
Activities

ThemesThemes

The Road to
Successful ITS Software

Acquisition

Executive Summary

Checklists

SUCCESSFUL
SOFTWARE

ACQUISITION

The Road to
Successful ITS Software

Acquisition

Executive Summary

July 1998

Prepared for the Federal Highway Administration
by Mitretek Systems

Executive Summary

The Road to Successful ITS Software Acquisition ES-1

EXECUTIVE SUMMARY

Software is Different

“Unfortunately, software development does not progress in accordance
with the rather simple rules that govern most functions.” — [Putnam

and Myers, 1996]

“The odds of a large [software] project finishing on time are close to
zero.” — [McConnell,1996]

Acquisitions that involve a significant amount of software development are notorious for
their problems. Missed schedules and cost overruns plague the acquisition process.
When systems are finally delivered, they are often unreliable and do not meet all their
requirements. Some projects are even canceled before any products are delivered.

Experienced project managers find that proven managerial techniques, which previously
worked so well for them on other types of projects, fail for software. They complain
about their lack of insight into what the final system will be like and their lack of visibility
into progress by the contractor. “It’s not like seeing asphalt being laid down.” More than
one manager has concluded that “software is different”, that it often defies intuition
gained elsewhere.

Unfortunately, ITS software acquisitions are no exception to this software norm. One
senior ITS manager lamented he’d never been involved on a software acquisition that he
was satisfied with.

Representatives from the public and private sectors who have been involved on ITS
software acquisitions have very different perceptions as to what goes wrong. Each feels
that the other takes advantage of the situation. They perceive that the other party “wins”
while they “lose”. In fact both parties lose: While public-sector customers face the
problems cited above, private-sector contractors often lose significant amounts of money
on software. This leads to mistrust. Both sides then resort to acquisition practices that
further exacerbate the situation.

The good news is that there are proven techniques for managing software acquisitions.
This document presents best practices, not rigid guidelines, to assist you. Use them
selectively, choosing those most appropriate for your agency and project.

The top five percent of software organizations have no canceled projects, consistently control
costs within 5 percent of budget, and meet schedules within three percent. [Jones, 1997]

Executive Summary

ES-2 The Road to Successful ITS Software Acquisition

Acquisition Themes

Figure ES-1 summarizes the themes upon which successful software acquisitions are
built. Collectively they represent a different way of doing business, the response to
“software is different”. The themes recur again and again throughout a software
acquisition and guide the various acquisition activities.

Collaboration Open
CommunicationTeam Building

Flexibility No Silver
Bullets

Don’t Build
If You Can Buy

Take
Bite-Size Pieces

Management
Themes

System
Themes

People
Themes

Active Customer
Involvement

Up-Front Planning

SUCCESSFUL
SOFTWARE

ACQUISITION

Figure ES-1. Themes On The Road To Successful Software Acquisition

The people themes have been likened to partnering, whose practice has proven beneficial
on construction projects. For transportation agencies that don’t build ITS software with
in-house staff (the usual case), the customer works together with a contractor to achieve
common goals instead of having an adversarial relationship. They continually work at
open communications, and collaborate on all activities, from requirements to risk
management to system acceptance. This requires a greater customer role than many are
used to; active customer involvement is essential. This in turn requires that project
managers not go it alone. Instead, they practice team building, both within their agency
and with the software contractor.

The management themes guide the management of an acquisition. Flexibility is needed
in the contract to accommodate change and take advantage of the opportunities presented
by application of the people themes. There must be the recognition that there are no
silver bullets; no one acquisition practice or contracting mechanism is a panacea that can
be relied upon to rescue a project. Up-front planning is needed early in the acquisition,

Executive Summary

The Road to Successful ITS Software Acquisition ES-3

even for activities such as system acceptance that do not take place until late in the
acquisition process.

System themes relate directly to the final product. Never build if you can buy existing
products. Purchasing pre-existing products alleviates many of the risks associated with
building custom software. For most types of ITS systems, off-the-shelf products or
components are available. Unique requirements can preclude their use, but any such
requirements should be examined to determine whether they really are important or
whether the system is over-specified. Ask yourself why your requirements are so much
different from everyone else’s. Many projects fail because they attempt to do too much
at once. By taking bite-size pieces, an acquisition is more manageable. Contracting
mechanisms must be chosen that allow for this instead of those that call for an all-at-once
“big bang” approach.

The various software acquisition activities that are built upon these themes will now be
discussed.

Acquisition Activities

An early activity in an acquisition is building a team. Following are some of the skills
that must be tapped (from within your agency, if possible) and included on the team:

• Software technical experts assist with requirements, scheduling, costing, technical
reviews, and eventually liaison with the software contractor. These individuals are
difficult to find, especially for public agencies.

• End users, maintainers, and system administrators have very different
perspectives on systems than do engineers. Their membership on the team helps
ensure that their needs are addressed.

• Domain experts ensure that a system addresses operational needs and guide the
end users in understanding and operating the system.

• Contracting and purchasing officials help select the most appropriate
contracting vehicles. A full range of options must be considered as traditional
vehicles used on construction, consulting, and other types of transportation
projects are not appropriate for software.

• Software-specific legal staff assist in resolving intellectual property rights issues
to avoid litigation over them.

Once the software contractor is selected, they become an essential member who must be
incorporated into the team.

One ITS manager successfully teamed with his contractor by treating them as part of his
staff. They were invited to attend staff meetings and participated in setting milestones for
the project.

Executive Summary

ES-4 The Road to Successful ITS Software Acquisition

An initial activity for the assembled team is project planning. Write a short project plan.
Several parts of this plan are unique to software, or at least more critical for software than
they are for other types of projects. These include identification of the following:
facilities, acquisition strategy, system environment, risk management, project oversight
techniques, end users, acceptance strategy, training concept, and maintenance concept.
Clearly, many of these planning activities, especially the acquisition strategy, will take
place before the contractor is on board. Writing a plan helps achieve “buy in” for
subsequent activities and gives everyone an awareness of the trade-offs that have to be
made. Although written during the early part of a project, several sections of the plan
address activities that will not take place until late in the life cycle.

Three key activities take place in parallel and feed off one another: developing
requirements, making build/buy decisions, and selecting the contracting vehicle.

The first key activity, developing requirements, is one of the most important that takes
place on a software acquisition. The team members participate in developing a good,
sound set of functional and performance requirements. Functional requirements define
automated and manual system capabilities. Performance requirements define such items
as response time, capacity, reliability, safety, and security. Unlike other transportation
projects, software acquisitions should not develop design specs or technical requirements
at this stage. (Software is different!) The requirements give the what’s not the how’s.
They address such topics as system functions, response times, reliability, maintainability,
security, safety, interfaces, inputs, and outputs. Noticeably missing from this list is
detailed human interface requirements on how operators and end users will interact with
the system. Rapid prototyping is a better approach for addressing them.

A few ITS examples illustrate what can happen when human interface requirements are
specified on paper. In the transit arena, a box on a bus needed multiple keystrokes for a
simple function like changing the volume control. This was not apparent from reading the
written requirements and was not realized until the box was used operationally. In the
traffic arena, incident reports could not be filed until all the fields of an on-line form were
filled out. Many of the fields were not particularly important and filling them out delayed
the transmission of critical information. But the requirements did not specify the capability
to transmit a partially filled out form or allow the ability to retrieve a form and add the
missing fields later. Because rapid prototyping techniques had not been used in either
case, it was not possible to visualize the implication of the written requirements. Only
real-world interactions with the system revealed the flaws that were inherent in the
requirements. If you buy existing products, you will at least gain the benefits of someone
else’s experiences.

In developing requirements, don’t ask for too much. Avoid the temptation to “add just
one more requirement, it’s only a matter of some more software.” This keeps the project
manageable, minimizes risk, and achieves an operational capability sooner. Use scrub
sessions to eliminate inessential requirements. Furthermore, over-specified systems
inevitably dictate design and preclude off-the-shelf solutions. Once operational
experience is gained with an initial implementation, there’s always time to build upon
success and add features.

Executive Summary

The Road to Successful ITS Software Acquisition ES-5

Related to requirements are quality factors. The quality factors address “how well” the
system meets requirements and include such “ilities” as reliability, availability, and
maintainability. System flexibility should also be addressed. Software is inherently
flexible. Ironically, software systems often are often inflexible; they are not robust to
change. You can help achieve more flexibility by asking “what if” questions in regards to
future features and what is likely to change. (For example, “What if we added another
jurisdiction to a regional ATMS?” “What if the ramp metering algorithms were
changed?”) Then see if the system can accommodate those changes.

Fundamental flaw of software acquisition: “One can specify a
satisfactory system in advance, get bids for its construction, have it

built, and install it É this assumption is fundamentally wrong. … It is
necessary to allow for extensive iteration between the client and the

designer as part of the system definition.” — [Brooks, 1987]

At one time it was thought that the key to software success was i) develop a rigorous,
complete set of requirements, ii) freeze them for the entire project, and iii) insist that the
contractor meet all the shall's. Although it would be nice to set aside the requirements
and go on to other tasks once the requirements are documented, you unfortunately
cannot dismiss them as a “done deal.” Unless you go strictly with an off-the-shelf buy
(see below), an on-going requirements management process will be needed, carried out
collaboratively by customer and contractor. This includes conducting a requirements
walk-through with the software contractor.

“Rule 1 of Systems Integration: The agency and the integrator will
never interpret the functional definition in the same manner.” — [Phil

Tarnoff]

In a walk-through, every requirement is thoroughly examined until the customer and
contractor achieve a common understanding of it. An example of our open
communications and collaboration themes, a walk-through also provides another
opportunity to scrub requirements and to explore alternatives that replace high risk
requirements with lower risk ones. This is true whether you build or buy. If you buy an
off-the-shelf product, the supplier is in the best position to identify which modifications
are easy and which ones are hard or risky.

One ITS software developer cites the example of an unnamed customer who refused to
carry out a requirements walk-through. So the contractor proceeded as best they could
in designing the system. Then came the critical design review, a major milestone. But
instead of addressing design issues, the review quickly back-tracked to the unaddressed
requirements issues. The contractor and customer finally reached a mutual
understanding of the requirements, but not without cost. By then, much of the previous
design work had to be discarded and re-done. This could have been avoided with a
timely walk-through of the requirements.

Executive Summary

ES-6 The Road to Successful ITS Software Acquisition

Once the requirements are revised to reflect the mutual agreements of customer and
contractor, they are signed and placed under configuration control (“baselined”). From
this point on, changes to requirements are carefully controlled. A careful balancing act
that must be practiced. On the one hand, having a stable set of requirements is essential
for successful software development. Changing requirements and scope creep can be
fatal. On the other hand, “controlled” should not be equated with “frozen”.
Requirements issues must be addressed as they arise, with all changes agreed to in writing
by all parties before they take effect. There should be sufficient teamwork and contractual
flexibility to clarify ambiguities, flesh out lower-level requirements not initially addressed,
and relax requirements that pose unexpected risk or prove technically difficulty to
implement.

One satisfied customer told his long-time contractor, “The reason we’re so successful
together is because you always give me 80% of what I ask for.”

The requirements become the basis for size, schedule, and cost estimates; build/buy
decisions; design and development activities; and acceptance testing. (On too many
projects, these other activities are carried out independently of the requirements.) If
changes increase the scope of the project, they must be accompanied by schedule and
budget relief, or compensated for by eliminating other requirements in the system.

“The most radical possible solution for constructing software is not to
construct it at all.” — [Brooks, 1987]

The second key activity is making build/buy decisions. This decision-making activity is
often neglected in spite of the fact that it has the potential of overcoming many of the
problems incurred on software acquisitions. Never build the system (or portions of the
system) if you can buy it. A matrix showing which vendor products meet which high-
level requirements can be used to help you make this decision. Product demonstrations
(perhaps at your site) or visits to other sites are some of the ways that will allow you to
find out what’s available in the marketplace. If no vendor products meet a requirement,
carefully consider its necessity and technical risk. Ask yourself whether you are
unnecessarily precluding off-the-shelf products. Is a pre-existing, 80% solution good
enough?

The consideration of the availability of existing products and the willingness to trade off
functionality to decrease cost and schedule has been cited as a “best commercial
practice” that is used by the private sector. [Ferguson and DeRiso, 1994.]

For the portions of the system that you buy, only high-level requirements (a features list)
may be necessary. For those portions of the system that you decide to have built, a
requirements management process such as that described above will be needed.

Executive Summary

The Road to Successful ITS Software Acquisition ES-7

Although buying the system can reduce risk, purchasing software is not a panacea and
has its own associated risks. Mitigation strategies are available for addressing them.
These include “kicking the tires” or meeting with prior customers before committing to an
existing product.

The third key activity is selecting a contracting vehicle for the acquisition.
Unfortunately, no acquisition vehicles are ideal for software, and the familiar
engineer/contractor (design-bid-build) approach is particularly inappropriate.

Engineer/contractor often leads to multiple layers of subcontracting. One ITS software
contractor found themselves third tier down on the subcontracting arrangement of a
construction contract. They were effectively shut off from all direct contact with the
customer. This lack of contact predictably led to a very bad software experience for all
parties.

Therefore you will need to work with your contracting and legal representatives on your
team to explore the full range of options. Among them are cost-reimbursement, time-
and-materials, design/build, design to cost and schedule, and build to budget contracts.
Although not often used, time-and-materials contracting offers a number of advantages
for software and is allowed under Federal-aid regulations.

A leading-edge traffic management center was successfully built using a time-and-
materials contract. A “rolling” development approach was used. The system evolved
over time by having new pieces of the system put in place at frequent intervals, typically
on the order of several weeks. The contracting approach was credited with being able to
adapt quickly to the unforeseen popularity of the Internet when that became a viable
vehicle for transmitting traffic information.

The build/buy decisions influence the selection of a contracting vehicle. In particular,
fixed-price contracting (or any type of contract with firm deliverables and fixed ceilings
for price and cost) does not provide the needed flexibility for building software, or
modifying existing products, although it may be appropriate for some off-the-shelf buys.
For fixed-price contracts, requirements will need to be issued as part of the RFP.
However, if you decide to go with a cost-plus or time-and-materials contract for building
software, then only high-level requirements or a features list need be issued as part of the
RFP. For such contracting vehicles, detailed requirements development and requirements
management activities are best deferred until after contract award. Regardless of the
contracting vehicle that is chosen, it should not be regarded as a substitute for sound
management and application of the acquisition themes.

The following paragraphs describe the remaining acquisition activities that have defined
beginning and end points. These are followed by descriptions of several on-going
activities that take place throughout an acquisition.

The software environment includes interfaces to field equipment, legacy systems, other
software products (e.g., operating systems, database management systems),

Executive Summary

ES-8 The Road to Successful ITS Software Acquisition

communications equipment, and systems in neighboring jurisdictions. Identifying the
software environment is analogous to performing a site survey on civil engineering
projects. This gives an overall picture of what the project entails. However, do not
unnecessarily constrain the system design or preclude the use of existing products by
prematurely specifying computing hardware or operating systems as part of the
environment. A product that works well in one location may require significant re-
tailoring if it is placed in a different location with a different environment. Choosing a
contracting vehicle that results in a low-bid purchase of computing hardware or field
devices without regard to the software may inadvertently preclude the use of an existing
software product. Or it may result in significant cost and development risk for re-tailoring
the software to fit the new environment.

Unfortunately, many acquisitions culminate in conflict and even litigation because of
unclear understandings of who has what rights to the software. Resolving the intellectual
property rights must be done before a contract is signed. Be very explicit and reach
detailed agreements with the contractor; a checklist is provided in the body of this
document to assist with this.

The meaning of the term “software” in the contract language has been a frequent point of
contention between customers and software contractors. Often the customer interpreted
“software” to include the source code, whereas the contractor meant for “software” to
apply to executable or object code.

Even though intellectual property rights issues do not arise until after the system is
completed, walk through the checklist with the contractor before a contract is signed.
This can be an initial step toward achieving the open communications theme. Procuring
the services of an intellectual property rights lawyer who specializes in software has
proven to be “money well spent” on several acquisitions.

“More software projects have gone awry for lack of calendar time than
for all other causes combined.” — [Brooks, 1975]

Two common flaws are common with software project scheduling: First, schedules are
established independently of the requirements. Second, they are squeezed so tightly that
they are set in the impossible-to-do zone, even if everything goes perfectly. Instead,
develop a schedule that realistically matches the requirements. More often than not
“realistic” equates to “pessimistic”. In developing the schedule, use well-defined
“yes/no” or “done/not done” milestones.

On one ITS project, milestones were so ill-defined that the participants were openly
puzzled as to whether they had met them or not.

Executive Summary

The Road to Successful ITS Software Acquisition ES-9

In establishing a schedule, get as many independent size estimates for your system as
possible, including those of the contractor and the software experts on your team.

“[You] can reduce effort, cost, (and defects) by planning a little longer
schedule.” — [Putnam and Myers, 1996]

Once a realistic schedule has been drafted, one of the most cost-effective ways of
lowering the cost and the total effort on a project is simply stretch out the schedule.
Doing so may defy intuition, but is another example of “software is different”.

Once a schedule is set, if the requirements change, make corresponding changes in the
schedule to keep the two in agreement. After the software contractor’s activities begin,
use actual progress to derive more realistic schedule estimates for the remaining activities.

Even though system testing does not take place until after the system is built or bought,
plan a formal system acceptance testing strategy early, before an RFP is issued. Reflect
your approach in the contract. Acceptance test preparations (preparing test cases, setting
up a testing environment, etc.) need to begin soon after contract award. Schedule them to
take place in parallel with other software activities. This will avoid a common problem of
treating acceptance testing as an after-thought.

Acceptance tests are based on the requirements. They should be rigorous; simple benign
tests are not sufficient. Tests should include functional tests, maximum capacity and
stress tests, erroneous inputs tests, stability tests, and integrity tests. When testing takes
place, carry it out as a collaborative teaming activity.

One ITS manager told us that “maintenance kind of caught us by surprise.” Don’t let that
happen to you. Plan for the support activities— training, operations, and
maintenance— early in the acquisition. Assign contractor responsibilities for support
activities in the contract, and allot adequate time to prepare for them. Give serious
consideration to including contractor maintenance in these responsibilities as opposed to
having maintenance carried out by in-house staff. Adequate resources are also needed:
over the life of a system, support activities generally consume more budget resources than
it costs to build the system initially.

On-Going Management Activities

We now turn to several on-going activities that take place in parallel throughout an
acquisition. We have already addressed one of these— requirements management.

Even after a contract is issued, the customer still has an active role to play. Project
management activities include project reviews, document reviews, and the use of
quantitative measurement data to gain visibility into contractor progress. If schedule slips
occurs, do not try to play “catch up”.

Executive Summary

ES-10 The Road to Successful ITS Software Acquisition

Intuition gained from other endeavors for meeting a schedule “more
workers, money, overtime, computer time— doesn’t seem to work for

software.” — [Putnam and Myers, 1992]

Either stretch the remaining schedule in accordance with the slip or reduce functionality in
the same proportion as the schedule slip. Project management entails not only contract
management, but also expectations management of other stakeholders not directly
working on the project.

Software configuration management is another essential on-going activity. Baselines are
established and serve as a controlled basis for future work. (A baseline is a “snapshot” of
everything associated with the software including such items as the source and object
code, requirements and other technical documentation, test cases, and problem reports
and their status.) Formal procedures are established and followed for making changes to
the baseline; otherwise, different aspects of the system will rapidly become “out of
synch” with one another. The customer must ensure that the contractor establishes sound
configuration management procedures and follows them.

Software risk management is another on-going activity that is carried out throughout the
life of a software project. Risk management steps include risk identification, analysis,
planning, resolution, and monitoring. Risk management is most effectively done as a
teaming activity between customer and contractor since their different perspectives on the
system lead them to identify different risks. For risk management to work, there must be
an atmosphere that fosters project personnel to come forward with risks without “finger
pointing.”

Topic Sheets

Several pertinent software topics are addressed in the following topic sheets at the end of
Volume II of this document:

• Rapid prototyping is the recommended approach for fleshing out human
interface requirements.

• Security must be built into system from the outset. A number of security
mechanisms are available to provide a range of necessary security services.

• The Software Acquisition Capability Maturity Model can be used by an agency
to assess its readiness to acquire software.

• The Software Capability Maturity Model can be used to assess contractor
capabilities to develop software.

• Software Safety is concerned with ensuring that the software does not cause
hazardous, life-threatening, or other highly undesirable conditions to occur.

• The Year 2000 Problem (Y2K) and the similar GPS-rollover problem are
challenges faced by software acquisitions.

Executive Summary

The Road to Successful ITS Software Acquisition ES-11

Concluding Remarks

We hope this document will help you with your ITS software acquisition. It starts out by
explaining how software is different. The rest of the document is essentially our
recommended response to that difference. We have taken a process-oriented approach.
It is centered around a series of themes that deal with the system, the management
outlook, and most importantly, the people. Then we built upon those themes, showing
how they play out in certain key activities.

To be sure, we haven’t been able to give you all the answers. Your software acquisition
will still be hard work, requiring your hands-on, active management involvement. The
road ahead may not be a totally smooth one; there are no silver bullets. But perhaps it
will be less bumpy because you'll know the potholes to avoid. And that may help keep
small risks from growing into major problems.

As Brooks wrote in his classic paper No Silver Bullet: Essence and Accidents of
Software Engineering, “There is no easy road, but there is a road.”

Executive Summary References

F. Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering”,
Computer, vol. 20, pp. 10-19, April 1987. (Also reprinted in The Mythical Man-Month:
Anniversary Edition, Addison-Wesley, 1995)

F. Brooks, The Mythical Man-Month: Essays on Software Engineering , Addison-
Wesley, 1975. (Also reprinted in The Mythical Man-Month: Anniversary Edition,
Addison-Wesley, 1995)

J. Ferguson and M. DeRiso, Software Acquisition: A Comparison of DoD and
Commercial Practices, Software Engineering Institute Special Report CMU/SEI-94-SR-9,
1994

C. Jones, Software Project Management: What Works and What Doesn’t, talk at SD ’97
Conference, Washington DC, September 29, 1997

S. McConnell, Rapid Development: Taming Wild Software Schedules, Microsoft Press,
1996

L. Putnam and W. Myers, Executive Briefing: Controlling Software Development, IEEE
Computer Society Press, 1996

L. Putnam and W. Myers, Measures for Excellence: Reliable Software on Time, within
Budget, Yourdon Press, 1992

