

U.S. Department of Transportation Federal Highway Administration Federal Lands Highway Office

552 STRUCTURAL CONCRETE MIX DESIGN SUBMITTAL

Project:				Date:		
Contractor:		Class of concrete Exposure Class:			Exposure Class:	
Concrete producer:			Pro	oducer Mix designation:		
Concrete for:						
SPECIFIED CONCRE	ETE COMPRES	SIVE S	TRENGT	H (@ 28 D	Pays) (f'c)	psi
Required average concrete	e compressive stren	gth used	for mixture	proportion s	selection ¹ (f'cr)	psi
MIXTURE PROPORTIO						D
Material	Specific Gravity	Mass lb/yd ³	Absolute Volume ft ³	Tolerance % (±)	Admixtures	Dosage fl oz/yd ³ Do not enter oz/cv
ement (Portland or Blended	l)			1	l	
upplementary Cementitious	Material				Air entraining	
				1	Type A (Water Reducer - WF	R)
				1	Type B (Set Retarder - SR)	
ater				1	Type C (Set Accelerator - SA	A)
oarse aggregate 1 (SSD)				2	Type D (WR & SR)	
oarse aggregate 2 (SSD)				2	Type E (WR & SA)	
ine aggregate (SSD)				2	Type F (High Range WR)	
ightweight fine aggregate (S	SSD)			2	Type G (High Range WR &	SR)
ibers				3	Hydration Stabilizer (B or D))
Color Pigments				3	Other	
ther					Other	
otal air						
	oretical unit mass:			Total		

Water/cementitious materials ratio (by mass) ²	Measured unit mass (AASH10 T 121):		lb/ft ³
	Measured air content (AASHTO T 152 or	T 196):	%
	Measured slump (AASHTO T 119):		in
HARDENED CONCRETE PROPERTIES			
If the concrete is subjected to elevated temperature cur Water-soluble chloride-ion (Cl ⁻) in hardened concrete	0.	°F	
Signature	Print Name	Date	

¹ Design in accordance with FP and specified ACI standards found in the contract.

² The ratio of the mass of water, exclusive only of that absorbed by the aggregate, to the combined mass of cementitious materials (i.e. cement, fly ash, silica fume and ground granulated blast furnace slag (GGBFS)).

³ Provide for prestressed concrete.

552 STRUCTURAL CONCRETE MIX DESIGN SUBMITTAL (Continued)

CEMENT (AASHTO M 85 OR AASHTO M 240)⁴

Certification attached : \Box Yes \Box No

FLY ASH (AASHTO M 295 - CLASS C, F or N)⁴

Certification attached : \Box Yes \Box No

SILICA FUME (AASHTO M 307 – RAW, SLURRIED OR DENSIFIED)⁴

Certification attached : \Box Yes \Box No

GROUND GRANULATED BLAST FURNACE SLAG (GGBFS) (AASHTO M 302 - GRADE 100 or 120)⁴

Certification attached : \Box Yes \Box No

HIGH REACTIVITY POZZOLANS (AASHTO M 321)

Certification attached : Yes No

OTHER:

Certification attached : Yes No

WATER (AASHTO M 157 AND AASHTO T 26)

Reclaimed water or water of questionable qu	ality will	be used	? Yes No	
Will water be added at the discharge site?	Yes	No	If yes, how much?	lbs/yd ³
Will water be withheld at the batch plant?	Yes	No	If yes, how much?	lbs/yd ³

CHEMICAL, COLOR PIGMENTS, FIBERS AND OTHER ADMIXTURES⁴

Admixture Type ⁵	Point Admixture Added ⁶	Certification Attached
Air entraining (AASHTO M 154)		\Box Yes \Box No
Type A – Water reducing		□ Yes □ No
Type B – Set Retarding (AASHTO M 194)		□ Yes □ No
Type C – Set Accelerating (AASHTO M 194)		□ Yes □ No
Type D – Water Reducing and		
Set Retarding (AASHTO M 194)		\Box Yes \Box No
Type E – Water Reducing and		
Set Accelerating (AASHTO M 194)		\Box Yes \Box No
Type F – High Range Water Reducing		
(AASHTO M 194)		\Box Yes \Box No
Type G – High Range Water Reducing		
and Set Retarding (AASHTO M 194) Type B – Hydration Stabilizing		□ Yes □ No
(AASHTO M 194) hours Type D – Hydration Stabilizing		□ Yes □ No
(AASHTO M 194) hours		\Box Yes \Box No
Color Pigments (ASTM C 979)		\Box Yes \Box No
Fibers (ASTM C 1116) Type:		\Box Yes \Box No
Other		□ Yes □ No

⁴ Certifications documentation is required prior to approval of a mix design.

⁵ Admixtures must be compatible and of the same type as those used in the mixtures from which strength data were obtained. Do not use chloride accelerators. Do not use set accelerating admixtures with Class P (Prestressed Concrete).

⁶ Each point where admixture is added must be noted (i.e. concrete batching facilities, project site, etc) as well as the corresponding dosage.

COARSE AGGREGATE (FP SECTION 703.02 AND AASHTO M 80, CLASS A)

Name and phone number of coarse aggregate supplier/producer:

Grading number	(AASHTO M43)
----------------	--------------

Location of material source:

Material type:

Sieve A	Analysis: (AASI	HTO T 27)	Property	Specification	Specification	Value
Sieve Size	Percent Passing	AASHTO M 43 Specification ⁴	(1) Clay lumps and friable particles	AASHTO T 112	2.0% max	
			(2) Deleterious chert	AASHTO T 113	3.0% max	
			(3) Σ (1) + (2)	AASHTO T 112 & T 113	3.0% max	
			(4) Minus No. 200	AASHTO T 11	1.0 or 1.5% max	
			(5) Coal and lignite	AASHTO T 113	0.5% max	
			(6) LA abrasion Grading	AASHTO T 96	40% max	
			(7) Sodium sulfate soundness, 5 cycles	AASHTO T 104	12% max	
			(8) Mass of insoluble residue (bridge decks or surface courses)	ASTM D 3042	25% min	
			(9) Bulk specific gravity	AASHTO T 85		
			(10) Bulk SSD specific gravity	AASHTO T 85		
			(11) Absorption	AASHTO T 85		
			(12) Alkali Silica Reactivity			

COARSE AGGREGATE (FP SECTION 703.02 AND AASHTO M 80, CLASS A)

Name and phone number of coarse aggregate supplier/producer:

Grading number (AASHTO M43)

Location of material source:

Material type:

Sieve A	Sieve Analysis: (AASHTO T 27)		Property	Specification	Specification	Value
Sieve Size	Percent Passing	AASHTO M 43 Specification ⁴	(1) Clay lumps and friable particles	AASHTO T 112	2.0% max	
			(2) Deleterious chert	AASHTO T 113	3.0% max	
			(3) Σ (1) +) + (2) (2)	AASHTO T 112 & T 113	3.0% max	
			(4) Minus No. 200	AASHTO T 11	1.0 or 1.5% max	
			(5) Coal and lignite	AASHTO T 113	0.5% max	
			(6) LA abrasion Grading	AASHTO T 96	40% max	
			(7) Sodium sulfate soundness,5 cycles	AASHTO T 104	12% max	
			(8) Mass of insoluble residue (bridge decks or surface courses)	ASTM D 3042	25% min	
			(9) Bulk specific gravity	AASHTO T 85		
			(10) Bulk SSD specific gravity	AASHTO T 85		
			(11) Absorption	AASHTO T 85		
			(12) Alkali Silica Reactivity			

552 STRUCTURAL CONCRETE MIX DESIGN SUBMITTAL (Continued)

FINE AGGREGATE (FP SECTION 703.01 AND AASHTO M 6, CLASS B)

Name and phone number of fine aggregate supplier/producer:

Location of material source:

Sieve	Sieve Analysis: (AASHTO T 27)		Property	Specification	Specification	Value
Sieve	% Passing (P)	Cumulative % Retained	(1) Clay lumps and friable particles	AASHTO T 112	3.0% max	
Size	(Specification)	(CPR)	particles		5.070 max	
	(100)		(2) Coal and lignite	AASHTO T 113	1.0% max	
	(95-100)		(3) Minus No. 200	AASHTO T 11	3.0% max	
	(80-100)		(4) Organic Impurities	AASHTO T 21	Color not darker than	Ves
	(50-85)		(5) Sodium sulfate soundness, 5 cycles	AASHTO T 104	standard 10% max	
	(25-60)		(6) Sand Equivalent. Alt method 2, referee method	AASHTO T 176	75% min	
	(10-30)		(7) Bulk specific gravity	AASHTO T 84		
	(2-10)		(8) Bulk SSD specific gravity	AASHTO T 84		
Fineness module	us (∑CPR/100)		(9) Absorption (10) Alkali Silica Reactivity	AASHTO T 84		

LIGHTWEIGHT FINE AGGREGATE FOR INTERNAL CURING

(FP SUBSECTION 552.03(b) AND AASHTO M 195, CLASS B)

Name and phone number of fine aggregate supplier/producer:

Location of material source:

Sieve An	alysis: (AASHTO T 27)	Property	Specification	Specification	Value
Sieve Size	% Passing (P)	(1) Clay lumps and friable particles	AASHTO T 112	3.0% max	
		(2) Minus No. 200	AASHTO T 11	3.0% max	
		(3) Organic Impurities	AASHTO T 21	Color not darker than standard	Ves
		(4) Bulk specific gravity	AASHTO T 84		
		(5) Bulk SSD specific gravity	AASHTO T 84		
		(6) Absorption	AASHTO T 84		
		(7) Alkali Silica Reactivity			
		(8) Iron Staining Materials	ASTM C641		
L	· .				

552 STRUCTURAL CONCRETE MIX DESIGN (Continued) DATA FOR COMPUTING THE STANDARD DEVIATION⁸

•

Form FHWA 1608 (Rev 10-3)

Cylinder Size:	6 by 12-Inch
----------------	--------------

r 4 by 8-Inch

	1 Test Group' or 2 Test Groups				
Consecutive Strength Test	Date Batched ⁹	Compressive Strength - psi at 28 days			ays
8		Cylinder 1	Cylinder 2		Strength Test Xi ¹⁰
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
$\overline{\mathbf{X}} = \frac{\sum \mathbf{X}\mathbf{i}}{\mathbf{X}\mathbf{i}} =$	=	psi	·		·

For One Test Group:

n

Where:

$$s_{s} = \sqrt{\frac{\sum (X_{i} - \overline{X})^{2}}{(n - 1)}} =$$

 \overline{X} = average of n strength test results n = number of strength tests

n

For Two Test Groups:

 S_{s1} , S_{s2} = sample standard deviations (1 & 2) $\underline{X} =$ individual strength tests $s_s =$ sample standard deviation, psi n_1 , $n_2 =$ number of tests in each $\overline{S_s} =$ statistical average standard deviation where two test groups are used to estimate the sample standard deviation. n_1 , n_2 = number of tests in each test group

8 Based on Section 4 of ACI 301.

⁹ The test results must be less than 12 months old from date of submittal. A test result consists of a minimum of three 4x8 cylinders tested or a minimum of two 6x12 cylinders tested from a load of concrete sampled according to ASTM C172. All test results must also represent materials, quality control procedures, and conditions similar to those expected for the proposed work. A group of test results must be from a single project without a break in production of more than 3 months and groups shall not consist of fewer than 10 tests. Changes in materials and proportions within the test records must not be more restricted than those for proposed work. In addition, they must represent concrete produced to meet a specified strength fc.

¹⁰ When an acceptable record of field tests is not available, concrete proportions shall be established from trial mixtures according ACI 301 4.2.3.4 (c). Submit documentation of test results, trial mixtures and determination of compressive strength that meets fcr. Pending 28-day strength results, a mix design may be approved on the basis that 7-day compressive strength results are at least 85 percent of the required average strength (fcr) at 28 days.

552 STRUCTURAL CONCRETE MIX DESIGN SUBMITTAL (Continued) DETERMINATION OF REQUIRED AVERAGE COMPRESSIVE STRENGTH

REQUIRED AVERAGE COMPRESSIVE STRENGTH (fcr)

Case 1 – Required Average Compressive Strength with Test Groups of 30 or More Tests:

	Table 1
Specified Compressive Strength,	Required Average Compressive Strength[*]
f'c, psi	f'cr, psi
	Use the larger value computed from the following equations:
f'c ≤ 5000 psi	$f'cr = f'c + 1.34ks_s $ (1)
1	$f'cr = f'c + 2.33ks_s - 500 psi$ (2)
	Use the larger value computed from the following equations:
f'c > 5000 psi	$\mathbf{f'cr} = \mathbf{f'c} + 1.34\mathbf{ks} \tag{1}$
_	$f'cr = 0.90f'c + 2.33ks_s$ (3)
* k is equal to 1.00 if the total number of tests are great	er than or equal to 30
	_
f'cr = psi	$\overline{\mathbf{X}} = \underline{\qquad} \mathbf{psi} \qquad \mathbf{X} \ge \mathbf{f'cr} \Box \mathbf{Yes} \Box \mathbf{No}$

Case 2 – Required Average Compressive Strength with Test Groups of 15 to 29 Tests:

Table 2 (k-modification Factor for use in Table 1)		
Number of Tests [*]	k-modification Factor for Sample Standard Deviation ⁺	
15	1.16	
20	1.08	
25	1.03	
30 or more	1.00	
*Interpolate for intermediate numbers of tests *k-modified sample standard deviation used to determine required average strength f'cr in Table 1		
\mathbf{f} ' $\mathbf{cr} = $ \mathbf{x} \mathbf{x} \mathbf{x}	<u>psi</u> $\overline{X} \ge \mathbf{f'cr} \square \mathbf{Yes} \square \mathbf{No}$	

Case 3 – Required Average Compressive Strength with Test Groups less than 15 Tests:

Table 3	
psi	Required Average Compressive Strength psi
f'c < 3000 psi	f'cr = f'c + 1000 psi
$3000 \text{ psi} \le f'c \le 5000 \text{ psi}$	f'cr = f'c + 1200 psi
f'c > 5000 psi	f'cr = 1.10f'c + 700 psi
\mathbf{f} ' $\mathbf{cr} = $ \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}	psi $\overline{X} \ge \mathbf{f'cr} \square \mathbf{Yes} \square \mathbf{No}$