Department

The Road to
Successful I TS Software
Acquisition

Volumel: Oveview and Themes

The Road to
Successful 1 TS Softwar e
Acquisition

Volumel: Oveview and Themes

July 1998

Prepared for the Federal Highway Administration
by Mitretek Systems

1. Report No. 2. Gowernment Accession No. 3. Recipient’s Catalog No.
FHWA-JPO-98-035

4. Title and Subtitle 5. Report Date

July, 1998

The Road to Successful ITS Software Acquisition
Volume I: Oveniew and Themes

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report
No.
Dr. Arthur E. Salwin

9. Performing Organization Name and Address 10. Work Unit No.

Mitretek Systems
600 Maryland AVE SW STE 755
Washington, DC 20024

11. Contract or Grant No.
DTFH61-95-C-00040

12. Sponsoring Agency Name and Address 13. Type of Report and Period
Cowered

Department of Transportation
Federal Highway Administ ration
ITS Joint Program Office

400 Seventh ST SW
Washington, DC 20590

14. Sponsoring Agency Code
HVH-1

15. Supplementary Notes

Bill Jones and Lee Simmons

16. Abstract

This document assembles best practices and presents practical advice on how to acquire the software components of
Intelligent Transportation Systems (ITS). The intended audience is the “ customers” --project leaders, technical contract
managers, decision makers, and consultants--who are responsible for one or more ITS systems.

The document presents a series of “themes” that serve as guiding principles for building a successful acquisition.
Included are people themes of collaboration, team building, open communications, and active customer involvement, which
have been likened to partnering; management themes of flexibility, “no silver bullets”, and up-front planning; and system
themes of “Don’t build if you can buy” and “Take bite-size pieces”. Software acquisition activities that build upon these
themes are presented in subsequent chapters. Among the actiities covered are building a team, dewveloping
requirements, making build/buy decisions, resolving the intellectual property rights, acceptance testing, and project and
risk management. Also included are “war stories” to illustrate the various points, as well as key point summaries and
checklists to facilitate use of the material. The document concludes with short stand-alone topic sheets that introduce
various relevant software topics.

Key Words 18. Distribution Statement
Software, Acquisition, Procurement, ITS, Intelligent
Transportation Systems No restrictions.

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price
Unclassified Unclassified 68

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGMENTS

This document could not have come to be without the contributions of many players.
First, thanks are owed to over thirty interviewees from throughout the ITS community.
They were promised anonymity so they could freely relate their ITS experiences. And
that they certainly did, taking time out from their busy schedules and honestly relating
their software experiences. Many of their “ war stories’” have been disguised and
incorporated as side bars in the body of the document. The interviewees aso offered
valuable guidance on what topic areas to cover, helping us to get off on the right foot.

A review panel served as a surrogate audience for the document. Transit, traffic, and
software engineering perspectives, from both the public and private sectors, were
represented. The panel members took time from their busy schedules to review drafts of
the document, discuss them with us at two review workshops, and provide many valuable
comments. In aphabetical order, the panel members were Ron Damer, Gary Euler, Bill
Hiller, Les Jacobson, Kay Johnson, John Marciniak, and Jim Wright. Several individuals
at PB Farradyne Inc. also reviewed draft material.

The following individuals and organizations wrote white papers and other materials that
were heavily borrowed from or incorporated directly into this document: John Marciniak,
PB Farradyne Inc., TransCore (Kay Johnson), the Software Engineering Institute (Ron
Damer and John Waclo), and Mitretek (Keith Biesecker, Fred Dion, Walt Key, Chris
Reedy, and Susan Riegner). These individuals also provided invaluable consultation.

Several Mitretek colleagues deserve special recognition. Tight deadlines would not have
been met without Rich Bolczak’ s invaluable contributions in revising the document. As
usual, his sound advice and good humor are most appreciated. Jan Spore produced all
the graphics. Her ability to generate quality work at incredible rates of productivity is
truly amazing. Greg Hatcher coordinated with outside organizations, including FHWA, to
keep the project running smoothly. Donna Dion capably handled the production and
distribution of draft and final versions with her usual positive attitude, and along with
Cheryl Simpson assisted with the review panel arrangements. Finally, Mary Helen
Malow assembled reference material from multiple sources.

Dr. Arthur E. Salwin (Lead Author)
Principal Engineer

Intelligent Transportation Systems
Mitretek Systems

PREFACE

Perhaps you are a project leader, atechnical manager for a contract, or a decision maker
who is responsible for one or more Intelligent Transportation Systems (ITS). You may
work in a state or local department of transportation or in atransit agency. Or you may
be a consultant advising one of the above. In any case, this document is intended to help
you, the customer, acquire the software components of an ITS system. We do not
assume any software background on your part. We recognize you probably won’t be
acquiring software per se. However, if it’ san ITS system, it undoubtedly has a significant

In putting together this document, one of the things we wrestled with was the title. Should we
use the term “procurement’? “acquisition’? ‘purchase’? What we found was that the same
word has different meanings to different agencies. To some, ‘procurement”or “procure”means

| the whole process from project conception to operational use. To others, ‘procurement’’refers
\\/ to only that part of an acquisition concerning the legal and contractual issues associated with

‘ issuing an RFP and awarding a contract. To them, “acquisition”is a more encompassing term,

and that is the one we went with in writing this report. By acquisition we mean “The process of

obtaining a system or software product.”[IEEE, 1993, page 5] But whatever term you prefer,
we are referring to the entire process of ‘fetting”’the software.

For our purposes, we view the customeras being in the public sector. Customers are the
personnel -- project managers, end users, contracting officers, and others -- who work in a
traffic or transit agency. They issue contracts to acquire software from private sector
contractors. This software can be custom-built from scratch, or it can be an existing product
that is bought by the public agency. Clearly, other paradigms are possible. (The agency could
develop its own software, for example.)

software component. And software acquisitions often mean trouble.

In preparing this document, we surveyed the software engineering literature and
conducted many interviews with public-sector and private-sector personnel who had been
involved with ITS projects. Whether they were involved with traffic or transit projects,
the interviewees raised the same general issues. Public-sector and private-sector
interviewees aso tended to raise the same issues, albeit with different perceptions of those
issues. Most of the public-sector interviewees indicated that they had experienced
troubles of one sort or another with their software or software acquisitions. At the same
time, the system suppliers (typically contractors) said that they lose money on ITS
software, typically twenty percent of the size of the software contract.

A true lose-lose situation.

Certainly, software problems are not uniqueto ITS, to transportation, or even to the
public sector. In fact, it would be surprising if ITS hadn’t experienced them.
Furthermore, although most of the interviewees were new to software, the problems they
encountered, and the solutions they proffered, were largely in agreement with findings in

\'

Preface

the software engineering literature. This tends to reinforce our belief that sound practices,
applied successfully elsewhere, are largely applicableto ITS systems.

Accordingly, we have attempted to assemble best practices and present practical advice
on how to carry out a software acquisition. This document is not meant as “ thou shall
comply” ; rather it is a collection of helpful ideas. Please do not treat our
recommendations as rigid guidelines or standards that you must follow. Choose from
them selectively; they may not all be applicable to your particular project. Pick the ones
that seem the most useful or beneficial to you. Tailor your approach, but do take
advantage of the information presented here to improve your chance of success.

Our scopeis the overall system, including the software and the computing platforms on
which it resides. Not included are such items as the building facilities or the field sensors.
Even though the target audience is the customer—that is, public-sector officials who work
in transportation or transit agencies—we also present private-sector perspectives on the
issues. We address generic acquisition and management issues and do not focus on the
particular functions that a freeway management system or transit vehicle location system
should possess. To be sure, we don’t have all the answers. Indeed, one of our recurring
themes is that there are no silver bullets. Also thisis not an academic text book on
software or a handbook on how to develop it. So we do not include, for example,

material on how to code or design a software system.

One senior ITS officia noted, “ I’ ve never been involved in a software [acquisition for
which] I’ ve been truly satisfied at theend.” If this document helps enable you to be
satisfied with your software acquisition experiences, or improves the success rate of
software acquisitions, then we' ve succeeded in our mission.

Vi

DOCUMENT ROADMAP

We recognize that probably no one would ever pick up this document and read it straight
through from beginning to end. Therefore, to make it more convenient for the reader,

we' ve divided it into two volumes. The shorter Volume I, Overview and Themes,
presents the foundation upon which the rest of the document is written. We strongly urge
you to read it in its entirety first. A software acquisition should be built around the
themes discussed in this volume. Thelonger Volume I, Software Acquisition Process
Reference Guide, has the specific activities that build upon these themes. Asyour
acquisition unfolds, various topics discussed in this volume will become relevant to your
needs. When they do, you can turn to the appropriate chapters.

activities have to be first addressed long before they actually occur. Take

acceptance testing, for example. Even though acceptance testing does not take
CAUTION place until after development activities are complete, it must be planned for

early. In other words, the chapter on acceptance testing will become relevant
long before testing actually takes place.

i Chapters may become relevant sooner than you expect. Many acquisition

The chaptersin this document are grouped into six parts. Parts One and Two appear in
Volume |; Parts Three through Six appear in Volumell.

Volumel

Part One sets the stage for the recommendations that follow later. It beginswith a
discussion of software in general and shows how software acquisitions are different from
other acquisitions that you may be familiar with.

» Chapter 1, The Nature of Software explains how “ software is different.” The
purpose is to motivate the reader to be receptive towards new approaches for their
software acquisitions.

» Chapter 2, Software Acquisition In A Larger Context shows where software fits
into the overall system acquisition process.

» Chapter 3, Differing Perceptions of | TS Softwar e gets closer to home, showing
how the public and private sectors within the ITS community view software
acquisitions very differently. Much of the mistrust that arises between the two
camps can perhaps be overcome if each learns where the other * is coming from.”

* Chapter 4, Types of | TS Software Systems is more specific. It presents the range
of ITS systems whose acquisition is the subject of this document.

vii

Document Roadmap

Part Two responds to the differences discussed in Part One.

Chapter 5, Themes of Successful Software Acquisition introduces a number of
themes around which successful software acquisitions are built. These themes
guide the various acquisition activities and are applied over and over again if your
software acquisition isto be successful. Collectively, they represent a different
way of doing business; our response to “ software is different.”

Volumell

Parts Three and Four discuss the various activities that constitute a software acquisition.
Each chapter discusses a separate activity. Collectively, these activities encompass the
entire period from the system’ sinitial concept, through the software development, on to
the end of the system’ s operational life. The themes introduced in Part Two recur
throughout the various activities. When they do, we' |l call them out.

The activities in Part Three have defined beginning and end points.

Chapter 6, Sequence of Acquisition Activities gives an overview of these activities
and discusses how no single timeline can be generated to describe all acquisitions.

The next two chapters discuss activities that necessarily take place early in the
acquisition.

Chapter 7, Building A Team discusses the players that must be assembled to work
together. This must be done early, so they can work together and carry out the
acquisition.

Chapter 8, Planning The Project discusses the project plan used to organize an
acquisition. Even activities that will not take place until late in the acquisition
must be included in this plan. The plan helps to ensure that al the team members
are trying to achieve acommon goal.

The next three chapters discuss key activities that drive the rest of the acquisition:
These activities al feed off one another and to some extent take place in parallel.

Chapter 9, Requirementsis divided into two subchapters: 9A, Developing
Requirements and 9B, Requirements Management. Developing requirements
culminates in arequirements document. However, attention to requirements
cannot end at that point. Requirements management is still needed for the
remainder of the acquisition. Requirements creep must be avoided, but at the
same time requirements cannot be “ thrown over the fence” and forgotten.
Although requirements management is an on-going activity that could have been
discussed in Part Four, we chose to include it here to keep all the requirements-
related material in one chapter. The length of this chapter reflects the importance
of requirements in a software acquisition.

viii

Document Roadmap

Chapter 10, Build/Buy Decision(s) urges you to give serious consideration to
using off-the-shelf systems or system components, rather than building your own.
However, thisis not a panacea, and the risks in doing so are also discussed.

Chapter 11, Selecting the Contracting Vehicle introduces the various contracting
options and discusses their applicability to software acquisitions.

Chapter 12, | dentifying The Software Environment discusses the hardware,
software, and communications context of the system.

Chapter 13, Resolving The I ntellectual Property Rights addresses the contentious
issue of who has what rights to the software onceit’ s developed.

Chapter 14, Project Scheduling shows how to pull together the various planned
activitiesinto arealistic and achievable schedule.

The last two chaptersin this part address activities that do not take place until the
end of the acquisition. Nonetheless, planning and preparation for these activities
must begin much earlier.

Chapter 15, Acceptance Testing discusses how to determine whether the system
is ready to go operational in away that isfair to both the customer and the
contractor.

Chapter 16, Training, Operations, and Software Maintenance discusses three
important activities that collectively will probably take up considerably more than
half the budget over the life cycle of the system.

The activities in Part Four take place throughout the entire acquisition. The contractor
may do the bulk of the technical work, but the customer still has an active and vital role to
play even after contract award. Since the various activities have no natural time sequence
to them—they all take place simultaneously—the chapters are ordered alphabeticaly. As
in Part Three, we call out the various themes when they occur.

Chapter 17, Project Management focuses on gaining visibility into the project and
what to do if that visibility uncovers a schedule slippage. It also addresses quality
management steps that can be carried out to achieve various quality factors such
as reliability and maintainability of the system.

Chapter 18, Software Configuration Management discusses configuration
management and baselining activities. Without these activities, the various parts
of the acquisition can rapidly become out of “ synch” with one another.

Chapter 19, Software Ri sk Management, focuses on how to identify risks and
manage them before they become problems.

Part Five wraps things up.

Chapter 20, Best Practices Checklist and Key Points Summary provides afinal
checklist summarizing best practices. It also collects together the key point
summaries and checklists that appear throughout the document.

Document Roadmap

» Chapter 21, Where To Get More Help, suggests outside sources of information.
* Chapter 22, Concluding Remarks sets you on the road to your software
acquisition.

Part Six contains a series of stand-alone topic sheets. Typically one or two pagesin
length, these introduce various software topics “ offline,” without interrupting the main
flow of the document.

Throughout the document, checklists supplement the text. In addition the following icons
appear throughout:

The themes icon is used to highlight when an activity or recommendation is a specific
instance of one of the acquisition themes introduced in Part Two of Volumel.

Chapters end with a bulleted list of key points that summarize the main messages of
the chapter.

Sidebars are used to clarify various points or to relate “ war stories’ on the software
acquisition experiences of the ITS community.

The dictionary icon appears when new terminology is defined.

The stack of reference books appears when references are given to the outside
literature.

The Road to Successful I TS Software Acquisition
Table of Contents

Chapter Page
Volumel: Overview and Themes

Acknowledgments ii

Preface v
Document Roadmap vii
Executive Summary ES1

Part One: Settingthe Stage: The Big Picture

1 The Nature of Software 1-1
2 Software Acquisition In A Larger Context 2-1
3 Differing Perceptions of I TS Software 31
4 Typesof ITS Software Systems 4-1

Part Two: Themeson the Road to Successful I TS Software
Acquisition
5 Themes of Successful Software Acquisition 5-1

Concluding Remarksto Volumel
References RE-1

Volumell: Software Acquisition Process Reference Guide
Roadmap to Volumell i

Part Three: Activitieson the Road to Successful I TS Software

Acquisition
6 Sequence of Acquisition Activities 6-1
7 Building A Team 7-1

8 Planning the Project 8-1

Xi

Chapter

9

10
11
12
13
14
15
16

Requirements

9A. Developing Requirements

9B. Requirements M anagement

Build/Buy Decision(s)

Selecting The Contracting Vehicle

I dentifying The Softwar e Environment

Resolving Thelntellectual Property Rights
Project Scheduling

Acceptance Testing

Training, Operations, and Software Maintenance

Part Four: On-Going Management Activities

17
18
19

Project Management
Softwar e Configuration Management
Softwar e Risk M anagement

Part Five: Putting It All Together

20
21
22

Best Practices Checklist and Key Points Summary
WhereTo Get More Help
Concluding Remarks

Part Six: Topic Sheets
TS1 Rapid Prototyping
TS2 Security
TS-3 Software Acquisition Capability Maturity Model (SA-CMM)
TS4 Software Capability Maturity Mode (SW-CMM)
TS5 Software Safety
TS-6 The Year 2000 Problem (Y 2K)

References

Xii

17-1
18-1
19-1

20-1
21-1
22-1

TS1-1
TS2-1
TS3-1
TS4-1
TS5-1
TS6-1

RE-1

No.

12-1

13-1

14-1

151

15-2

15-3

154

15-5

16-1

18-1

The Road to Successful I TS Software Acquisition
List of Checklists

What To IncludeIn TheProject Plan

What To IncludeIn A Requirements Document

Suggested Agenda Items For A Requirements Walk-Through
What To Consider When Identifying The Softwar e Environment
Intellectual Property Rights

Software-Related Activitiesand Milestones on the Project Schedule
What to Include In The Acceptance Test Plan

What to Include In The Acceptance Test Procedures

What to Include In The Acceptance Test Cases

What to Include In The Acceptance Test Log

What to Include In The Report Of The Test Results

Personnel Roles Needed For System Support

How To Determine If Configuration Management |s Adequate
For Your Program

Note: All of the checklists also appear together in Chapter 20.

Page

9-6
9-18
12-4
13-4
14-2
159

15-10

15-11

15-12

15-13
16-8

18-4

EXECUTIVESUMMARY

Softwareis Different

“ Unfortunately, software development does not progressin accordance
with the rather simple rules that govern most functions.”
— Putnam and Myers, 1996]

“ The odds of a large [software] project finishing on time are closeto
zero.” —{McConnell, 1996]

Acquisitions that involve a significant amount of software development are notorious for
their problems. Missed schedules and cost overruns plague the acquisition process.
When systems are finally delivered, they are often unreliable and do not meet all their
requirements. Some projects are even cancel ed before any products are delivered.

Experienced project managers find that proven managerial techniques, which previously
worked so well for them on other types of projects, fail for software. They complain
about their lack of insight into what the final system will be like and their lack of visibility
into progress by the contractor. “ It s not like seeing asphalt being laid down.” Morethan
one manager has concluded that “ softwareisdifferent,” that it often defiesintuition
gained el sewhere.

Unfortunately, ITS software acquisitions are no exception to this software norm. One
senior ITS manager lamented he' d never been involved on a software acquisition that he
was satisfied with.

Representatives from the public and private sectors who have beeninvolved on ITS
software acquisitions have very different perceptions as to what goeswrong. Each feels
that the other takes advantage of the situation. They perceive that the other party “ wins’
whilethey “ lose.” Infact both partieslose: while public-sector customers face the
problems cited above, private-sector contractors often lose significant amounts of money
on software. Thisleadsto mistrust. Both sides then resort to acquisition practices that
further exacerbate the situation.

The good news isthat there are proven techniques for managing software acquisitions.

This document presents best practices, not rigid guidelines, to assist you. Usethem
selectively, choosing those most appropriate for your agency and project.

The Road to Successful ITS Software Acquisition ES1

Executive Summary

Acquisition Themes

Figure ES-1 summarizes the themes upon which successful software acquisitions are
built. Collectively they represent adifferent way of doing business, the response to

“ softwareisdifferent.” The themes recur again and again throughout a software
acquisition and guide the various acquisition activities.

™ SUCCESSFUL =
ol SOFTWARE P

Management
Themes

Don’ t Build Take
If You Can Buy Bite-Size Pieces
Flexibility NI;)USI:L\:? Up-Front Planning

Team Building

Active Customer People

Open
Themes
Involvement

Communication

Collaboration

Themes

FigureES-1. ThemesOn The Road To Successful Software Acquisition

The people themes have been likened to partnering, whose practice has proven beneficia
on construction projects. For transportation agencies that don’t build ITS software with
in-house staff (the usual case), the customer works together with a contractor to achieve
common goalsinstead of having an adversarial relationship. They continually work at
open communi cations, and collaborate on al activities, from requirements to risk
management to system acceptance. Thisrequires agreater customer role than many are
used to; active customer involvement isessential. Thisin turn requiresthat project
managers not go it alone. Instead, they practice team building, both within their agency
and with the software contractor.

The management themes guide the management of an acquisition. Flexibility isneeded
in the contract to accommodate change and take advantage of the opportunities presented
by application of the people themes. There must be the recognition that there are no
silver bullets; no one acquisition practice or contracting mechanism is a panaceathat can
be relied upon to rescue aproject. Up-front planning is needed early in the acquisition,
even for activities such as system acceptance that do not take place until latein the

.= Thetop five percent of software organizations have no canceled projects, consistently control
3?3' costs within 5 percent of budget, and meet schedules within three percent. [Jones, 1997]

ES2 The Road to Successful ITS Software Acquisition

Executive Summary

acquisition process.

System themes relate directly to the final product. Don’t build if you can buy existing
products. Purchasing pre-existing products alleviates many of the risks associated with
building custom software. For most types of ITS systems, off-the-shelf products or
components are available. Unique requirements can preclude their use, but any such
requirements should be examined to determine whether they really are important or
whether the system is over-specified. Ask yourself why your requirements are so much
different from everyone else’'s. Many projectsfail because they attempt to do too much
at once. By taking bite-si ze pieces, an acquisition is more manageable. Contracting
mechanisms must be chosen that alow for thisinstead of those that call for an all-at-once
“big bang” approach.

The various software acquisition activities that are built upon these themes will now be
discussed.

Acquisition Activities

An early activity in an acquisition is building a team. Following are some of the skills
that must be tapped (from within your agency, if possible) and included on the team:

» Software technical experts assist with requirements, scheduling, costing, technical
reviews, and eventually liaison with the software contractor. Theseindividuas are
difficult to find, especialy for public agencies.

* End users, maintainers, and system administrators have very different
perspectives on systems than do engineers. Their membership on the team hel ps
ensure that their needs are addressed.

» Domain experts ensure that a system addresses operational needs and guide the
end users in understanding and operating the system.

» Contracting and purchasing officials help select the most appropriate
contracting vehicles. A full range of options must be considered as traditional
vehicles used on construction, consulting, and other types of transportation

& OneITS manager successfully teamed with his contractor by treating them as part of his
_ staff. They were invited to attend staff meetings and participated in setting milestones for
> the project.

projects are not appropriate for software.

» Software-specific legal staff assist in resolving intellectual property rightsissues
to avoid litigation over them.

Once the software contractor is selected, they become an essential member who must be
incorporated into the team.

Aninitia activity for the assembled team is project planning. Write a short project plan.

The Road to Successful ITS Software Acquisition ES3

Executive Summary

Severa parts of thisplan are unique to software, or at least more critical for software than
they are for other types of projects. Theseinclude identification of the following:
facilities, acquisition strategy, system environment, risk management, project oversight
techniques, end users, acceptance strategy, training concept, and mai ntenance concept.
Clearly, many of these planning activities, especialy the acquisition strategy, will take
place before the contractor is on board. Writing a plan helps achieve” buy in” for
subsequent activities and gives everyone an awareness of the trade-offs that have to be
made. Although written during the early part of a project, several sections of the plan
address activitiesthat will not take place until late in thelife cycle.

Three key activities take place in parallel and feed off one another: devel oping
requirements, making build/buy decisions, and sel ecting the contracting vehicle.

Thefirst key activity, developing requirements, is one of the most important that takes
place on a software acquisition. The team members participate in devel oping a good,
sound set of functional and performance requirements. Functional requirements define
automated and manual system capabilities. Performance requirements define such items
as response time, capacity, reliability, safety, and security. Unlike other transportation

Afew ITS examples illustrate what can happen when human interface requirements are
specified on paper. In the transit arena, a box on a bus needed multiple keystrokes for a
simple function like changing the volume control. This was not apparent from reading the
written requirements and was not realized until the box was used operationally. In the
= traffic arena, incident reports could not be filed until all the fields of an on-line form were
: filled out. Many of the fields were not particularly important and filling them out delayed
£ the transmission of critical information. But the requirements did not specify the capability
to transmit a partially filled out form or allow the ability to retrieve a form and add the
missing fields later. Because rapid prototyping techniques had not been used in either
case, it was not possible to visualize the implication of the written requirements. Only
real-world interactions with the system revealed the flaws that were inherent in the
requirements. If you buy existing products, you will at least gain the benefits of someone
else’s experiences.

projects, software acquisitions should not devel op design specs or technical requirements
a thisstage. (Softwareisdifferent!) The requirements give the what’s not the how's.
They address such topics as system functions, response times, reliability, maintainability,
security, safety, interfaces, inputs, and outputs. Noticeably missing from thislistis
detailed human interface requirements on how operators and end users will interact with
the system. Rapid prototyping is a better approach for addressing them.

In devel oping requirements, don’t ask for too much. Avoid the temptation to “ add just
one more requirement, it’ sonly a matter of some more software.” This keeps the project
manageable, minimizes risk, and achieves an operational capability sooner. Use scrub
sessions to eliminate inessential requirements. Furthermore, over-specified systems
inevitably dictate design and preclude off-the-shelf solutions. Once operational
experienceis gained with aninitial implementation, there’ s always timeto build upon
ES4 The Road to Successful ITS Software Acquisition

Executive Summary

success and add features.

Related to requirements are quality factors. The quality factors address* how well” the
system meets requirements and include such “ ilities” asreliability, availability, and
maintainability. System flexibility should also be addressed. Softwareisinherently
flexible. Ironically, software systems often are often inflexible; they are not robust to
change. Y ou can help achieve moreflexibility by asking “ what if” questionsin regardsto
future features and what is likely to change. (For example, “ What if we added another
jurisdiction to aregiond ATMS?” “What if the ramp metering algorithms were
changed?’) Then seeif the system can accommodate those changes.

Fundamental flaw of software acquisition: “ One can specify a
satisfactory systemin advance, get bids for its construction, haveit
built, and install it...this assumption is fundamentally wrong. ...It is
necessary to allow for extensive iteration between the client and the

designer as part of the system definition.” — Brooks, 1987]

At onetime it was thought that the key to software successwasi) develop arigorous,
complete set of requirements, ii) freeze them for the entire project, and iii) insist that the
contractor meet al the shall’s. Although it would be nice to set aside the requirements
and go on to other tasks once the requirements are documented, you unfortunately
cannot dismissthem asa“ donedeal.” Unlessyou go strictly with an off-the-shelf buy
(see below), an on-going requirements management process will be needed, carried out
collaboratively by customer and contractor. Thisincludes conducting arequirements

One ITS software developer cites the example of an unnamed customer who refused to
~= carry out a requirements walk-through. So the contractor proceeded as best they could
_ in designing the system. Then came the critical design review, a major milestone. But
- instead of addressing design issues, the review quickly back-tracked to the unaddressed

requirements issues. The contractor and customer finally reached a mutual
understanding of the requirements, but not without cost. By then, much of the previous
design work had to be discarded and re-done. This could have been avoided with a
timely walk-through of the requirements.

wa k-through with the software contractor.

“ Rule 1 of Systems I ntegration: The agency and the integrator will never
interpret the functional definition in the same manner.” — Phil Tarnoff]

In awalk-through, every requirement is thoroughly examined until the customer and
contractor achieve acommon understanding of it. An example of our open

communi cations and collaboration themes, a walk-through a so provides another
opportunity to scrub requirements and to explore alternatives that replace high risk
requirements with lower risk ones. Thisistrue whether you build or buy. If you buy an
off-the-shelf product, the supplier isin the best position to identify which modifications
are easy and which ones are hard or risky.

Once the requirements are revised to reflect the mutual agreements of customer and

The Road to Successful ITS Software Acquisition

ESS5

Executive Summary

contractor, they are signed and placed under configuration control (* baselined”). From
this point on, changes to requirements are carefully controlled. A careful balancing act

~ One satisfied customer told his long-time contractor, ““The reason wete so successful
together is because you always give me 80% of what | ask for.””

W v{\-\\.

e

that must be practiced. On the one hand, _having a stable set of requirementsis essential
for successful software development. Changing requirements and scope creep can be
fatal. On the other hand, “ controlled” should not be equated with “ frozen.”

Requirements i ssues must be addressed as they arise, with al changes agreed to inwriting
by al parties before they take effect. There should be sufficient teamwork and contractual
flexibility to clarify ambiguities, flesh out lower-level requirements not initially addressed,
and relax requirements that pose unexpected risk or prove technically difficulty to
implement.

The requirements become the basis for size, schedule, and cost estimates; build/buy
decisions; design and devel opment activities, and acceptance testing. (On too many
projects, these other activities are carried out independently of the requirements.) If
changes increase the scope of the project, they must be accompani ed by schedul e and
budget relief, or compensated for by eliminating other requirementsin the system.

“ The most radical possible solution for constructing softwareis not to
construct it at all.” —Brooks, 1987]

The second key activity is making build/buy decisions. This decision-making activity is

-, The consideration of the availability of existing products and the willingness to trade off
WS functionality to decrease cost and schedule has been cited as a ‘best commercial
&)}' practice”that is used by the private sector. [Ferguson and DeRiso, 1994.]

often neglected in spite of the fact that it has the potential of overcoming many of the
problemsincurred on software acquisitions. Never build the system (or portions of the
system) if you can buy it. A matrix showing which vendor products meet which high-
level requirements can be used to help you make thisdecision. Product demonstrations
(perhaps at your site) or visitsto other sites are some of the ways that will alow you to
find out what’ s available in the marketplace. If no vendor products meet arequirement,
carefully consider its necessity and technical risk. Ask yourself whether you are
unnecessarily precluding off-the-shelf products. Is apre-existing, 80% solution good
enough?

For the portions of the system that you buy, only high-level requirements (afeatureslist)
may be necessary. For those portions of the system that you decide to have built, a
requirements management process such as that described above will be needed.

Although buying the system can reduce risk, purchasing softwareis not a panacea and
hasits own associated risks. Mitigation strategies are available for addressing them.

ES6 The Road to Successful ITS Software Acquisition

Executive Summary

Engineer/contractor often leads to multiple layers of subcontracting. One ITS software
~ contractor found themselves third tier down on the subcontracting arrangement of a

RANRS construction contract. They were effectively shut off from all direct contact with the
- customer. This lack of contact predictably led to a very bad software experience for all
parties.

These include “ kicking thetires’ or meeting with prior customers before committing to an
existing product.

The third key activity is selecting a contracting vehicle for the acquisition.

A leading-edge traffic management center was successfully built using a time-and-

VRN materials contract. A ‘folling”development approach was used. The system evolved
KRN over time by having new pieces of the system put in place at frequent intervals, typically
on the order of several weeks. The contracting approach was credited with being able to
adapt quickly to the unforeseen popularity of the Internet when that became a viable
vehicle for transmitting traffic information.

Unfortunately, no acquisition vehicles are ideal for software, and the familiar
engineer/contractor (design-bid-build) approach is particularly inappropriate.

Therefore you will need to work with your contracting and lega representatives on your
team to explore the full range of options. Among them are cost-relmbursement, time-
and-materials, design/build, design to cost and schedule, and build to budget contracts.
Although not often used, time-and-material s contracting offers anumber of advantages
for software and is allowed under Federa-aid regulations.

The build/buy decisions influence the selection of acontracting vehicle. In particular,
fixed-price contracting (or any type of contract with firm deliverables and fixed ceilings
for price and cost) does not provide the needed flexibility for building software, or
modifying existing products, although it may be appropriate for some off-the-shelf buys.
For fixed-price contracts, requirements will need to be issued as part of the RFP.
However, if you decide to go with a cost-plus or time-and-materia's contract for building
software, then only high-level requirements or afeatures|ist need beissued as part of the
RFP. For such contracting vehicles, detailed requirements devel opment and requirements
management activities are best deferred until after contract award. Regardless of the
contracting vehicle that is chosen, it should not be regarded as a substitute for sound
management and application of the acquisition themes.

The following paragraphs describe the remaining acquisition activities that have defined
beginning and end points. These are followed by descriptions of several on-going
activities that take place throughout an acquisition.

The software environment includes interfaces to field equipment, legacy systems, other
software products (e.g., operating systems, database management systems),

communi cations equipment, and systems in neighboring jurisdictions. |dentifying the
software environment is analogous to performing asite survey on civil engineering

The Road to Successful ITS Software Acquisition ES7

Executive Summary

projects. Thisgivesan overal picture of what the project entails. However, do not
unnecessarily constrain the system design or preclude the use of existing products by
prematurely specifying computing hardware or operating systems as part of the
environment. A product that works well in one location may require significant re-
talloring if it isplaced in adifferent location with a different environment. Choosing a
contracting vehicle that resultsin alow-bid purchase of computing hardware or field
devices without regard to the software may inadvertently preclude the use of an existing

The meaning of the term *Software”in the contract language has been a frequent point of
~ contention between customers and software contractors. Often the customer interpreted
BANNS “software”’to include the source code, whereas the contractor meant for ““software’’to
- apply to executable or object code.

software product. Or it may result in significant cost and development risk for re-tailoring
the softwareto fit the new environment.

Unfortunately, many acquisitions culminate in conflict and even litigation because of
unclear understandings of who has what rights to the software. Resolving theintellectual
property rights must be done before acontract issigned. Be very explicit and reach
detailed agreements with the contractor; a checklist is provided in the body of this
document to assist with this.

Even though intellectual property rightsissues do not arise until after the systemis
completed, walk through the checklist with the contractor before a contract is signed.
Thiscan beaninitia step toward achieving the open communications theme. Procuring
the services of an intellectual property rights lawyer who specializes in software has
proven to be“ money well spent” on several acquisitions.

.= Onone ITS project, milestones were so ill-defined that the participants were openly
AR puzzled as to whether they had met them or not.

“ More software projects have gone awry for lack of calendar timethan
for all other causes combined.” — Brooks, 1975]

Two common flaws are common with software project scheduling: First, schedulesare
established independently of the requirements. Second, they are squeezed so tightly that
they are set in the impossible-to-do zone, even if everything goes perfectly. Instead,
develop a schedul e that redlistically matches the requirements. More often than not
“regdigtic’ equatesto “ pessmistic.” In devel oping the schedule, use well-defined
“yes/no” or “ done/not done” milestones.

In establishing a schedul e, get as many independent size estimates for your system as
possible, including those of the contractor and the software experts on your team.

ESS The Road to Successful ITS Software Acquisition

Executive Summary

“[You] can reduce effort, cost, (and defects) by planning a little longer
schedule” — Putnamand Myers, 1996]

Once aredlistic schedul e has been drafted, one of the most cost-effective ways of
lowering the cost and the total effort on aproject issimply stretch out the schedule.
Doing so may defy intuition, but is another example of “ softwareis different.”

Once ascheduleis set, if the requirements change, make corresponding changesin the
schedule to keep the two in agreement. After the software contractor’ s activities begin,
use actual progressto derive more redlistic schedul e estimates for the remaining activities.

Even though system testing does not take place until after the system is built or bought,
plan aformal system acceptance testing strategy early, before an RFP isissued. Reflect
your approach in the contract. Acceptance test preparations (preparing test cases, setting
up atesting environment, etc.) need to begin soon after contract award. Schedule them to
take place in pardld with other software activities. Thiswill avoid acommon problem of
treating acceptance testing as an after-thought.

Acceptance tests are based on the requirements. They should be rigorous; simple benign
testsare not sufficient. Tests should include functiona tests, maximum capacity and
stress tests, erroneousinputs tests, stability tests, and integrity tests. When testing takes
place, carry it out as a collaborative teaming activity.

One ITS manager told usthat “ maintenance kind of caught us by surprise.” Don't let that
happen to you. Plan for the support activities—training, operations, and

mai ntenance—early in the acquisition. Assign contractor responsibilities for support
activitiesin the contract, and alot adequate time to prepare for them. Give serious
consideration to including contractor maintenance in these responsibilities as opposed to
having maintenance carried out by in-house staff. Adequate resources are also needed:
over thelife of asystem, support activities generally consume more budget resources than
it coststo build the systemiinitialy.

On-Going Management Activities

We now turn to severa on-going activities that take placein paralel throughout an
acquisition. We have aready addressed one of these—requirements management.

Even after acontract isissued, the customer still has an activeroleto play. Project
management activitiesinclude project reviews, document reviews, and the use of
quantitative measurement datato gain visibility into contractor progress. If schedule slips
occurs, do not try to play “ catch-up.”

I ntuition gained from other endeavors for meeting a schedule“ more

wor kers, money, overtime, computer time—doesn’t seemto work for
software.” — Putnam and Myers, 1992]

The Road to Successful ITS Software Acquisition ES9

Executive Summary

Either stretch the remaining schedule in accordance with the dlip or reduce functionality in
the same proportion as the schedule dlip. Project management entail s not only contract
management, but al so expectations management of other stakeholders not directly
working on the project.

Softwar e configuration management is another essential on-going activity. Baselinesare
established and serve as a controlled basis for futurework. (A baselineisa* snapshot” of
everything associated with the software including such items as the source and object
code, requirements and other technical documentation, test cases, and problem reports
and their status.) Formal procedures are established and followed for making changes to
the baseline; otherwise, different aspects of the system will rapidly become* out of

synch” with one another. The customer must ensure that the contractor establishes sound
configuration management procedures and follows them.

Softwar e risk management is another on-going activity that is carried out throughout the
life of asoftware project. Risk management stepsinclude risk identification, anayss,
planning, resolution, and monitoring. Risk management is most effectively doneasa
teaming activity between customer and contractor since their different perspectives on the
system lead them to identify different risks. For risk management to work, there must be
an atmosphere that fosters project personnel to come forward with risks without “ finger

pointing.”
Topic Sheets
Severd pertinent software topics are addressed in the following topic sheets at the end of

Volumelll of this document:

* Rapid prototyping is the recommended approach for fleshing out human
interface requirements.

e Security must be built into system from the outset. A number of security
mechani sms are available to provide arange of necessary security services.

» The Software Acquisition Capability Maturity Model can be used by an agency
to assessits readiness to acquire software.

* The Software Capability Maturity Model can be used to assess contractor
capabilitiesto develop software.

» Software Safety is concerned with ensuring that the software does not cause
hazardous, life-threatening, or other highly undesirable conditions to occur.

* The Year 2000 Problem (Y2K) and the similar GPS-rollover problem are
challenges faced by software acquisitions.

ES10 The Road to Successful ITS Software Acquisition

Executive Summary

Concluding Remarks

We hope this document will help you with your ITS software acquisition. It starts out by
explaining how softwareisdifferent. The rest of the document is essentialy our
recommended response to that difference. We have taken a process-oriented approach.
It is centered around a series of themesthat deal with the system, the management
outlook, and most importantly, the people. Then we built upon those themes, showing
how they play out in certain key activities.

To be sure, we haven't been able to give you al the answers. Y our software acquisition
will still be hard work, requiring your hands-on, active management involvement. The
road ahead may not be atotally smooth one; there are no silver bullets. But perhapsit
will be less bumpy because you'll know the potholesto avoid. And that may help keep
small risks from growing into major problems.

As Brookswrotein his classic paper No Slver Bullet: Essence and Accidents of Software
Engineering, “ Thereisno easy road, but thereisaroad.”

The Road to Successful ITS Software Acquisition

ES11

PART ONE

SETTING THE STAGE:
THE BIG PICTURE

CHAPTER 1
THE NATURE OF SOFTWARE

“ Unfortunately, software development does not progressin accordance
with therather simple rulesthat govern most functions. That iswhy
softwar e projects run beyond delivery dates by many months; overrun
budgets, often significantly; and are even canceled about one-quarter of
thetime. Consequently, you need help to find your way through this
thicket.” —Putnam and Myers, 1996]

“ Studies have shown that for every six new large-scale software systems
that are put into operation, two others are canceled. The average
softwar e development project overshootsits schedule by half; larger
projects generally do worse. And some three-quarters of all large
systems are ‘operating failures,” that either do not function as intended
or arenot used at all ... 55 percent of the projects cost more than
expected, 68 percent overran their schedules, and 88 percent had to be
substantially redesigned.” — Gibbs, 1994]

“ The odds of a large [software] project finishing on time are closeto
zero. The odds of a large project being canceled are an even-money
bet.”
—McConnell, 1996, page 81]

Two problems characterize acquisitions that involve a significant amount of software
devel opment:

* Productsarelate.
» Costsoverrun the budget.

Not merely risks, these characteristics are near certainties. An unpublished review of
seventeen maor Department of Defense software contracts showed that none were
completed on time. [Humphrey, 1993, page 5] Unfortunately, the difficultiesfound on
software acquisitions are not aways apparent at the outset of aproject. AsBrookswrites
in his classic paper No Slver Bullet: Essence and Accidents of Software Engineering,

“ The familiar software project, at least as seen by the nontechnical manager ... isusualy
innocent and straightforward, but is capable of becoming a monster of missed schedules,
blown budgets, and flawed products.” [Brooks, 1987]

Why are we emphasi zing these problems so early in this document? Because individuas
responsible for the software acquisition on an ITS project may not really understand how

The Road to Successful ITS Software Acquisition 11

Chapter 1: The Nature of Software

often these problems do occur. They may carry with them attitudes that reflect their
experience with the more familiar civil engineering projects where, according to one
interviewee, “ overrunning on concrete is considered really bad.”

Software engineering is a relatively new field, only a few decades old. But even mature
industries have cost and schedule uncertainties when dealing with one-of-a-kind
products. Consider the following newspaper article quoting the owner of an arena under
construction: ‘{It] will open Sometime in the fall.” As for a date, e dont know yet.””
[Washington Post, April 24, 1997, page C11.] Or a report addressing a 42 percent
increase in school construction costs and cost overruns ranging from 21 to 36 percent.
[Rockville Gazette, March 26, 1997, page A-1.] These two examples are taken from the
building industry, which dates back at least to the days of the pyramids. Sois it too
surpgilsing that one-time custom software developments should experience similar
troubles?

So why do software acquisitions so often fail? There anumber of factors:*

Software systems are generally more complex than other types of systems. Like
roads and structures, they have static characteristics, such asthe interfaces
between systems. But they also have temporal characteristics, such as sensor data
inputs or operator interactions, with many subtle timing interactions.

Furthermore, systems integration, the most complex and difficult aspect of an
overall system, is primarily a software concern.

Human interfaces—whether they be report layouts on paper or rea-time
user/operator interactions at a terminal—are a common target of user complaints.
Even though the complaints are often based on the operator’ s subjective criteria,
responding to the complaints necessitates changes. These interfaces are generally
implemented in software.

Theratio of design coststo production costs is the reverse from that found on
hardware acquisitions or on construction projects. On construction projects, an
architecture design and blueprints are rel atively inexpensive when compared with
the actual fabrication costs. This serves as anatural impediment to making
unrestricted changes to the finished product. It may be years before anew laneis
added to ahighway, or an addition is placed on astructure. “ The high cost of
change dampens the whim of [would be] changers.” [Brooks, 1987, page 10]
However, on software projects, production costs are rel atively inexpensive (e.g.,
copying aprogram onto adiskette). Thisgivestheillusion that changes are
relatively easy to make. So changes are made over and over again.

Monitoring progress on software projectsisdifficult. Progress measures that work
elsewhere don’t seem to work with software. “ It’ snot like seeing asphalt being
lad down.”

Taken in part from [Humphrey, 1993]

The Road to Successful ITS Software Acquisition

Chapter 1: The Nature of Software

» Gaining visibility into the softwareis difficult. Managers complain that paper
documents and deliverables providelittleinsight. “ It was difficult to get a sense of
thelook and fed of the eventual system.”

» Even after a software system has been successfully implemented, there can be
differences. Traditiona capital investments made by DOTs—from telephonesto
street lamps—have typical life expectancies of twenty years or more. However,
software systems may have alife expectancy of aslittle asfive years.

In short, across multiple disciplines, many have cometo realize that, in genera

“ Software is Different”

ITS software appears to be no exception to this genera observation. Transportation and
transit officials who have acquired ITS systems have come to the same conclusion. One
interviewee from the ITS community said it best: “ Softwareisavery different animal.”
What can be done to accommodate the differences?

The Bad News: Obvious approaches that don’t work
Let us consider some possibilities.

Suppose you hire an experienced manager with agood track record on other types of
transportation projects. Unfortunately, the schedule and budget woes inherent in
software are different from the experiences gained on more familiar civil engineering
projects. The successful experiences el sewhere can | ead the manager to false
expectationsfor their first software project. Asthe project progresses, thisis
compounded as the managers struggle to find an effective means to monitor progress.
Measures that had been successfully used in the past may prove to be grossly inaccurate
for software. [Putnam and Myers, 1996, pageiv] Inaddition, acquisition practices that
are successful on materials contracts (e.g., fixed-cost contracts) don’t necessarily work
with software. In short, the intuitions gained from managing other types of projects don’t
necessarily apply to software.

How about hiring a manager with alittle software experience? Perhaps one who has
taken a course on computer programming. Actually that may do more harm than good.

It turns out that the intuitions and insight gained on small software projects are misleading
and don’'t scale up on real-world systems.

The Road to Successful ITS Software Acquisition 1-3

Chapter 1: The Nature of Software

Perhaps an analogy to a familiar real-world problem will give an indication as to why
intuition gained on small scale problems simply does not scale up. Suppose you are
about to embark on a car trip across the country, but your only travel experience has
been on short, local trips of a mile or less. What have you learned from them? Things
~* like getting the kids buckled in, adjusting your mirrors, and warming up the engine are big
deals and the most time-consuming parts of a trip. Once those tasks are carried out,
- driving to your destination is relatively quick. However, these lessons have not prepared
you for the cross-country trek, where obtaining maps, planning routes, making
reservations, finding restaurants, and keeping the gas tank filled are the challenges. The
small trip experiences are still there at the start of the trip, but are dwarfed by the much
longer time spent driving across the country,

In short, the quick and easy approaches won't suffice.
The Good News: The differences can be accommodated

Since software is different, it must be acquired and managed differently. Traditional
approaches, which are oriented towards civil engineering projects and focus on
production, must be adjusted to accommodate the nature of software. Thereare
established techniques that do work. We'll cover some of them later onin this document.
For example, we' |l introduce techniques that overcome the problems associated with
gaining visibility into a software project.

In contrast to the pessimistic experiences cited in the quotes at the beginning of this
chapter, the top five percent of software organizations have no canceled projects,
Lo consistently control costs within 5 percent of budget, and meet schedules within three
- percent. [Jones, 1997]

 Software acquisitions are different from other types of projects.

E‘“‘ . = Missed schedules, cost overruns, and lack of visibility into the software and
b software development are common.

. * Different approaches are therefore needed to manage software projects.

= There are established managerial techniques that can be relied upon to
overcome the problems.

* TS software experiences are similar to those encountered on other types of
software projects.

« This document is intended to help you find your way through what has been
termed the ‘Software thicket.”

| Key Points

14 The Road to Successful ITS Software Acquisition

CHAPTER 2
SOFTWARE ACQUISITION IN A LARGER
CONTEXT

Software is seldom acquired for itsown sake. It is generally acquired as part of asystem
acquisition in the context of an overall acquisition process.

Figure2-1isahighleve overview of this context.

Needs Transportatio &/stem } System Opera(t;ons
Analysis "1 Planning Concept » Acquisition —> an
Maintenance

A

Transportatio;ln‘

Planning |

Figure 2-1. Overall Context For A Software Acquisition

The process begins with a needs analysis, which identifies transportation needs or
problems.

Transportation Planning proposes solutions to these problems. It entails regional
planning activities, and the development of a Transportation Improvement Program or
TIP. The TIP identifies particular systems, perhaps including an ITS system that you will
beresponsiblefor. Usethe National ITS Architecture as one of your inputs in generating
the TIP.

With project go-ahead, the system concept drives your acquisition. Again, the Nationa
ITS Architecture can be used, this time to help in defining your concept. At thisearly
stage of aproject, the concept may only be avision in your head of where the project is
headed. Or it could be aformal document, setting forth system goals and objectives.
Whatever form it takes, it serves as your starting point, showing the direction in which
you are headed. Projectswithout avision can easily get lost aong theway. They may
result in acollection of components that work, but do not produce intended results. Or
they can get completely derailed and never produce aworking product.

The Road to Successful ITS Software Acquisition

2-1

Chapter 2: Software Acquisition In A Larger Context

The system acqui sition turns the concept into reality. Included in a system acquisition
are software acquisition activities, the subject of this document, discussed in parts three
and four. If theacquisition is successful, the system will become operational.

Evaluations of the operational system provide feedback that is used to drive further needs
analysis. At the same timethat operations take place, there are maintenance activities.
There are both hardware and software maintenance activities. Infact, over thelife of a
system, the total effort, and cost, devoted to software maintenance often dwarfs the
amount spent on software devel opment activities during the acquisition phase.

Let’ stake acloser look at the System Acquisition box. Figure 2-2 expands Systems
Acquisition into a number of activities, encompassing both hardware and software.

System
Concept
System Acquisition
Activities
Hardware
Acquisition
*Hardwar e Requirements Operations
— Sy_stem s System *Hardware Design [etc.] SyStem.S > System > and
Requirements Design Integration Acceptance Maintenancel
Software
Acquisition

«Softwar e Requirements
«Software Design [etc.]

Figure2-2. System Acquisition Activities

The system design allocates functions between thetwo. Thisisthe basisfor the software
requirements, which in turn drive the software design and subsequent software
acquisition activities.

As shown in the figure, the hardware and software must be integrated before a system can
be accepted and used operationally. Let usstressthat figure 2-2 isaconceptua viewpoint
only. Not every activity would necessarily take place as a distinct step on every project.
Furthermore, system requirements, system design, and software requirements usually
don’'t proceed as a series of sequentia steps, each one waiting for the completion of the
previous one.

The Road to Successful ITS Software Acquisition

Chapter 2: Software Acquisition In A Larger Context

; ';""r- = Although we will focus our attention on the software acquisition activities, they
take place in the context of a system acquisition, which in turn is part of an

a . overall process.
Key Point

The Road to Successful ITS Software Acquisition

CHAPTER 3
DIFFERING PERCEPTIONS OF ITS SOFTWARE

“ The perception is more important than the reality.”

Asweinterviewed ITS personnel for this document, it became apparent that the public
sector and private sector have very different perceptions of the software acquisition
process. Since these perceptions drive many of their decisions, it isimportant for each
sector to know where the other is* coming from.”

Before we began writing this document, we interviewed over thirty individuals with ITS
software experience in traffic and transit management. The interviews were equally
divided between public-sector (the customer) and private-sector (the contractor)

- Individuals. We wanted to know what types of information would be useful to the

2 practitioner. The interviews also provided us with the opportunity to capture “war stories”

R that are sprinkled throughout this document as sidebars to the main text.

Interviewees were promised anonymity so they could speak freely. In spite of their busy
schedules, almost without exception the interviewees willingly gave of their time and
offered additional help if needed. Even though we cannot acknowledge them by name,
we are very grateful to them.

The following paragraphs summarize comments of the public-sector and private-sector
interviewees on anumber of issues. The perceptions presented are those that were
typically expressed. However, it isrecognized that any given individual may not hold all
the views indicated for their corresponding sector.

Not Getting “ Locked In” — Public-Sector Perception

The most common viewpoint expressed by the public sector isthe importance of not
getting locked into asingle contractor. When they do get locked in, they lose all
leverage in negotiating follow-on work. Then they get burned by contractors who,
they perceive, charge exorbitant prices for, what the public sector perceivesto be,
trivia changesto the software. Even worseiswhat happens when a contractor goes
out of business or abandons transportation work. Then the customer isleft with
unsupported and unsupportable software. Severa public-sector interviewees cited
examples of this happening. To avoid getting locked-in, public-sector customers
often require that source code be delivered along with the rest of the system when the
project is compl ete.

Not Getting “ Locked In” — Private-Sector Perception

The private sector perception isthat getting access to source code is not the answer for
not getting locked in. It just addsto the cost. After paying extrafor alicenseto the
source code, customers find that it does not prove useful to them. The softwareistoo

The Road to Successful ITS Software Acquisition 31

Chapter 3: Differing Perceptions Of ITS Software

complicated for an outside party to maintain or modify it. Many seemingly trivia
changesto software can in fact subtly impact hundreds of lines of code or be very
difficult to implement. Evenif the customer succeedsin using the source code to
make changes to the software, there may be several undesirable consequences. The
changes may negate any warranties associated with the system. For off-the-shelf
systems, the changes will belost if the system is upgraded to the next version of the
vendor’ s product. The customer thus faces two undesirable options: i) either upgrade
and re-implement the changes, or ii) get locked into what soon becomes an obsolete
version of the software. The latter option precludes mai ntenance support since
vendors cannot simultaneously maintain all previous versions of their product line.

In at least one case, customer insistence on having access to source code resulted in the
contractor re-developing existing software from scratch. They delivered this custom

Loy version to the customer rather than releasing their proprietary product. This is an

- extreme example of how gaining access to the source code resulted in increased costs.
It probably also resulted in a less reliable system.

Customization — Public-Sector Perception

The public sector cites several reasons for customization. First, they need to ensure
that the system will meet their needs. The perceive that their location has truly unique
requirements that must be met. In addition, the public sector may not agree that the
algorithmsin an existing package are optimal for their application. Second, there are
certain established procedures that their end users are aready familiar with. The end
users cannot be expected to relearn their jobs to accommodate a piece of software.
Third, the opportunity to acquire a system does not come aong very often. Funding
isscarce. So once they get the opportunity, they want to take best advantage of it and
not acquire a system that will become obsoletein afew years, even if that means
adding custom features. Fourth, since few large, complex ITS systems are purchased
nationwide, there may be no acceptabl e off-the-shelf packages with the needed | evel
of integration or innovation for useregion-wide. Findly, custom-engineered solutions
are the norm on other transportation projects. Agencies don’t buy off-the-shelf
bridges, for example.

Customization — Private-Sector Perception

The problem most commonly cited by ailmost al the private-sector intervieweesisthe
high degree of customization that the public sector insists upon in their systems. The
private sector recognizes that any given site may have some truly unique needs. But
they perceive that most customization is unnecessary. It resultsfrom their customers
trying to engineer the system instead of establishing requirements and then finding the
system that provides the best overall solution. When a customer designs a system, it
almost always precludes an off-the-shelf solution. The private sector complains that
such behavior would not be tolerated in any other field. They complain that for
virtually anything el se, we buy the off-the-shelf products that best meet our needs.
When we buy an automobile we trade off luxury for price, but we don’t go back to

The Road to Successful ITS Software Acquisition

Chapter 3: Differing Perceptions Of ITS Software

the manufacturers and insist that they re-engineer their products. So why, the
vendors ask, shouldn’t the same philosophy apply to ITS software? One cited the
example of buying atoaster—you shop around and find the best one. Y ou may not
get aperfect match to what you’ re seeking, but you would never go back to the
manufacturer and tell them to re-engineer their product by putting the knobs on the
left side rather than on theright side. But in software such changes seem to bethe
norm.

Customization leads to unique software being devel oped for each customer. One
vendor complains that they have installed their system in multiple cities, all the
installations do essentially the same thing, yet no two copiesareidentical. Thisalso
adds unnecessary risk and reduces system reliability. The contractor’ s basic system
may be amature product, well tested and operational in many locations. Most of the
problems have been exposed and weeded out over time. But new custom-devel oped
software can never have the same assurance of reliability.

One vendor notes that insistence on too much customization precludes customer
access to qualified contractors. This vendor has established expertisein a sector of
ITS. Sincethey have abona fide product to sell, they are not interested in custom
development softwarejobs. There stoo much risk and such jobs aren’t profitablein
any case. If they accepted custom devel opments, they view the risk of having
dissatisfied customers as threatening their good reputation. Consequently companies,
whom they view as having no particular expertisein their area, win the contracts.
They perform poorly, which further feeds the cycle of mistrust.

Customization — Private Sector’s Recommended Alternative Approach

The private sector suggeststhat it would beto everyone' s advantage to have vendors
resel| existing software since this would amortize (spread out) development costs over
multiple buyers. (See The Nature of Software, Chapter 1 where it is noted that

devel opment costs and not production drive the costs of software.) Under the current
approach, customers repay for devel opment over and over again. One vendor wrote,
“ More widespread use of [existing products] would foster more competition and
useful innovation. Right now, software providers are forced to consume resources
just keeping up with the customi zation required by different customers, which may or
may not appear in the next spec.” In other words, they feel that under the proposed
alternative, customers would pay less and get more as the state-of-the-art would be
given achance to advance. Transit vehicle tracking and traffic management are
examples of systems where vendors claim that satisfactory products are available, but
customersinsist upon unnecessary customization.

Being Taken Advantage Of — Public-Sector Perception

Public-sector interviewees feel that the private sector takes advantage of the
contracting environment. They perceive that high prices are charged for fairly trivia
changesto the software that the public sector feels they should have been entitled to

The Road to Successful ITS Software Acquisition

Chapter 3: Differing Perceptions Of ITS Software

anyway. They arguethat even if achange was not explicitly called out in the contract,
they should not have to pay for its full development cost since the contractor can
resell the change many times to other customers. After systems are accepted, they
sometimesfail totally and the customer has no choice but to call the contractorsfor
assistance. To be sure, this may happen beyond the end of aformal contract, but a
failed system is not what they bargained for.

Being Taken Advantage Of — Private-Sector Perception

Private-sector interviewees also fedl that the other side (in this case the public sector)
takes advantage of the contracting environment. The private sector perceives that the
public sector has no incentive to accept a system since this would mean the end of the
contract support. The private sector statesthat contractors are not getting rich off the
software. Infact, they lose money on contracts as the public sector continually
requests more changes before accepting a system, without providing additiona funds.
The private sector says that expecting a contractor to make in-kind contributionsis
unredlistic: customers should understand that private firms arein the business to make
aprofit, not asapublic service. Vendors complain that in the case of ITS software,
they are not contributing excess profit and do not later recover their costs; instead,
they swallow the costs and forfeit the ability to even recover their own investments.
Indeed in-kind contributions made earlier in the ITS program (on operationa tests or
early deployment studies, for example) were justified on the basis that those
investments would pay off during deployments. The private sector also complains
that even after system acceptance, customers call and expect additional support to
maintain the system. Contractors have no contractua obligation to providethis
support but often must do so to maintain good working relationships.

How this document can help

Clearly the differing perceptions do not reflect a healthy situation. Each sector can cite
examples of how they were* burned” by the other. Recommendationsin this document
are intended to overcome some of the problems and help achieve awin-win situation. In
particular,

» By buying existing products much of the risk and mistrust that result from custom
build acquisitions would be avoided. Team Building would aso help inthis
regard.

* With open communi cations contractors would better understand customer needs
and realize that not all the customization requirements are arbitrary. At the same
time, customers would better understand the implications of some of their
requirements on the level of effort required, and they would scal e back on how
much customization is requested.

» Forma acceptancetest planswould clarify what criteriaare used to accept a
system. This allows contracts to reach closure and the contractor to get paid. At

The Road to Successful ITS Software Acquisition

Chapter 3: Differing Perceptions Of ITS Software

the sametime, it gives greater assurance to the customer that the system meets
requirements and provides sufficient reliability.

» Attention to maintenance and training would clarify expected roles during these
phases of aproject. Provisionsfor contractor maintenance would allow bugsto
be fixed. Documentation addressing system administration functions and
interfaces would help alleviate customer dependence on the contractor, who
doesn’t want to be called upon in any case once a contract has finished.

During the clarification of the maintenance and training roles, mutually beneficial solutions
may be discovered. For example, by delivering Graphical User Interface (GUI)
development tools, like “report formatters”, as part of the contract, many of the
customization requirements levied on the contractors can be eliminated. Report

: formatters are software packages that allow customers to make changes to output reports
R and screen formats to meet their own needs. If the customer has staff trained in their
use, the customers would have less reluctance to formally accept a system, since they
would be empowered to make the changes they need. Also they would not need to come
back to the contractor so often for support after the system is accepted.

» Contracting language addressing i ntellectual property rightsissues may aleviate
the need for having source code delivered as part of the contract.

Further detail s on these topics will be found in the coming chapters of this document.

= The public and private sectors have very different perceptions of software.
These differences manifest themselves in the ways that they approach software
acquisitions and each other.

. = Each sector perceives the situation as lose-win: they lose while the other sector
wins. In fact, it3 lose-lose; both sectors lose.

The Road to Successful ITS Software Acquisition

35

CHAPTER 4
TYPES OF ITS SOFTWARE SYSTEMS

For the most part, ITS project managers are not interested in acquiring softwarefor its
own sake. Rather, they are involved in acquiring systems, of which softwareis akey
component. And evenwhen it isnot the cost driver of a system, the software often drives
the schedule and is the key determiner of system functionality, usability, and reliability.
Softwareisthe” glue” that holds the rest of the components together and makes the
system work.

What types of systems are we talking about? The figure below ranks various ITS systems
in order of increasing software development risk. What these systems have in commonis
their demanding real -time constraints, which differentiate them from information
technology software. Depending upon the function, they must be able to respond within
minutes or even seconds to their inputs. They must be extremely reliable, running around
the clock without interruption. This contrasts with desktop applications, where system

“ crashes’ are not uncommon, and rebooting the software several times a day may be
necessary. Meeting these real -time requirements adds compl exity and cost to the
software (and to the hardware on which it operates). That, along with the relatively small
customer base, explains why these types of ITS softwarewill never be available* shrink
wrapped” at $99.

\ Regional Advanced Traffic Management Systems

Traveler Information Systems
Freeway Management Systems

”lc,b Traffic Management Systems
QS‘/'/,OOG Transit Management Systems

Large Signal Systems

Small Signal Systems

Figure4-1. Ranking of VariousITS Systems

What is striking from the figure, isthat the systems are al so ordered by the maturity of the
technology, the number of installed systems, and the availability of off-the-shelf product
offerings. For most of these systems, off-the-shelf product offerings are available, often
from several vendors. The systems at the bottom of the list represent mature technology
that can often be bought as commodity products. As one proceeds towards the middle of

The Road to Successful ITS Software Acquisition 4-1

4-2

Chapter 4. Types Of ITS Software Systems

thelist, off-the-shelf products exist in the form of system components that must be
integrated. For example, for Freeway Management Systems, off-the-shelf components
exist for variable message sign control, but not for traffic-adaptive ramp metering. The
Regional Advanced Traffic Management Systems at the top are less mature and represent
more developmental risk in regards to software. R&D may be needed on the traffic
algorithmsin them aswell. Thisimposes additional risk, beyond that inherent in the
software. Unfortunately for these systems, there are relatively few or no existing
commercia products that could be bought off-the-shelf to mitigate the devel opmental
risk. Customers need to consider whether they have the expertise to acquire such
systems.

For the most part the software that integrates one type of system with another (traffic
management with transit management, for example), or software that integrates peer
systems across jurisdictional boundaries must be custom built and poses devel opment
risk.

While this document does not explicitly consider the software acquisition needs of
electronic toll collection systems, in-vehicle systems, or systemsfor Commercia Vehicle
Operations, undoubtedly many of the recommendations pertain to them aswell. (And,
we can specul ate, probably even to systems that have nothing whatsoever to do with
ITS)

The Road to Successful ITS Software Acquisition

PART TWO:

THEMESON THE ROAD
TO SUCCESSFUL ITS
SOFTWARE
ACQUISITION

CHAPTERS
THEMES OF SUCCESSFUL SOFTWARE
ACQUISITION

Dictionary definitions of theme:
"arecurring unifying subject or idea” [Webster’s|;
“ amelody forming the basis of a set of variations” [American Heritage]

In Part One, we discussed some of the problems that commonly occur on software
acquisitions. To address these problems, this chapter introduces several themes around
which a software acquisition should be built. Collectively, they constitute adifferent way
of approaching an acquisition, in response to the fact that “ softwareis different.” To be
sure, not al of the themes aretotally new or unique to software. Some represent good
management practices that are touted el sewhere, the difference being that, while not doing
them on other projects may be acceptabl e, not doing them for softwareisfatal. Some of
the themes are different, not in kind, but in the rigorous degree to which they must be
applied for software. And still others are unique to software and not commonly found on
other types of acquisitions, at least not those in the transportation community.

Figure5-1 illustrates our themes. Let usnow consider each of themin turn.
People themes

Collaboration. A software acquisition is acollaborative process. A project manager
cannot do it alone or make unilateral decisions. Instead, you must work closdly
with othersin your agency. For example, the end users must be involved at all
points to help decide what the system should do, determine how users will interact
with the system, and participate in making tradeoffs between cost and functionality.
Collaboration a so extends beyond organi zational boundariesto involve others,
especially the software contractor. Only the contractor has the ability to determine
the possi bl e design ramifications of seemingly innocent requirements. The
contractor aso has experience for you to draw upon in determining how best to
meet the customer needs.

Y ou can't collaborate unless there’ s someoneto collaborate with. So that brings us
to our next theme: Team Building.

Team Building. Many skills are needed for carrying out a software acquisition. No one
individual or agency can possibly have all of them. Therefore, ateam of
professionalsis needed. Some of the diverse skills represented on the team include
hardware, software, and systems engineering; contracting, operational, domain, and
legal expertise. By having your contracting office on the team, you will be able to
explore the range of contracting mechanisms and work with them to find the one

The Road to Successful ITS Software Acquisition 51

¢S

uonisiNboy 88MOS S| INJSSI00NS 03 Peoy 8y L

SUCCESSFUL
o SOFTWARE Iy
ACQUISITION

Themes

Figure5-1. Themeson the Road to Successful Software Acquisition

uonisiNboy 8/eM1JOS |NJSSI00NS JO SBWBY L -G JeideyD

Chapter 5: Themes of Successful Software Acquisition

that is most appropriate for software. The various members of the team bring not
only different skills but also different perspectivesto a problem. For example, the
end users on your team will be watching for operational issues that impact their
ability to use the system. The team may include other departments in your agency
or even other agencies in your region. Peer agencies can be used to provide advice.
A most important member of your team will be the software contractor. Even risk
management is ateaming activity and should not take place solely on the customer
side. The customer and supplier cannot be working at cross purposes; it is essential
that they work together to achieve common objectives. If awin-lose mindset
develops to “ hold the contractor’ s feet to the fire” or to squeeze the contractor to
get something for nothing, that is not teaming. The result is not the hoped-for win-
lose, but inevitably lose-lose. Instead, you must strive to achieve awin-win situation.

A team is more than a collection of players with diverse skills. To be ateam, the
member must work together towards common goals and objectives. Potential
bureaucratic obstacles to acquiring a system—whether they be end users,
contracting officials, or whoever—must be won over and share in the goal of
fielding the system. All must share in the benefits of a successful acquisition. This
team building will require maximum use of your political and management skills.
The goal sought after is mutual trust.

Team building requires constant nurturing. A key practice to foster team building is
the maintenance of continua open communications, our next theme.

Open Communications. Throughout a software acquisition, there needs to be open
communications. Open communications with the contractor are especialy
important. Because customers and suppliers approach software from very different
perspectives, there will be misunderstandings unless open communications are
continually worked at. The communications must start even before a contract is
signed in regards to terms and conditions, especialy in regards to intellectual
property rights. Open communications proceed with discussions on requirements
and continue with any and all decisions on through acceptance testing and
maintenance. Throughout the acquisition, each side needs to be able to bring bad
news to the other party without fear of being “ shot down” or facing recrimination.

The contract must allow for open communications to take place, even if the
software is developed by a subcontractor. Requiring aforma communications
process for every customer/contractor interaction will only serve to hinder effective
communications. But even during formal reviews, open communications must be
encouraged.

The Road to Successful I TS Software Acquisition 53

54

Chapter 5: Themes of Successful Software Acquisition

One successful ITS manager emphasized the need for the contractor to bring forth
= problems as soon as they arise. “If it [messed] up, tell me it3 [messed] up, and 1l work
with you.” And, he did. (The exact opposite of a ‘Shooting the messenger” approach.)

S
- But he also let them know that if they delayed in bringing forth problems, then the
problems were theirs and they would have to absorb any resultant cost overruns.
Another ITS manager cites an example of the misunderstandings that can result when
«.—= there are not open communications. The contract had required the software vendor to
RN deliver documentation describing the system. The manager was expecting a list of
- modules, with descriptions of their functions, interfaces, etc. The vendor, reading the

contract language differently, supplied an equipment list.

Active Customer Involvement. Collaboration, team building, and open

communications all require continuous, active involvement by the customer. You
cannot simply “ turn things over” to acontractor or systems manager. On other
types of transportation projects, it may be sufficient for the customer to take amore
passive role, perhaps conducting inspections. But for software, up to half the total
requirements and design effort may actually be expended by the customer and end
users, even after a software contract has been issued. Clearly, sufficient resources
must be allocated for this customer involvement to take place. Active customer
involvement also means awillingness to decide upon and commit (in writing, as
appropriate) to a specific course of action after open communications have aired the
various options.

Seveal readers have noted the similarily between the people themes discussed here and
partnering, which is practiced on construction projects.

Management themes

Flexibility. Construction projects are successfully built to arigid set of design

specifications, at the bid price and for a profit. With software there needs to be
more give and take. Flexibility is needed throughout the acquisition: in the
requirements, in the working relationships, in the contracting mechanism. But most
importantly, there needs to be flexibility in the mindset of thoseinvolved. The
recognition, as one interviewee said, that “ there will be many changes.” (Even on
construction projects, one expects changes between the initial concept sketches and
thefina “ as built” specifications. Aswe noted in part one, these design phase
activities are more akin to software development than is the actual building of aroad
or structure.) At the outset of a project, aflexible mindset allows awhole range of
options to be considered in selecting the most appropriate contracting mechanism,
perhaps even some that have not been tried previously. Similarly, in developing the
requirements for a system, there has to be the flexible mindset that the users may
not be able to get everything they want; there have to be tradeoffs between
functionality and price and schedule.

Requirements will evolve over time. Typically, two percent of the requirements will

The Road to Successful ITS Software Acquisition

Chapter 5: Themes of Successful Software Acquisition

change per month. [Jones, 1997] Theideathat software requirements can be
developed, fixed for al time, and then “ thrown over the fence” will not work. The
implications of certain requirements may not be apparent at first. Only after the
acquisition proceeds will it become apparent that they have unacceptable
operational implications. Sometimes a seemingly innocent requirement, one that
may not even be that important, turns out to have significant impact on the design,
imposing significant technical, cost, or schedulerisk. The acquisition must be
structured in such away that thereis the flexibility to change or remove such
requirements. (Identifying them requires open communications.) This is especially
true in regards to requirements for the use of specific hardware or software products
that may become obsolete by the time they are needed on the project. As tradeoffs
are made in cost, schedule, and functionality, it may turn out that a partial solution
isthe best one. The system may not be able to achieve all that was desired, at least
not on the first iteration. Meeting only 80 or 90 percent of the perceived needs may
be the most redlistic and cost-effective solution. Insisting on more may preclude
your buying arather satisfactory, pre-existing system and instead throw you into a
lengthy, risky software development process. “ Rigid specifications amost without
exception require that systems be custom developed.” [Cappelletti and Gerdes,
1994, page 12]

For there to be flexibility in the technical arena, the contracting mechanism must
accommodate it and allow change to take place. (And that can only happen if you
have already teamed with the contracting office, and initiated open communications
with them.) For example, you can encourage innovation by allowing contractors to
propose deviations to the requirements. “ Best value’ procurements enable these
proposed deviations to requirements to be accommodated in the contract.

There also needs to be flexibility with respect to cost. For software, it is generally
impossible to provide precise, reliable cost estimates at the beginning of a project;
only arangeis possible. When unforeseen difficulties arise, there must be the
flexibility to trade off costs with schedule and functionality as the acquisition
unfolds. This may require adding resources through the use of contingency funds
(more cost, same functionality) or re-allocating resources (same cost, less
functionality). Novel approaches that re-scope the project at each stage of the
acquisition process may have to be considered. This would involve the flexibility to
have loosely defined contract options that are more precisely defined as the project
proceeds.

However, as will be discussed below, too much flexibility is not good either.
Requirements creep, in which new requirements are continually added or the scope
of the project isincreased, must be avoided. One noted software consultant cites
stable requirements as one of the two key practices found on successful software
acquisitions. (A realistic scheduleis the other one.)

No Silver Bullets. As software projects run into trouble, people naturally look for that
magic potion that will cure al their softwareills. Perhaps it involves placing faith in

The Road to Successful ITS Software Acquisition 55

Chapter 5: Themes of Successful Software Acquisition

a particular management practice, a new software tool, a programming language, or
adevelopment methodology. Also termed “ silver bullets,” the cure-alls
unfortunately don’t exist. For example, somein the ITS community feel that new
contracting mechanisms are needed for software. Thisis probably agood idea,
since the traditional ones were developed without software in mind. But if and
when new contracting options become available, they will not be panaceas.
Software issues regarding requirements, costing, testing, and quality control, will
still need to be addressed. Successful software acquisition requires the use of
multiple sound management and technical practices. Each helpsincrementally, but
none does the whole trick.

Brooks wrote a classic essay on this theme entitled ‘No Silver Bullets: Essence and
Accidents of Software Engineering.” It is highly readable and is “must”reading for anyone
embarking on a software acquisition. [See Brooks, 1987.]

Up-Front Planning. Various acquisition activities such as requirements walk-throughs,
design reviews, training, acceptance testing, and maintenance do not take place until
after acontract is awarded. In fact, some of these do not take place until very latein
the acquisition. Nonetheless you must plan for them up front, before an RFP is
issued. Thisalows the project schedule to cal out the various activities and allocate
timeto them. It also enables the RFP and contract to address the operations and
maintenance concept, system acceptance criteria, and the intellectual property rights
to the software.

In the technical arena, planning is needed up front to address such issues as
software safety, open systems, and security. Such features must be designed into
the system from the start; they cannot be added later, at least not without
considerable cost. Conformity with the National ITS Architecture is another areato
address in the up-front planning of a project.

Related to the concept of up-front planning is the need to address problems as they
occur, early rather than later. Thereis considerable cost impact if problems are
swept under the rug or deferred. But surfacing problems early requires open
communications; addressing them requires team building.

System themes

Don’t Build If You Can Buy. Whenever possible, buy existing software products
instead of building custom software from scratch. Product offerings, ranging from
system components that must be integrated to commaodity products, are available
for many types of ITS systems. Building new, custom software adds risk to a
system. It also adds cost, since for off-the-shelf products, the development costs
are amortized across many customers. To allow for an off-the-shelf solution, you
must have the flexibility (see the flexibility management theme above) to relax
requirements and buy a system that provides the “ best fit.” This requires being able

The Road to Successful ITS Software Acquisition

Chapter 5: Themes of Successful Software Acquisition

to live with the recognition that an off-the-shelf solution probably won’t match your
vision of the ideal solution. An off-the-shelf product may not do everything on
your wish list, but an 80% solution may be good enough. “ Do not seek exactness
when only an approximation of the truth is possible.” [Aristotle]

The off-the-shelf theme is one that the private sector particularly endorses. Now we
recognize that buying off-the-shelf softwareis not asilver bullet. (See Build/Buy
Decisions, Chapter 10.) The theme hereis not that you should aways go with an
off-the-shelf solution. But rather, that you should give it serious consideration, and
use it whereit makes sense. If you have requirements that preclude off-the-shelf
solutions, think them through and determine how important they are to have and at
what cost. If you then decide that you must have the software built to meet truly
unique situations, and building it is within the state-of-the-art, by all means do so.
But give the buy option afair chance. If you later decide to upgrade, the need for
customization will be based upon operational experience, not conjecture. Of
course, any such customization is done as a teaming process with your supplier to
determine what is readily doable and what isn’t. Then carry out the customization a
piece at atime-which brings us to our next theme.

While private-sector vendors are the most outspoken on this topic, they are not the only
ones to endorse off-the-shelf software solutions. Consider the experiences of one public-
~= sector project manager who had been through a difficult acquisition to build ITS software.
He told us that although he had not considered the off-the-shelf option, in retrospect he
" should have. It seems likely that what had been built could have been bought off-the-
shelf with much less angst. Even the Department of Defense, which has a long history in
bulild_ing software, has taken steps in recent years to encourage the use of off-the-shelf
solutions.

Take Bite-Size Pieces. A frequent problem with software acquisitions is that they
attempt to do too much. To be sure, it’ s desirable to have an ambitious long-term
vision, to “ think big.” But thisis best accomplished astep a atime. At al points,
resist requirements or scope creep.

Consider establishing a baseline capability, buying an off-the-shelf product if
possible, as the first bite-size piece. Develop an overal framework and build in the
flexibility for future expansion. Once a high-quality baselineis fielded, it can serve
asthe foundation for further acquisition activities, allowing more functions to be
added later.

There are anumber of advantages in taking bite-size pieces:

» It makes the acquisition more manageable. Large projects may seem
technically doable. But when they falil, it' s not because of the technology,
but because they go beyond the state-of-the-art (or at least the state-of-the-
practice) of software management.

» Asasystem becomes larger, error rates increase, and the mean timeto
failure decreases. [Putnam and Myers, 1992, page 136] Thereis some

The Road to Successful ITS Software Acquisition 57

Chapter 5: Themes of Successful Software Acquisition

evidence that as added requirements interact in unanticipated ways, system
complexity goes up and reliability goes down in proportion to the square of
thesize. So if you cut back on the size, you will get disproportionate
benefits.

» “Because the effort to build software increases disproportionately faster than
the size of the software, areduction in size will increase development speed
disproportionately.” A rough guidelineis that cutting the size in half reduces
the overal effort by two-thirds. [McConnell, 1996]

* With smaller pieces, something gets fielded sooner. You will find that as
new systems are implemented, they usually get used in unexpected ways.
By alowing the usersto “ kick the tires’ of atangible product, later pieces
can then benefit from this operational experience, addressing unanticipated
needs of the users. Thisis preferable to acquiring a system that addresses all
the needs conjectured at the outset, only to find that much of the effort was
wasted on developing features that never got used. [Costantino et al., 1995]
Moreover, having atangible product to show is an effective way to build
political support for achieving your long range objectives. It also improves
morale as developers and managers see the fruits of their labor.

* With asmaller acquisition and its shorter schedule, many of the same team
members will still be around at the conclusion of the project. A major
problem that plagues big acquisitions is high turnover in personnel, with few
of the original players remaining at the end. Thisistruein both the public
and private sector. One sector’ s turnover negatively impacts the other sector
because of the loss of corporate memory. The new team members may not
accept the original requirements, and even though the system is* done” (per
the original requirements) additional work is needed to satisfy the perceived
needs of the new players. With a shorter acquisition, the problem is
reduced.

» Long acquisitions perpetualy try to chase the ever accelerating pace of
advances in computer technology. By thetime anew advanceis
accommodated, yet another one appears.

Requirements Scope
Creep Creep

How do you go about resisting requirements or scope creep, keeping the pieces
small, without unduly limiting your vision of the ultimate goals and objectives?
One way isto constrain the functionality so it can reasonably be expected to be
implemented in arelatively short schedule. (However, be careful about imposing an
unrealistic short schedule. The schedule should be based on what you are trying to

The Road to Successful ITS Software Acquisition

Chapter 5: Themes of Successful Software Acquisition

achieve, not on wishful thinking.) If you find that a piece will take longer than a

year to implement, subdivide it into smaller pieces. “ Big steps arekillers.” Studies

of software organizations with successful track records show that they take bite-size
pieces needing no more than nine months from requirements to delivery. [Jones, 1997]

Related to the design to schedule approach discussed in the preceding paragraph is
designto cost. Develop alist of mandatory and optional features, and only tackle
those that can be implemented within cost constraints.

Another approach is to have atask-order contract, with only the first one or several
tasks “ turned on.” Each task can include an activity to plan the next one.
Additional tasks are turned on one at atime. In effect, alarge acquisition is turned
into a series of smaller ones. For this to work, the contract must have the flexibility
to allow you to chart your course as you go.

There have been a number of notable ITS successes achieved through the use of
incremental development. In Houston, Texas, a basic traffic management center was
established and expanded to incorporate other agencies over time as they saw the
benefits of closer coordination. This was seen as more effective than attempting to have
all the parties reach up-front agreements on a coordination plan. In Montgomery County,
Maryland, basic traffic data on cable TV led to public support for more capabilities. It
would have been much more difficult to generate public support for a comprehensive
paper concept when they had no prior experience with what the data could offer.
[Federal Highway Administration, 1996.]

Counterparts to themes: what not to do

Several philosophies are commonly heard on software acquisitions that run counter to the
themes. They almost invariably lead to trouble:

“ holding the contractor’ s feet to the fire”
squeezing the schedule (“ we know it’ s unredlistic, but...”)

building everything in one fell swoop and turning it al on at once (the “ big bang
theory”)

asking for more than what’ sin the contract (the* free lunch”)
picking the right contractor and leaving them alone (* laissez-faire”)

being overly optimistic with unrealistic expectations (* sureit’ srisky, but if al the
chipsfall in place...”)

by the contractor: low-balling the project to * get in the door” and position oneself
for future work, counting on engineering changes to “ get well”

on afixed-price contract, requiring the contractor to supply cost details that are
suitable for cost-reimbursement contracts instead of paying for completed tasks or
milestones

The Road to Successful I TS Software Acquisition 59

5-10

Chapter 5: Themes of Successful Software Acquisition

Applying themes to software acquisition activities

In Part Three and Part Four of this document (see Volume Il), we relate the themes to the
various activities that occur on a software acquisition. Many of the themes will recur
again and again. When we come across atheme, we' ll call it out. Indeed, many of our
recommended activities are just specific illustrations of one of the themes, a variation on
the “ software acquisition melody.”

Before closing this chapter, we provide a quote that nicely summarizes several of our
themes:

“ Amost important ingredient for the success of a software project isan
environment of communications and mutual trust between the buyer and seller.
Many buyer s believe that sellers are knowledgeable and experienced in
development and that they should be left to their own devices. Too often the
buyer reliestotally on the contract as a management vehicle. The buyer’s
approach isto consider problemsthat ariseto bethe seller’s problems and to
expect contractual pressure on the seller to solve them. The adage, “ Hold the
contractor’sfeet to thefire,” hasbeen a common management mistake. When a
problem occurs, the seller istherefore always to blame. Thisintractable
approach has proved unworkable time and again.

“ The contract represents the best written communication for the requirements
of the effort at theinitiation of development. It isonly a document, however,
and cannot take the place of effective management by the buyer and seller. The
objective of the development is not the exercise of the contract—it isthe delivery
of a viable capability. To achieve a successful delivery requires communication
and cooperation by both the seller and buyer—in other words, it calls for a team
effort.” [Marciniak and Reifer, 1990]

« Build your software acquisition around certain themes that should recur
throughout the various acquisition activities:
— People themes, which are akin to partnering.
— Management themes, on how to approach the acquisition.
— System themes, relating to the end product.

= The themes can guide you as to the best practices to employ in approaching
your software acquisition.

= Collectively, the themes address the problems commonly associated with
acﬁtware and represent our response to the overarching theme that “Software is
ifferent.”

The Road to Successful ITS Software Acquisition

CONCLUDINGREMARKSTO VOLUMEI

This concludes Volume | of The Road to Successful | TS Software Acquisition. In this
volume, we explained how software is different and introduced a set of themes for dealing
with those differences. Volume Il builds upon the themes. It discusses the activities
associated with a software acquisition and shows how the themes can be used to guide
the activities.

We invite you now to turn to Volumell.

The Road to Successful ITS Software Acquisition

REFERENCES

E. Bersoff, V. Henderson, and S. Siegel, Software Configuration Management: An
I nvestment in Product | ntegrity, Prentice-Hall, 1980

Booz-Allen, FHWA Federal-Aid | TS Procurement Regulations and Contracting
Options, August 1997

F. Brooks, “ No Silver Bullet: Essence and Accidents of Software Engineering,”
Computer, vol. 20, pp. 10-19, April 1987. (Also reprinted in The Mythical Man-Month:
Anniversary Edition, Addison-Wesley, 1995)

F. Brooks, The Mythical Man-Month: Essays on Software Engineering, Addison-
Wesley, 1975. (Also reprinted in The Mythical Man-Month: Anniversary Edition,
Addison-Wesley, 1995)

J. Cappelletti and P. Gerdes, Nondevelopmental [tem (NDI) and the System Acquisition
Process, MITRE Corporation Technical Report MTR 94W22, 1994

D. Carney and P. Oberndorf, “ The Commandments of COTS: Still in Search of the
Promised Land,” Crosstalk: The Journal of Defense Software Engineering, Vol 10 No
5, May 1997

M. Christel and K. Kang, | ssues in Requirements Elicitation, Software Engineering
Institute Technical Report CMU/SEI-92-TR-12, 1992

The Condensed Guide to Software Acquisition Best Practices, 1997. pamphlet available
from Software Program Managers Network

J. Costantino et al., “ Air Traffic Control: Lessons Learned for Surface Transportation,”
| TS Quarterly, Vol 111 No. 1, 1995.

Department of Defense, Guide to I ntegrated Product and Process Development (1 PPD),
Version 1.0, February 5, 1996. Available at over the Internet in HTML and Word formats
at <URL :http://www.acq.osd.mil/te/survey/survmain.html>

M. Evans and J. Marciniak, Software Quality Assurance and Management, John Wiley
& Sons, 1987

D. Farbman, “ Myths That Miss,” Datamation, pp. 109-112, November 1980

Federal Highway Administration, Key Findings fromthe I ntelligent Transportation
Systems (I TS) Program: What Have We Learned?, U.S. DOT Publication

RE-1

References

FHWA-JPO-96-0036, 1996

J. Ferguson et al., Software Acquisition Capability Maturity Model (SA-CMMsv)
Version 1.01, SEI Technical Report CMU/SEI-96-TR-020, 1996

J. Ferguson and M. DeRiso, Software Acquisition: A Comparison of DoD and
Commercial Practices, Software Engineering Institute Special Report CM U/SEI-94-SR-9,
1994

D. Garlan and D. Perry, * Introduction to the Specia Issue on Software Architecture,”
| EEE Transactions on Software Engineering, Vol 21 No 4, 1995

W. Gibbs, “ Software’ s Chronic Crisis,” Scientific American, pp. 86-, September 1994
R. Glass, Modern Programming Practices, Prentice-Hall, 1982

R. Higueraand Y. Haimes, Software Risk Management, Software Engineering Institute
Technical Report 96-TR-012, 1996

R. Higueraet al., Team Risk Management: A New Model for Customer-Supplier
Relationships, SEI Specia Report CMU/SEI-94-SR-5, 1994

B. Horowitz, The I mportance of Architecturein DOD Software, The MITRE
Corporation, M91-35, July 1991

W. Humphrey, I ntroduction to Software Process | mprovement, SEI Technical Report
CMU/SEI-92-TR-7, revised June 1993

W. Humphrey, Managing the Software Process, Addison-Wesley, 1989
|EEE, | EEE Recommended Practice for Software Acquisition, IEEE Std 1062-1993, 1993

|EEE, | EEE Recommended Practice for Software Requirements Specifications,
|EEE Std 830-1993, 1993a

|EEE, | EEE Sandard for Software Maintenance, |EEE Std 1219-1993, 1993b

C. Jones, Software Project Management: What Works and What Doesn’t, talk at SD * 97
Conference, Washington DC, September 29, 1997

J. Marciniak and D. Reifer, Software Acquisition Management: Managing the
Acqui sition of Custom Software Systems, John Wiley & Sons, 1990

S. McConnéll, Rapid Development: Taming W Id Software Schedules, Microsoft
Press, 1996

RE-2

References

MITRE Corporation, Software Reporting Metrics, MTR-9650 Rev 2, November 1985

M. Paulk, Key Practices of the Capability Maturity Model, Version 1.1, SEI Technical
Report CMU/SEI-93-TR-025, February 1993

V. Pearce, “ Procurement: Hard Work Pays Off,” Traffic Technology I nternational,
pp. 70-, Oct/Nov 1997

T. Pigoski, Practical Software Maintenance: Best Practices for Managing Your
Software | nvestment, John Wiley & Sons, 1997

P. Place, P. and K. Kang, K., Safety-Critical Software: Status Report and Annotated
Bibliography, SEI Technical Report CMU/SEI-93-TR-005

B. Prasad, Concurrent Engineering Fundamentals (Volume 1: I ntegrated Product and
Process Organization; Volume 2: I ntegrated Product Development), Prentice-Hall, 1996

The Program Manager’s Guide to Software Acquisition Best Practices, 1997. available
from Software Program Managers Network

L. Putnam and W. Myers, Executive Briefing: Controlling Software Development, |IEEE
Computer Society Press, 1996

L. Putnam and W. Myers, Measures for Excellence: Reliable Software on Time, within
Budget, Yourdon Press, 1992

T. Royer, Software Testing Management: Life on the Critical Path, P T R Prentice Hall,
1993

T. Saunders, B. Horowitz, and M. Mleziva, A New Process for Acquiring Software
Architecture, The MITRE Corporation, M92-B126, 1992

The Standish Group, Charting Seas of | nformation Technology, 1994

STSC (Software Technology Support Center), Software Configuration Management
Technology Report, <URL: http://stscols.hill.af.mil/cm/REPORT.HTML>, 1994

RE-3

