197.00 - BAR HARBOR, ROUTE 3	Pedestrians and bicyclists	Pedestrians and bicyclists – other	9.5	Miles	\$3030201.4 8	\$25551410.8 2	HSIP (23 U.S.C. 148)	Rural	Minor Arterial	8,560	40	State Highway Agency	Spot	Pedestrians	Multiple Strategies
020210.00 - STANDISH, RT 25/MANCHESTER/SA C	Intersection traffic control	Modify control – Modern Roundabout	1	Intersection s	\$2295460.4 2	\$2550511.58	HSIP (23 U.S.C. 148)	Rural	Minor Arterial	4,229	40	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
020581.20 - STATEWIDE, STRIPING 2020	Roadway delineation	Longitudinal pavement markings - remarking			\$4721198.2 1	\$6002870.76	Penalty Funds (23 U.S.C. 154)	Multiple/Varie s	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Explore pavement markings and sign enhanceme nt opportunities
020581.21 - STATEWIDE, STRIPING 2021	Roadway delineation	Longitudinal pavement markings - remarking	1	Funding for future year	\$250000	\$6400000	HSIP (23 U.S.C. 148)	Multiple/Varie s	Multiple/Varies	0		State Highway Agency	Systemic	Roadway Departure	Explore pavement markings and sign enhanceme nt opportunities
021783.00 - EDGECOMB, ROUTE 1	Intersection traffic control	Modify traffic signal – modernization/replaceme nt	1	Intersection s	\$389545.49	\$2755247.4	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Other	11,15 5	50	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations

PROJECT NAME	IMPROVEMEN T CATEGORY	SUBCATEGORY	OUTPUT S	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGOR Y	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATIO N	AADT	SPEE D	OWNERSHI P	METHOD FOR SITE SELECTIO N	SHSP EMPHASIS AREA	SHSP STRATEGY
021849.00 - STATEWIDE, RUMBLE STRIPS 2018	Roadway	Rumble strips – center	198.324	Miles	\$555270.58	\$616967.31	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Lane Departure	Identify priority areas where edge line and center line rumble strips should be installed to reduce went- off-road and head-on crashes.
022506.00 - OXFORD, ROUTE 26/ROUTE 121	Intersection traffic control	Modify traffic signal – modernization/replaceme nt	1	Intersection s	\$623568.32	\$705474.7	Penalty Funds (23 U.S.C. 154)	Rural	Principal Arterial- Other	11,91 3	40	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
022683.00 - BELFAST RT 1/RT 7 SB RAMP	Interchange design	Interchange improvements	1	Locations	\$516814.38	\$574238.2	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Other	7,362	50	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
022879.00 - HERMON, ROUTE 2	Intersection geometry	Add/modify auxiliary lanes	1	Intersection s	\$243000	\$1126250	HSIP (23 U.S.C. 148)	Rural	Major Collector	8,731	45	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
022881.00 - HOLDEN, ROUTE 1A	Roadway	Roadway narrowing (road diet, roadway reconfiguration)	2.02	Miles	\$1414442.3 2	\$1571602.58	Penalty Funds (23 U.S.C. 154)	Rural	Principal Arterial- Other	17,98 1	45	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
022885.00 - HOULTON, SMYRNA STREET SIGNAL	Intersection traffic control	Modify traffic signal – modernization/replaceme nt	1	Intersection s	\$69300	\$497000	HSIP (23 U.S.C. 148)	Urban	Major Collector	10,54 2	25	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
022926.00 - MERCER, ROUTE 2	Intersection traffic control	Intersection flashers – sign-mounted or overhead	1	Intersection s	\$76414.75	\$84905.26	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Other	3,826	55	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
022974.00 - SANFORD, ROUTE 109-4A	Intersection traffic control	Intersection signing – other	1	Intersection s	\$208434.11	\$231593.46	HSIP (23 U.S.C. 148)	Urban	Principal Arterial- Other	6,172	35	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
022976.00 - SCARBOR- S.PRTLAND GUARD RAIL	Roadside	Barrier- metal	2.7	Miles	\$282589.31	\$314009.84	HSIP (23 U.S.C. 148)	Urban	Principal Arterial- Other Freeways & Expressways	8,591	60	State Highway Agency	Systemic	Lane Departure	Continue review of guardrail and end treatment

PROJECT NAME	IMPROVEMEN T CATEGORY	SUBCATEGORY	OUTPUT S	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGOR Y	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATIO N	AADT	SPEE D	OWNERSHI P	METHOD FOR SITE SELECTIO N	SHSP EMPHASIS AREA	SHSP STRATEGY
															safety performance . Update MaineDOT policies, qualified products list, and installations as needed.
022986.00 - STATEWIDE, RUMBLE STRIP 2019	Roadway	Rumble strips – center			\$476761.74	\$535235.27	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Lane Departure	Identify priority areas where edge line and center line rumble strips should be installed to reduce went- off-road and head-on crashes.
022990.00 - STATEWIDE, GUARDRAIL TREATMENT	Roadside	Barrier- metal	1	Funding for future year	\$25104.99	\$67841.44	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Lane Departure	Continue review of guardrail and end treatment safety performance . Update MaineDOT policies, qualified products list, and installations as needed.
022996.02 - STATEWIDE, VEHICLE ENFORCE	Speed management	Speed management - other	0.12	Miles	\$52353.53	\$58170.59	HSIP (23 U.S.C. 148)	Rural	Major Collector	0		State Highway Agency	Systemic	Illegal/Unsaf e Speed	Enhance speed enforcement efforts by targeting high incident locations.
023006.00 - STATEWIDE, SPEED FEEDBACK SIGN	Speed management	Dynamic Speed Feedback Signs	50	Signs	\$171741.35	\$200000	HSIP (23 U.S.C. 148)	Multiple/Varie s	Multiple/Varies	0		Town or Township Highway Agency	Systemic	lllegal/Unsaf e Speed	Utilize portable dynamic speed feedback

PROJECT NAME	IMPROVEMEN T CATEGORY	SUBCATEGORY	OUTPUT S	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGOR Y	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATIO N	AADT	SPEE D	OWNERSHI P	METHOD FOR SITE SELECTIO N	SHSP EMPHASIS AREA	SHSP STRATEGY
															trailers and portable post- mounted speed feedback signs
023030.00 - WEST BATH, STATE ROAD	Intersection traffic control	Modify traffic signal – modernization/replaceme nt	1	Intersection s	\$551204.82	\$1011454.98	Penalty Funds (23 U.S.C. 154)	Rural	Major Collector	6,810	45	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
023589.00 - FREEPORT, I-295 EXIT 20	Roadway	Roadway - other	0.58	Miles	\$7558.29	\$8398.1	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	7,590	35	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
023761.00 - 2020 STATEWIDE RUMBLE STRIPS	Roadway	Rumble strips – center			\$16200	\$700732.75	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Lane Departure	Identify priority areas where edge line and center line rumble strips should be installed to reduce went- off-road and head-on crashes.
023765.00 - STATEWIDE, DYNAMIC SPEED SIGNS	Speed management	Dynamic Speed Feedback Signs	1	Funding for future year	\$142867.57	\$158741.74	HSIP (23 U.S.C. 148)	Multiple/Varie s	Multiple/Varies	0		Town or Township Highway Agency	Systemic	Illegal/Unsaf e Speed	Utilize portable dynamic speed feedback trailers and portable post- mounted speed feedback signs
023775.00 - VASSALBORO, ROUTE 201	Miscellaneous	Miscellaneous - other	0.12	Miles	\$7200	\$92498.37	HSIP (23 U.S.C. 148)	Rural	Minor Arterial	3,758	55	State Highway Agency	Spot	Commercial Trucks and Buses	Pursue targeted enforcement efforts that will lead to educational opportunities

PROJECT NAME	IMPROVEMEN T CATEGORY	SUBCATEGORY	OUTPUT S	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGOR Y	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATIO N	AADT	SPEE D	OWNERSHI P	METHOD FOR SITE SELECTIO N	SHSP EMPHASIS AREA	SHSP STRATEGY
023775.02 - HOLLIS, ROUTE 4/117/202	Roadside	Roadside - other	0.12	Miles	\$111102.64	\$123447.39	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Other	6,455	50	State Highway Agency	Spot	Commercial Trucks and Buses	Pursue targeted enforcement efforts that will lead to educational opportunities
023791.00 - WELLS, ROUTE 109	Intersection geometry	Add/modify auxiliary lanes	1	Intersection s	\$48358	\$65000	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Other	15,10 9	40	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
023801.00 - WINDHAM, ROUTE 202	Roadway	Roadway narrowing (road diet, roadway reconfiguration)			\$55800	\$248595.16	HSIP (23 U.S.C. 148)	Rural	Minor Arterial	5,381	50	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
023871.20 - STATEWIDE STRIPING 2020 CONTRA	Roadway delineation	Improve retroreflectivity			\$324000	\$500000	HSIP (23 U.S.C. 148)			0		State Highway Agency	Systemic	Lane Departure	Explore pavement markings and sign enhanceme nt opportunities
024179.00 - STATEWIDE, SIGNAL HEADS	Intersection traffic control	Modify traffic signal – add backplates with retroreflective borders	1	Funding for future year	\$437568.03	\$446826.78	HSIP (23 U.S.C. 148)	Multiple/Varie s	Multiple/Varies	0		State Highway Agency	Systemic	Intersections	Provide reflective back plates on traffic signals and improve the tethering of signal heads
024203.00 - WINDHAM, ROUTE 302	Roadway	Roadway narrowing (road diet, roadway reconfiguration)	0.48	Miles	\$302775.63	\$336417.37	Penalty Funds (23 U.S.C. 154)	Rural	Principal Arterial- Other	17,30 0	35	State Highway Agency	Spot	Intersections	Develop solutions for reviewed locations
024219.00 - REGION 3,4, AND 5, LARGE ANIMAL HIGH CRASH FREQUENCY LOCATIONS	Miscellaneous	Animal-related	1	Funding for future year	\$9000	\$19500	Penalty Funds (23 U.S.C. 154)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Large Animals (Deer and Moose)	Mitigate animal- vehicle collisions at select locations:
024221.00 - SHERMAN, INTERSTATE 95	Miscellaneous	Animal-related	2.892	Miles	\$2250	\$131575.01	HSIP (23 U.S.C. 148)	Rural	Principal Arterial- Interstate	0		State Highway Agency	Systemic	Large Animals (Deer and Moose)	Mitigate animal- vehicle collisions at select locations:

PROJECT NAME	IMPROVEMEN T CATEGORY	SUBCATEGORY	OUTPUT S	OUTPUT TYPE	HSIP PROJECT COST(\$)	TOTAL PROJECT COST(\$)	FUNDING CATEGOR Y	LAND USE/AREA TYPE	FUNCTIONAL CLASSIFICATIO N	AADT	SPEE D	OWNERSHI P	METHOD FOR SITE SELECTIO N	SHSP EMPHASIS AREA	SHSP STRATEGY
024223.00 - STATEWIDE, ANIMAL WARNING SIGNS	Miscellaneous	Animal-related	1	Funding for future year	\$8100	\$50000	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Large Animals (Deer and Moose)	Mitigate animal- vehicle collisions at select locations:
024233.00 - STATEWIDE, FLASHING BEACONS	Intersection traffic control	Intersection flashers – sign-mounted or overhead	1	Funding for future year	\$236250	\$262500.01	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Intersections	Develop solutions for reviewed locations
024255.00 - STATEWIDE, RUMBLE STRIPS	Roadway	Rumble strips – center	1	Funding for future year	\$900	\$59775.29	HSIP (23 U.S.C. 148)	Rural	Multiple/Varies	0		State Highway Agency	Systemic	Lane Departure	Identify priority areas where edge line and center line rumble strips should be installed to reduce went- off-road and head-on crashes.
024385.00 - REPLACE X LITE GUARDRAIL ENDS	Roadside	Barrier end treatments (crash cushions, terminals)	1	Funding for future year	\$119950.43	\$150189.05	HSIP (23 U.S.C. 148)	Multiple/Varie s	Multiple/Varies	0		State Highway Agency	Systemic	Lane Departure	Continue review of guardrail and end treatment safety performance . Update MaineDOT policies, qualified products list, and installations as needed.

Safety Performance

General Highway Safety Trends

Present data showing the general highway safety trends in the State for the past five years.

PERFORMANCE MEASURES	2012	2013	2014	2015	2016	2017	2018	2019	2020
Fatalities	164	145	131	156	160	172	136	157	165
Serious Injuries	982	865	815	754	746	728	685	689	607
Fatality rate (per HMVMT)	1.140	1.010	0.913	1.050	1.070	1.140	0.910	1.040	1.250
Serious injury rate (per HMVMT)	6.830	6.010	5.680	5.080	4.980	4.810	4.560	4.560	4.590
Number non-motorized fatalities	10	15	11	19	21	23	8	19	11
Number of non- motorized serious injuries	101	59	88	64	72	75	72	61	48

Annual Serious Injuries

Serious injury rate (per HMVMT) Serious injury rate (per HMVMT)

Fatality rate (per HMVMT)

Non Motorized Fatalities and Serious Injuries

Describe fatality data source.

Other If Other Please describe

FARS and MaineDOT Dashboard

To the maximum extent possible, present this data by functional classification and ownership.

Functional Classification	Number of Fatalities (5-yr avg)	Number of Serious Injuries (5-yr avg)	Fatality Rate (per HMVMT) (5-yr avg)	Serious Injury Rate (per HMVMT) (5-yr avg)
Rural Principal Arterial (RPA) - Interstate	8.4	29.2	0.39	1.36
Rural Principal Arterial (RPA) - Other Freeways and Expressways	0	0.4	0	18.06
Rural Principal Arterial (RPA) - Other	24.2	83.4	1.37	4.75
Rural Minor Arterial	19.8	78.8	26.99	84.18
Rural Minor Collector	34.2	122.6	1.59	5.71

Functional Classification	Number of Fatalities (5-yr avg)	Number of Serious Injuries (5-yr avg)	Fatality Rate (per HMVMT) (5-yr avg)	Serious Injury Rate (per HMVMT) (5-yr avg)
Rural Major Collector	12	48.2	1.22	5.3
Rural Local Road or Street	14.4	86.2	1	6.11
Urban Principal Arterial (UPA) - Interstate	5	25.6	0.4	2.05
Urban Principal Arterial (UPA) - Other Freeways and Expressways	0.2	6.4	0.12	4.33
Urban Principal Arterial (UPA) - Other	6.6	50	0.87	6.66
Urban Minor Arterial	10.8	66	1.54	12.91
Urban Minor Collector	9.4	57.4	0.93	5.79
Urban Major Collector	0	7	0	7.25
Urban Local Road or Street	6.2	30.2	1.33	6.54

		1ear 2020		
Roadways	Number of Fatalities (5-yr avg)	Number of Serious Injuries (5-yr avg)	Fatality Rate (per HMVMT) (5-yr avg)	Serious Injury Rate (per HMVMT) (5-yr avg)
State Highway Agency	130.6	560.2	1.16	4.96
County Highway Agency	0.2	1.6	1.32	9.92
Town or Township Highway Agency	25	115.4	1.37	6.33
City or Municipal Highway Agency	0	0	0	0
State Park, Forest, or Reservation Agency	0	1.2	0	18.96
Local Park, Forest or Reservation Agency	0	0	0	0
Other State Agency	0	0	0	0
Other Local Agency	0	0	0	0
Private (Other than Railroad)	0	0	0	0
Railroad	0	0	0	0
State Toll Authority	3.6	14.6	0.24	0.97
Local Toll Authority	0	0	0	0
Other Public Instrumentality (e.g. Airport, School, University)	0.2	0	1.44	0
Indian Tribe Nation	0	0	0	0

Year 2020

Fatality Data for Federal Functional Class and Jursidiction Tables in this report taken from the MaineDOT Data Warehouse and is slightly different than that which is found in the FARS system.

Safety Performance Targets

Safety Performance Targets

Calendar Year 2022 Targets *

Number of Fatalities:160.0

Describe the basis for established target, including how it supports SHSP goals.

Maine Fatality data has varied widely during the 2020 Benchmark Performance (2016-2020) period ranging from 139 in 2018 to 172 in 2017. The 5-year average was 158.2 through the period. A significantly lower VMT experienced in 2020 due to the pandemic combined with the 2nd highest fatality count during the benchmark period has contributed to the highest fatality rate in Maine since 2006. This will likely result in the 5-year fatality rate continuing to trend upward. 2021 fatal numbers as of May 31, 2021 are thankfully lower than 2020 numbers at the same point in time but not low enough to mitigate the high 2020 fatality rate.

Number of Serious Injuries:715.0

Describe the basis for established target, including how it supports SHSP goals.

- Serious Injuries (A) is one of Maine's Safety Performance Areas that continues to show steady
 improvement over the years, but it too, has had erratic performance in the past. The 5-year average
 serious injury benchmark performance was 691.6. Unlike fatalities, Maine experienced a reduction in
 the number of serious injuries and only a very small increase in the serious injury rate during 2020.
 There were approximately 80 fewer serious injuries on Maine's highways during 2020 which is very
 encouraging, and this helped to mitigate the impact of lower VMT last year on our serious injury rate.
 Despite the slight "bump in the road" of 2020 our serious injury numbers and rates continue in a
 downward trend.
- Due to past performance, recommended 2022 targets have been set slightly lower than those established for 2021.

Fatality Rate:1.120

Describe the basis for established target, including how it supports SHSP goals.

Maine Fatality data has varied widely during the 2020 Benchmark Performance (2016-2020) period ranging from 139 in 2018 to 172 in 2017. The 5-year average was 158.2 through the period. A significantly lower VMT experienced in 2020 due to the pandemic combined with the 2nd highest fatality count during the benchmark period has contributed to the highest fatality rate in Maine since 2006. This will likely result in the 5-year fatality rate continuing to trend upward. 2021 fatal numbers as of May 31, 2021 are thankfully lower than 2020 numbers at the same point in time but not low enough to mitigate the high 2020 fatality rate.

Serious Injury Rate:4.900

Describe the basis for established target, including how it supports SHSP goals.

- Serious Injuries (A) is one of Maine's Safety Performance Areas that continues to show steady
 improvement over the years, but it too, has had erratic performance in the past. The 5-year average
 serious injury benchmark performance was 691.6. Unlike fatalities, Maine experienced a reduction in
 the number of serious injuries and only a very small increase in the serious injury rate during 2020.
 There were approximately 80 fewer serious injuries on Maine's highways during 2020 which is very
 encouraging, and this helped to mitigate the impact of lower VMT last year on our serious injury rate.
 Despite the slight "bump in the road" of 2020 our serious injury numbers and rates continue in a
 downward trend.
- Due to past performance, recommended 2022 targets have been set slightly lower than those established for 2021.

Total Number of Non-Motorized Fatalities and Serious Injuries:87.0

Describe the basis for established target, including how it supports SHSP goals.

- As with statewide crash fatalities, this data has varied widely from year to year through the benchmark
 performance period, mainly due to the disparity observed from 2017 to 2018. The 2019 count matched
 that of 2018 which perhaps indicates progress. While the 2020 fatality count overall was high, these
 were largely motor-vehicle related crashes not involving non-motorized system users. Our 2020 nonmotorized K&A count of 61 was our lowest in more than 17 years.
- The 5-year Average for the 2016-2020 Benchmark Period was 81.8, down from 86.6 during the
 previous evaluation period. It is hoped that our continued focused pedestrian outreach in Maine through
 STEP and HeadsUp programs will continue to bring down our bike/ped fatality numbers and I
 recommend setting a slightly lower target for 2022 than that of 2021.

The following factors are likely to influence the ability of Maine to meet previous safety performance targets and need to be considered for future projections:

- Setting our 2021 Safety Performance Targets last year amid uncertainty the impact of Covid-19 would have on Maine's 2020 and 2021 VMT, MaineDOT assumed a 20% reduction in traffic for 2020, and 10% reduction in 2021. While traffic was indeed seriously impacted in 2020, these assumptions have proven to be somewhat conservative when compared to our actual traffic experience. Maine's 2020 VMT was approximately 12.48% lower than 2019 levels, and our current projection for 2021 VMT is 3-4% lower than that experienced in 2019. Although uncertainty remains as to when volumes will "return to normal", it does appear to be headed in that direction.
- Maine's economy has been and will continue to be affected by Covid-19 economic impacts on both businesses and citizens' household finances. Fuel, food, and construction material prices have been rising steadily as of late. Labor shortages in many economic sectors exist right now. It remains to be seen how severely this could impact the tourism industry in Maine in 2021 and beyond, or whether these impacts may be mitigated by the public's enthusiasm to travel again after spending most of 2020 at home.
- Multi-agency safety efforts will continue to be refined and focused on primary serious crash trends such as lane departure and pedestrians
- Based on recruitment difficulties along with state and local budgetary constraints, law enforcement
 agencies will continue to experience staffing challenges, reducing the effective crash-reducing impact
 that their on-road presence has.
- Impaired driving is a growing concern both due to legalization of marijuana and increased illicit drug usage. That growing impairment problems translates to serious crash exposures.

Describe efforts to coordinate with other stakeholders (e.g. MPOs, SHSO) to establish safety performance targets.

Maine Bureau of Highway Safety and MaineDOT reviewed last year's targets and worked collaboratively to arrive at agreed upon goals and to make sure they are in context with the latest influencing factors such as the unexpected traffic volumes experienced during the COVID-19 pandemic.

MaineDOT has earlier discussed its target setting philosophy with MPOs and how it would translate to MPO performance targets. The Department prepares suggested performance targets for each MPO as a starting point for discussion and provides the necessary data for them to evaluate their own past performance and to either accept MaineDOT's recommendation or to come up with their own in support of the statewide Safety Performance Targets.

Does the State want to report additional optional targets?

No None Describe progress toward meeting the State's 2020 Safety Performance Targets (based on data available at the time of reporting). For each target, include a discussion of any reasons for differences in the actual outcomes and targets.

PERFORMANCE MEASURES	TARGETS	ACTUALS
Number of Fatalities	161.0	158.0
Number of Serious Injuries	737.0	691.0
Fatality Rate	1.070	1.082
Serious Injury Rate	4.900	4.700
Non-Motorized Fatalities and Serious Injuries	90.0	82.0

Four of five of Maine's 2020 Safety Performance Targets were met. This was in large part to the unusual drop in pedestrian fatalities in 2018 which brought the overall and 5-year average benchmark fatal numbers down. The trend of overall Highway Fatalities in Maine continues to climb slightly, however, and the rate more so than the raw number. Our first goal is to work towards levelling that trend off and then we can work towards further reductions.

Maine's serious injury numbers and rates have also been steadily decreasing since 2012 despite increased statewide VMT. Both factors contributed to our meeting the number of non-motorized fatalities and serious injury performance target as well. We are, however, concerned that our 2018 crash experience was a bit of a statistical outlier the effect of which will impact the five-year average for awhile, after which we'll see a jump in these numbers and rates. When you consider the impacts on travel of the pandemic in 2020 we are even more concerned for future years.

Applicability of Special Rules

Does the HRRR special rule apply to the State for this reporting period? No

Provide the number of older driver and pedestrian fatalities and serious injuries 65 years of age and older for the past seven years.

PERFORMANCE MEASURES	2014	2015	2016	2017	2018	2019	2020
Number of Older Driver and Pedestrian Fatalities		27	32	42	28	31	33
Number of Older Driver and Pedestrian Serious Injuries	74	70	78	92	86	95	61

Evaluation

Program Effectiveness

How does the State measure effectiveness of the HSIP?

- Benefit/Cost Ratio
- Change in fatalities and serious injuries

Infrastructure projects are evaluated each year with results included with HSIP (before/after injuries and B/C). Systemic improvements like rumble strips are periodically reviewed for collective performance where installed.

Based on the measures of effectiveness selected previously, describe the results of the State's program level evaluations.

Maine's fatality rate has been trending upward for the past few years despite being mitigated by a significant decrease in pedestrian fatalities in 2018. In 2020, our statewide fatality total was similar to the previous year despite a 12.5% reduction in VMT due to reduced travel during the Covid-19 pandemic. As a result, our 2020 fatality rate was substantially higher than expected. Our serious injury rate has been steadily decreasing since a peak in 2012. This downward trend continued in 2020.

Our overall benefit-cost performance on mitigation efforts has been good. Systemic installations such as center line rumble strips have continued to prove very effective at a relatively low cost. We plan to expand this program as we continue to explore new systemic safety programs that have proven to be successful in other states.

We continue to assess our center line rumble strip program for those segments with three years of before/after crash data available which when last evaluated showed an average reduction in fatalities and serious

injuries of 62.9% and 48.1% respectively where these are installed.

MaineDOT is also continuing a study quantifying the benefits of converting rural two-way stop controlled intersection to all-stop controlled intersections. Preliminary data shows a significant reduction in both the number and severity of crashes at these facilities after conversion. Overall, we are observing a 70% reduction in crash costs with this countermeasure.

What other indicators of success does the State use to demonstrate effectiveness and success of the Highway Safety Improvement Program?

- # miles improved by HSIP •
- Increased awareness of safety and data-driven process
- Increased focus on local road safety
- More systemic programs
- Policy change
- Other-Pedestrian Strategic Focus Outcomes

Effectiveness of Groupings or Similar Types of Improvements

Present and describe trends in SHSP emphasis area performance measures.

Year 2020 Page 45 of 55

SHSP Emphasis Area	Targeted Crash Type	Number of Fatalities (5-yr avg)	Number of Serious Injuries (5-yr avg)	Fatality Rate (per HMVMT) (5-yr avg)	Serious Injury Rate (per HMVMT) (5-yr avg)
Lane Departure		111.4	375	0.76	2.56
Intersections		22.6	109	0.15	0.74
Pedestrians		13.4	47.2	0.09	0.32
Bicyclists		2.2	17.6	0.01	0.12
Older Drivers		43.8	94.8	0.3	0.64
Motorcycles		24.8	114.6	0.17	0.78

Number of Serious Injuries 5 Year Average

Project Effectiveness

Provide the following information for previously implemented projects that the State evaluated this reporting period.

LOCATION	FUNCTIONAL CLASS	IMPROVEMENT CATEGORY	IMPROVEMENT TYPE	PDO BEFORE	PDO AFTER	FATALITY BEFORE	FATALITY AFTER	SERIOUS INJURY BEFORE	SERIOUS INJURY AFTER	ALL OTHER INJURY BEFORE	ALL OTHER INJURY AFTER	TOTAL BEFORE	TOTAL AFTER	EVALUATION RESULTS (BENEFIT/COST RATIO)
19010.00 - GREENE, ROUTE 202	Rural Minor Arterial	Intersection geometry	Intersection geometry - other	5.00	2.00						4.00	5.00	6.00	
20207.00 - MECHANIC FALLS-POLAND, RTE 26	Rural Principal Arterial (RPA) - Other		Modify traffic signal – modernization/replacement	13.00	6.00					8.00	1.00	21.00	7.00	
22681.00 - AUBURN, HOTEL/STEVENS MILL RDS	Rural Major Collector	Intersection traffic control	Modify control – new traffic signal	4.00	7.00			1.00		7.00	2.00	12.00	9.00	
22682.00 - PORTLAND, ROUTE 22/WESTBROOK	Urban Principal Arterial (UPA) - Other	Intersection geometry	Intersection geometry - other	23.00	16.00					8.00	7.00	31.00	23.00	
20211.00 - GRAY, ROUTE 202/CAMPBELL SHORE	Rural Minor Arterial	Intersection traffic control	Modify traffic signal – modernization/replacement	1.00						1.00		2.00		
19006.00 - NEW GLOUCESTER, RTE 202 & 231	Rural Minor Arterial	Intersection traffic control	Modify traffic signal – modernization/replacement	4.00	8.00			1.00		1.00	3.00	6.00	11.00	
20568.00 - AUGUSTA, ROUTE 27/DARIN DR.	Urban Minor Arterial	Intersection traffic control	Modify traffic signal – modernization/replacement	5.00	9.00					2.00	1.00	7.00	10.00	
20215.00 - AUGUSTA, EXIT 109B/WESTERN AVE	Urban Principal Arterial (UPA) - Interstate	Intersection geometry	Intersection geometry - other	38.00	31.00					9.00	7.00	47.00	38.00	
	Urban Principal Arterial (UPA) - Interstate	Intersection geometry	Intersection geometry - other	19.00	2.00					2.00	1.00	21.00	3.00	
20565.00 - BATH, WASHINGTON ST	Urban Major Collector	Intersection traffic control	Modify traffic signal – modernization/replacement	6.00	1.00				1.00		3.00	6.00	5.00	

LOCATION	FUNCTIONAL CLASS	IMPROVEMENT CATEGORY	IMPROVEMENT TYPE	PDO BEFORE	PDO AFTER	FATALITY BEFORE	FATALITY AFTER	SERIOUS INJURY BEFORE	SERIOUS INJURY AFTER		ALL OTHER INJURY AFTER	TOTAL BEFORE	TOTAL AFTER	EVALUATION RESULTS (BENEFIT/COST RATIO)
22673.00 - WELLS, RT1/CHAPEL RD	Rural Minor Arterial	Intersection geometry	Modify lane assignment	32.00	4.00				1.00	8.00	1.00	40.00	6.00	

For this evaluation we simply used total crash count reductions for the intersection projects listed above. The Department continues to develop tools to perform more sophisticated HSIP project and overall countermeasure effectiveness evaluations. Crash counts based on 3 years before - 3 years after construction.

Compliance Assessment

What date was the State's current SHSP approved by the Governor or designated State representative?

11/20/2017

What are the years being covered by the current SHSP?

From: 2017 To: 2022

When does the State anticipate completing it's next SHSP update?

2022

MaineDOT has begun identifying partners who will participate in our 2022 SHSP update process. Many of these partners also participate in the Maine Transportation Safety Coalition (MTSC) quarterly meetings, but other essential participant stakeholders have been identified and we are in the first stages of assembling our team for this cycle. We anticipate a kickoff meeting for this effort this fall to review the latest crash data trends and to start identifying focus areas for the plan. By early 2022, we hope to have emphasis area champions identified and subcommittees formed to begin their work.

Provide the current status (percent complete) of MIRE fundamental data elements collection efforts using the table below.

ROAD TYPE	*MIRE NAME (MIRE	NON LOCAL F ROADS - SEG				NON LOCAL ROADS - RAI		LOCAL PAVE	D ROADS	UNPAVED RC	DADS
	NO.)	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE
ROADWAY SEGMENT	Segment Identifier (12) [12]	100	100					100	100	100	100
	Route Number (8) [8]	100	100								
	Route/Street Name (9) [9]	100	100								
	Federal Aid/Route Type (21) [21]	100	100								
	Rural/Urban Designation (20) [20]	100	100					100	100		
	Surface Type (23) [24]	100	100					100	100		
	Begin Point Segment Descriptor (10) [10]	100	100					100	100	100	100
	End Point Segment Descriptor (11) [11]	100	100					100	100	100	100
	Segment Length (13) [13]	100	100								
	Direction of Inventory (18) [18]	100	100								

*Based on Functional Classification (MIRE 1.0 Element Number) [MIRE 2.0 Element Number]

ROAD TYPE	*MIRE NAME (MIRE NO.)	NON LOCAL PAVI ROADS - SEGMEN		NON LOCAL PA ROADS - INTER		NON LOCAL P ROADS - RAM		LOCAL PAVED	ROADS	UNPAVED ROA	DS
	NO.)	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE
	Functional Class (19) [19]	100	100					100	100	100	100
	Median Type (54) [55]	100	100								
	Access Control (22) [23]	100	100								
	One/Two Way Operations (91) [93]	100	100								
	Number of Through Lanes (31) [32]	100	100					100	100		
	Average Annual Daily Traffic (79) [81]	100	100					100	100		
	AADT Year (80) [82]	100	100								
	Type of Governmental Ownership (4) [4]	100	100					100	100	100	100
INTERSECTION	Unique Junction Identifier (120) [110]			100	100						
	Location Identifier for Road 1 Crossing Point (122) [112]			100	100						
	Location Identifier for Road 2 Crossing Point (123) [113]			100	100						
	Intersection/Junction Geometry (126) [116]			50	50						
	Intersection/Junction Traffic Control (131) [131]			50	50						
	AADT for Each Intersecting Road (79) [81]			100	100						
	AADT Year (80) [82]			100	100						
	Unique Approach Identifier (139) [129]			100	100						
INTERCHANGE/RAMP	Unique Interchange Identifier (178) [168]										

ROAD TYPE	*MIRE NAME (MIRE	NON LOCAL F ROADS - SEG		NON LOCAL ROADS - INTI		NON LOCAL ROADS - RAM		LOCAL PAVE	DROADS	UNPAVED RO	DADS
	NO.)	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE	STATE	NON-STATE
	Location Identifier for Roadway at Beginning of Ramp Terminal (197) [187]					100	100				
	Location Identifier for Roadway at Ending Ramp Terminal (201) [191]					100	100				
	Ramp Length (187) [177]					100	100				
	Roadway Type at Beginning of Ramp Terminal (195) [185]					100	100				
	Roadway Type at End Ramp Terminal (199) [189]					100	100				
	Interchange Type (182) [172]										
	Ramp AADT (191) [181]					100	100				
	Year of Ramp AADT (192) [182]					100	100				
	Functional Class (19) [19]					100	100				
	Type of Governmental Ownership (4) [4]					100	100				
otals (Average Po	ercent Complete):	100.00	100.00	87.50	87.50	81.82	81.82	100.00	100.00	100.00	100.00

*Based on Functional Classification (MIRE 1.0 Element Number) [MIRE 2.0 Element Number]

Describe actions the State will take moving forward to meet the requirement to have complete access to the MIRE fundamental data elements on all public roads by September 30, 2026.

Many of the outstanding data elements are available to MaineDOT now through a generation process, but are not currently stored in our data warehouse as desired by FHWA. We are discussing the best process to make these elements available in a format acceptable to meet the data mapping requirements.

Optional Attachments

Program Structure:

MaineDOT HSIP Manual Draft - 4-21-2021.pdf Project Implementation:

Safety Performance:

Evaluation:

Compliance Assessment:

Glossary

5 year rolling average: means the average of five individuals, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area: means a highway safety priority in a State's SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project: means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT: means hundred million vehicle miles traveled.

Non-infrastructure projects: are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule: applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure: means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds: mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification: means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP): means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systematic: refers to an approach where an agency deploys countermeasures at all locations across a system.

Systemic safety improvement: means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer: means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.