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A roadway crash is a multifaceted event involving circumstances such as highway 

geometry, traffic exposure, operating speed, driver characteristics, vehicle 

factors, and the interactions among them. Determining the relationship between 

vehicle operating speed, roadway design elements, and traffic volume on crash 

outcomes would greatly benefit the road safety profession in general. There is both a need and an 

increasing trend to use data-driven procedures, such as machine learning approaches, artificial 

intelligence, and logistic regression methods to better understand the causes behind crashes.1-12

Databases like the Highway Safety Information System (HSIS) contain quality data on a large 

number of crashes and their associated roadway and traffic records consistently across multiple 

years and states. These databases provide solid resources to perform innovative learnings.13-16 
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With the rise of the Intelligent Transportation Systems (ITS) 
and implementation of technologies in vehicles and infrastruc-
tures, various types of detectors, sensors, and cameras are being 
installed in cars and roadway systems. The ultimate aim of 
deploying technologies is to reduce crashes, improve safety, and 
achieve Vision Zero.17, 18 Before implementing technologies, a 
smart corridor, testbed, or pilot site is an effective way to deploy 
technologies and test the impacts brought by them. Most of those 
ongoing smart corridors are constructed to practice and challenge 
the technology deployments, especially the Vehicle-to-Infra-
structure (V2I) communications, i.e., the North Avenue Smart 
Corridor launched by the City of Atlanta and Georgia Tech in 
Georgia, USA. Moreover, there are pilot sites on a larger scale that 
implement Vehicle-to-Everything (V2X) on top of V2I. Take, for 
instance, the Connected Vehicle Pilot Deployment Program in 
New York City, NY, USA; Tampa, FL, USA; and Wyoming, USA 
supported by the U.S. Department of Transportation (USDOT). 
Although there are smart corridors built for both interstates, state 
highways, and urban streets, researchers have revealed that the 
frequency of crashes was higher when highways pass through the 
vicinity of major cities, pointing to heavy vehicular movement.19 
Hence, in this study, the selection range of smart corridor is on 
state highways only. 

Recently, the American Association of State Highway and 
Transportation Officials (AASHTO) initialed the Signal Phase and 
Timing (SPaT) Challenge and promoted it through the National 
Operations Center of Excellent (NOCoE). A guideline along with 
the challenge suggested the state DOT and cities involve at least 
two high level types of decisions when selecting a SPaT enabled 
corridor: 1) Need for V2I applications; and 2) Infrastructure 
compatibility.20 However, there is more to consider than these two 
decisions. The selection process is not only complex as suggested 
in the guideline, but also contains multitudinous options (i.e., 
potential routes). For instance, in Washington State, USA, if an 
agency only considers state routes, then there are 221 options; 
if an agency applied an additional filter over the length (i.e., in 
between 22 and 26 miles [35.4 and 41.9 kilometers]), then there 
are still more than 80 adequate options. Moreover, the cost of 
constructing a smart corridor can be expensive, due to the instal-
lation, deployment, and maintenance of equipment like radar, 
camera, and roadside units. As constructing and maintaining a 
smart corridor is costly and presents a technology challenge, it is 
important to choose the right site efficiently and effectively.21 

Although there are existing frameworks, such as the Prioriti-
zation Criteria and Methodology Chapter in the Arterial Smart 
Corridor Projects Final Report, they are conducted purely from the 
state of the practice.22 To the best of the authors’ knowledge, there is 
not yet any work to determine important safety criteria for selecting 
a smart corridor via any machine learning approach. Random 

Forest (RF) is one of the well-known machine learning techniques 
for building multiple decision trees and merging them together 
to obtain a more accurate and stable prediction. RF is also widely 
applied, as it is a good indicator of the importance assigning to the 
features. In this study, the authors implement a RF model to identify 
13 safety criteria out of 111 variables in the HSIS and the Highway 
Performance Monitoring System (HPMS) data from the State of 
Washington for selecting a smart corridor. The study then evaluates 
those criteria with its existing SPaT enabled corridor on WA 522. 
Lastly, this study predicts four potential smart corridors on WA 161, 
WA 99, and WA 202, and discusses their potentials in deploying 
connected technologies. The 13 criteria recommended in this 
study for selecting a smart corridor are generalized and ready to be 
adapted in other states. As the selection process of a smart corridor 
is time-consuming and expensive, the recommended criteria are 
efficient and effective ways for state and local agencies to identify 
potential smart corridors in their state route network. 

Data Description

Data for the analyses in this study are composed of the HSIS 
(crash-based) and the HPMS (roadway-based) database in 
Washington State during 2015. The HSIS is a database managed by 
the University of North Carolina Highway Safety Research Center 
(HSRC) under contract with the Federal Highway Administration. 
Safety researchers have widely used the database to investigate 
various topics ranging from problem-identification, modeling to 
crash-prevention, and prediction.23 Different from the conventional 
use of the HSIS data, the authors aim to identify the safety factors 
that could be used in the selection process of a smart corridor for 
implementing ITS related technologies and deploying connected 
and autonomous vehicles. With the HSIS database as the main 
source of data, the HPMS is a supportive database that includes data 
on the extent, condition, performance use, and operating charac-
teristics of U.S. highways. The HPMS data is a roadway-based (or 
segment-based) data frame, which means each row is one segment 
in the road network. Thus, the authors integrated the HSIS data 
with the HPMS data based on route ID and the milepost.24 

As one in the first group of state agencies that undertook 
the SPaT Challenge, WSDOT is assumed to choose the SPaT 
corridor on WA 522 by considering various transportation aspects 
(i.e., safety issues, traffic congestions) and carefully follow the 
guideline.20 With this assumption, the authors developed a RF 
algorithm to determine safety criteria for corridor selection process. 
The RF algorithm was developed by using the data associated with 
those selected variables (see the Step 2 selection process in the next 
section, Two-Step Criteria Selection Method) on WA 522. Seven-
ty-five percent in the dataset is randomly sampled as the training 
set, and the rest as the test set. Descriptive statistics of those 
selected variables are summarized in Table 1. 
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Table 1. Descriptive Statistics Summary on Selected Variables.
Descriptive Statistics

Aspect Variable name Variable Type Min. Max. Mean S.D.

Crash

Number of Crashes Numerical 1 54 2.3 3.1

Crash Severity Categorical 1 = Property Damage Only, 2 = Injury, 3 = Fatal

Crash Type Categorical 1 = Multi-Vehicle, 2 = Single Vehicle, 3 = Pedestrian/Bike, 4 = Others

Crash Location Categorical 1 = Intersection, 2 = Driveway, 3 = Others

Time of Crash Categorical 1 = AM Peak, 2 = PM Peak, 3 = Off Peak

Road 

Inventory

Width of Right Shoulder Numerical 0.0 22.0 1.3 2.1

Width of Left Shoulder Numerical 0.0 40.0 6.0 4.2

Lane Width Numerical 8.0 18.0 11.8 0.6

Median Width Numerical 0.0 99.0 20.2 30.6

Grade Categorical
1 = 0.0 – 0.4 percent, 2 = 0.4 – 2.4 percent, 3 = 2.5 - 4.4 percent,  

4 = 4.5 - 6.4 percent, 5 = 6.5 - 8.4 percent, 5 = 8.5 or greater

Curve Categorical

1 = Under 3.5 degrees, 

2 = 3.5 - 5.4 degrees, 3 = 5.5 - 8.4 degrees, 4 = 8.5 – 13.9 degrees;  

5 = 14.3 – 27.9 degrees, 6 = 28 degrees or more

Traffic

AADT Numerical 159 237,647 40,402 49,963

AADT for Single-unit Trucks Numerical 5 7,550 1,294 1,448

Number of Signalized Intersection Numerical 0.0 9.0 0.6 1.4

Number of Intersection Numerical 0.0 78.0 3.6 5.7

Percentage of Single-unit Trucks and Buses in Peak Hour Numerical 0.0 4.0 0.3 0.2

Note: min. = minimum; max. = maximum; S.D. = standard deviation.
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Two-Step Criteria Selection Method 

The following two subsections introduce the two steps, variable 
pre-selection and Random Forest, in our proposed Two-Step 
Criteria Selection Method. The flow of the methodology is 
illustrated in Figure 1.

Step 1: Variable Pre-selection
After integrating the HSIS and the HPMS datasets into one dataset, 
there are 111 variables in total to be evaluated. Twenty variables 
come from HSIS, while 91 variables come from HPMS, as shown in 
Layer 1, Figure 1. A series of data cleaning and checking procedures 
were considered in the variable pre-selection step, including:

 Eliminate the variables with either empty (i.e., more than 90 
percent of N/A) or erroneous data; 

 Eliminate the deterministic variables (i.e., with variance 
close to zero);

 Examine and eliminate the correlated numerical variables; 
and etc.

After the data cleaning and consistency checking procedures, 
111 variables with 35,298 data points are reduced into 27 variables 
with 8,586 data points. These 27 variables are then categorized 
into three safety aspects, 12 crash related variables, 10 roadway 
inventory related variables, and five traffic related variables (see 
details listed in Layer 2 in Figure 1).

Step 2 Selection: Random Forest 
With these 27 pre-selected variables, in Step 2, the Random Forest 
(RF) machine learning algorithm, a popular tree-based regression 

Figure 1. Two-Step Criteria Selection Method in Steps and Layers.
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and classification method, is performed over these 27 variables list 
Layer 2, Figure 1.25 The essential idea with using the RF algorithm 
is to grow an extensive collection of de-correlated trees based on 
different parts of the same training set and averaging the results. 
Thus, the algorithm can provide low variance results. Practically, 
each feature is sampled without replacement according to proportion 
of its maximum in RF algorithm. Gini index is a common tool to 
interpret and rank the feature outcomes from RF. It is defined in 
Equation 1 and denotes node impurity (the probability of a wrongly 
classified variable when randomly chosen). Predictors with largest 
Gini coefficient are chosen to make a binary split on the node,

                        n
Gini index = Σ pi (1–pi) 1
                        i
where n is the number of classes in the target variable and 

pi is the probability of an object being classified to a particular 
class. In the RF algorithm, the Mean Decrease in Gini index is the 
weighted average of the predictor’s decrease in node impurity. It is 
a measure of variable importance. A higher Mean Decrease in Gini 
index indicates higher variable importance. In the Step 2 Criteria 
Selection, the Gini index is computed as in Figure 2.

The RF algorithm performed with a 94.3 percent accuracy for 
the test data during pre-training process. Then, the 27 pre-selected 
variables are categorized into their aspects (i.e., crash, roadway 
inventory, and traffic) in Layer 2 and ranked per percentile 
calculated from Gini Index (i.e., relative importance). Details 
on the relative importance (i.e., percentile) of each variable is 
calculated and presented in Figure 3. Lastly, 13 safety criteria 
are then finalized by choosing those variables with a 50-percent 
percentile or above in their aspects. Those safety criteria are 
implemented for re-training the random forest model. A final 
model with those key safety criteria reached 95.3 percent accuracy 
for the test data.

Results and Discussions

Two types of comparisons are visualized on the heat maps and 
discussed in this section. One compares the performances of 
identified key safety criteria in each aspect on the existing smart 
corridor along WA 522. The primary purpose is to evaluate whether 
those safety criteria describes the characteristics of this existing 
smart corridor. The other comparison is between potential smart 
corridors on WA 161, WA 99, WA 202, and the existing one on 

Figure 2. Step 2 Criteria Selection using Random Forest.
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Figure 3. Variable Importance in Crash, Roadway Inventory and Traffic Related Aspect.
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WA 522. The purpose is to study the similarities and differences 
between those predicted ones and the existing one on WA 522, and 
discuss the potentials of them as smart corridors. 

Existing Smart Corridor on WA 522
Following the proposed Two-Step Criteria Selection in 
methodology, 13 safety criteria are selected out of 111 variables 
from HSIS and HPMS databases for the State of Washington:

 Crash related aspect: 1) Number of crashes occurred 
on driveway, 2) Total number of crashes, 3) Number of 
multi-vehicle crashes, 4) Number of crashes occurred on 
intersection, 5) Number of crashes in AM Peak, 6) Number 
of crashes in PM Peak, 7) Number of crashes with property 
damage only;

 Roadway inventory related aspect: 8) Width of left shoulder, 
9) Degree of curve with 28 degrees or more, 10) Median 
width; and

 Traffic related aspect: 11) AADT, 12) Number of signalized 
intersections, and 13) Number of intersections.

The Top 1 and 2 criteria at each aspect are demonstrated in 
Figures 4-6. Those figures evaluate whether these safety criteria 
identified by RF machine learning are good representatives of a 
smart corridor. 

a. Number of Crashes  
Occurred on Driveway

b. Total Number of Crashes 

Figure 4. Heat Maps to Demonstrate the Top Two Key Criteria in the 
Crash Related Aspect on the Smart Corridor, WA 522.

a. Width of Left Shoulder b. Degree of Curve with  
28 Degrees or More

Figure 5. Heat Maps to Demonstrate the Top 2 Key Criteria in the Road 
Inventory Related Aspect on the Smart Corridor, WA 522.

a. Annual Average Daily Traffic b. Number of Signalized 
Intersections

Figure 6. Heat Maps to Demonstrate the Top Two Key Criteria in the 
Traffic Related Aspect on the Smart Corridor, WA 522.

Figures 4a and 4b illustrates the heat maps for the No. 1 and the 
No. 2 important criterion, from a crash-related aspect. Both criteria 
are representative as they are highlighted (i.e., with an orange/
red color) in the existing smart corridor from WA 522 from NE 
153rd Street to 83rd Place NE. The number of driveway crashes is 
relatively more important than the total number of crashes, because 
driveway crashes identify those segments under the smart corridor 
the most. While the total number of crashes is large on segments 
along the smart corridor, as well as some segments beside WA 522; 
the driveway crashes are mostly dense along the existing smart 
corridor. Therefore, the number of driveway crashes better describes 
the characteristic of the smart corridor. Overall, both are critical 
safety criteria to consider, because large crash volumes and/or at a 
specific location (i.e., near a driveway) on a signalized high-speed 
corridor demonstrate the room for the need of V2I applications. 
Similarly, the heat maps in Figure 5 and Figure 6 illustrate the No. 
1 and the No. 2 important criteria from the roadway inventory and 
traffic related aspects. These criteria are highlighted along WA 522, 
and describe the characteristic of the smart corridor. Since poorly 
designed road inventory or heavy traffic over the capacity may lead 
to safety issues, the authors believe that these key factors align with 
the need for implementing smart technologies.

Potential Smart Corridors in Washington State Routes

More than identifying and verifying the key criteria through the 
characteristics of the existing corridor on WA 522, four potential 
smart corridors from three separate state routes (i.e., WA 161, 
WA 99, WA 202) are predicted. They are selected from a total of 
221 state routes in Washington State using the 13 identified safety 
criteria. They are circled in the heat map on Figure 7. The red color 
represents a larger probability to be a smart corridor.

These four potential corridors are predicted by the RF algorithm 
using 13 identified safety criteria. However, they are with a lower 
selection priority than the existing smart corridor. Figure 7 maps 
the locations of those corridors along with the existing one. It is 
noticeable that although the potential smart corridor #2, #3 and 
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#4 contain 35, 27, and 23 segments, these segments are identified 
separately by the criteria. That is, some segments on the corridor 
are around with safety concerns, while some are not. This leads 
to a lower potential to deploy smart technology than the existing 
corridor on WA 522. On the other hand, the potential smart 
corridor #1 on WA 161 has 85 continuously identified segments. 
It is almost identical to the existing smart corridor by considering 
those safety criteria. However, by examining the pre-selected 
variables, there is a difference brought by the truck percentage. The 
truck percentage on WA 522 varies from 2 percent to 8 percent, 
whereas it ranges from 2 percent to 13 percent on WA 161. For a 
smart corridor with signalized intersections, truck percentage is an 
additional factor to consider. It is because a higher truck percentage 
may minimize the benefit brought by the SPaT message and V2I 

applications. For example, a connected and autonomous vehicle 
receives signal timing message and wants to plan its trajectory 
accordingly to pass the intersection without a stop, but it is limited 
to speed up or change lanes because of trucks around intersection.

Summary and Future Study 

This study demonstrated a use of the HSIS dataset to determine 
safety criteria for selecting a smart corridor using a machine 
learning approach, Random Forest. The HSIS contains a rich 
dataset and it well records data including various variables 
from many aspects of transportation. In this study, the authors 
implemented the Random Forest algorithm to finalize 13 safety 
criteria for selecting a smart corridor out of 111 variables in the 
HSIS and the HPMS from Washington State. Then, by evaluating 

Figure 7. A Heat Map to Identify Potential Smart Corridors in Washington State.
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those criteria with its existing SPaT enabled corridor, the authors 
believe that those criteria are critical to consider when selecting 
a smart corridor. These criteria also agree with the guidelines 
from FHWA and NOCoE for selecting a SPaT enabled corridor. 
Lastly, this study predicted potential smart corridors on WA 161, 
WA 99, and WA 202, and discussed their potentials in deploying 
ITS technologies. The safety criteria recommended in this study 
are generalized and ready to apply in other states. There are some 
limitations of this study that may lead to future improvements:

 Used limited data (i.e., data in 2015 only)
 Studied limited area (i.e., only in Washington State): The 

Two-Step Selection Method is adaptable to other states, a more 
comprehensive study is to use HSIS database in all eight states.

Nevertheless, as the selection process of a smart corridor is 
time-consuming and the costs of construction and maintenance are 
expensive, the 13 safety criteria recommended from this study are 
important. They are efficient and effective ways for state and local 
agencies to identify potential smart corridors in their state route 
network. Lastly, the authors believe that this study is a novel use of 
the HSIS data and demonstrates a diverse application of the HSIS 
data with the machine learning technology and the concept of ITS. 
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