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Foreword 
This report documents a concrete material model that has been implemented into the dynamic 
finite element code, LS-DYNA, beginning with version 971. This model is in keyword format as 
MAT_CSCM for Continuous Surface Cap Model. This material model was developed to predict 
the dynamic performance—both elastic deformation and failure—of concrete used in roadside 
safety structures when involved in a collision with a motor vehicle. An example of a roadside 
safety structure is a concrete safety barrier that divides opposing lanes of traffic on a roadway. 
Default input parameters for concrete are stored in the model and can be accessed for use. This 
material model only replicates the concrete aggregate. Appropriate reinforcement bars or rods 
must be included in the structure model separately. 
 
The Users Manual for LS-DYNA Concrete Material Model 159 is the first of two reports that 
completely document this material model. This report documents the theoretical basis, the 
required input format, and includes limited hypothetical problems for the user. The second 
report, Evaluation of LS-DYNA Concrete Material Model 159 (FHWA-HRT-05-063), documents 
the testing performed to document the model’s performance and accuracy of results.  
 
This report will be of interest to research engineers who are associated with the evaluation and 
crashworthy performance of roadside safety structures, particularly engineers responsible for 
predicting the crash response of such structures when using the finite element code, LS-DYNA. 

 

 

      Michael Trentacoste 
      Director, Office of Safety R&D 
 

 
Notice 

 
This document is disseminated under the sponsorship of the Department of Transportation in the 
interest of information exchange. The United States Government assumes no liability for its 
content or use thereof. This report does not constitute a standard, specification, or regulation. 
 
The United States Government does not endorse products or manufacturers. Trademarks or 
manufacturers’ names appear in this report only because they are considered essential to the 
objective of the document. 
 

Quality Assurance Statement 
 

The Federal Highway Administration provides high-quality information to serve Government, 
industry, and the public in a manner that promotes public understanding. Standards and policies 
are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. 
FHWA periodically reviews quality issues and adjusts its programs and processes to ensure 
continuous quality improvement. 
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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e
(Revised March 2003)  
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Chapter 1.   Introduction 

 
The goal of the work performed under this program, entitled Development of DYNA3D Analysis 
Tools for Roadside Safety Applications II, is to develop a concrete material model for use in 
roadside safety simulations, implement the model into the LS-DYNA finite element code, and 
evaluate the model against available test data. Material models for wood and soil were developed 
previously for a similar program entitled Development of DYNA3D Analysis Tools for Roadside 
Safety Applications (1998–2002). 
 
This report documents the concrete model theory, reviews the LS-DYNA model input, and 
provides example problems for use as a learning tool. A companion report, entitled Evaluation of 
the LS-DYNA Concrete Model 159 thoroughly documents the concrete model evaluation 
calculations.(1) Users manuals and evaluation reports are also available for the wood and soil 
material models. (See references 2, 3, 4, and 5.) 
 
This manual is divided into three main chapters. Chapter 2, “Theoretical Manual,” begins with a 
general description of concrete behavior, and then provides a detailed theoretical description of 
the model as implemented in LS-DYNA version 971. This chapter contains equations for all 
formulations implemented, including: 

• Isotropic constitutive equations. 

• Three stress-invariant shear surface with translation for prepeak hardening. 

• A hardening cap that expands and contracts. 

• Damage-based softening with erosion.  

• Rate effects for high strain rate applications. 

The concrete model includes initialization routines that provide the user with default input 
parameters for normal strength concrete (with compressive strengths between about 28 and 
58 megapascals (MPa) (4,061 and 8,412 pounds per square inch (psi))). These initialization 
routines set the required strengths, stiffnesses, hardening, softening, and rate effects parameters 
as a function of concrete compressive strength and maximum aggregate size. The Theoretical 
Manual describes all test data and assumptions used to set the default input parameters for 
concrete.  
 
Chapter 3, “Users Manual,” describes the concrete model input in LS-DYNA format. This 
chapter includes descriptions of all input parameters as well as a theoretical description of the 
model. The chapter is intended to be a manual for users who want to apply the model, without 
delving deeply into the theory of the model. Most information contained in this chapter is 
included in the LS-DYNA Keyword Users Manual.(6)  
 
Chapter 4, “Examples Manual,” provides input files and output plots for two single element 
simulations. These example problems are designed to help the user become familiar with 
applications of the concrete material model. Additional example problems are given in the 
companion to this report.(1) 
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Chapter 2.   Theoretical Manual 

This chapter begins with an overview of concrete behavior, followed by a detailed description of 
the formulation of concrete material model 159 in LS-DYNA. Equations are provided for each 
feature of the model (elasticity, plasticity, hardening, damage, and rate effects). The chapter then 
describes the model input properties and the basis for their default values. 
 

CRITICAL CONCRETE BEHAVIORS 

Concrete is a composite material that consists primarily of aggregate and mortar. Its response is 
complex, ranging from brittle in the tensile and low confining pressure regimes to ductile at high 
confining pressures. The critical behaviors of concrete are discussed below, particularly those in 
the tensile and low confining pressure regimes applicable to roadside safety analyses. Figures 1 
through 14, which represent these behaviors, are reproduced from the various references cited at 
the end of each caption. 
 
Stiffness. The elastic behavior of the concrete is isotropic before cracking occurs. This is because 
the concrete is assumed to be well mixed, vibrated, and not stratified.  
 
Uniaxial Strength. Standard concrete has low tensile strength. The direct pull or unconfined 
tension strength (f 'T ) is typically 8 to 15 percent of the unconfined compression strength (f 'C ).  
 
Multiaxial Strength.  The ultimate strength of concrete depends on both the pressure and shear 
stresses.  Concrete strength data is plotted in Figure 1 and Figure 2 in the meridian and deviatoric 
planes. Typical failure surfaces that may be fit to such data are represented in Figure 3 and  
Figure 4. Review of the reference by Chen & Han is highly recommended for a discussion of 
three-dimensional stress space and the meridian and deviatoric planes.(7)  The general shape of a 
three-dimensional strength surface can be described by smooth curves in the meridian planes and 
by its cross-sectional shape in the deviatoric planes. 
 
Concrete strength data is typically plotted as principal stress difference versus pressure. The 
principal stress difference is σx – σr.  Figure 1 is a nondimensional representation of such a plot. It 
is well known that concrete fails at lower values of principal stress difference for triaxial extension 
(TXE) tests than for triaxial compression (TXC) tests conducted at the same pressure. TXC and 
TXE are standard laboratory tests for measuring failure curves. These tests are typically conducted 
on cylindrical specimens and begin with hydrostatic compression to a desired confining pressure, 
i.e., the axial compressive stress, σx is equal to the radial compressive stress, σr.  For TXC tests, 
the magnitude of the axial compressive stress is quasi-statically increased (holding σr constant) 
until the specimen fails. For TXE tests, the magnitude of the axial compressive stress is quasi-
statically decreased until the specimen fails. TXC test data, like that shown in Figure 1, is fit the 
compressive meridian parameters of the concrete material model.(8,9)  TXE test data is fit to the 
tensile meridian parameters.  This behavior is schematically shown in Figure 3. The shear meridian 
is obtained from torsion (TOR) tests. 
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Concrete strength can also be plotted in the deviatoric plane, as shown in Figure 2. Here, 
nondimensional forms of the principal stresses (σ1, σ2, σ3) are plotted at various nondimensional 
pressures represented by the solid lines. In the tensile regime, strength data typically form a 
triangle. In the compressive regime, strength data typically transition from a triangle at low 
confining pressure to a circle at very high confining pressure. This behavior is schematically 
shown in Figure 4. 
 
 

    

 

Figure 1. Graph. Example concrete data from Mills and Zimmermann plotted in the meridian 
plane.(8) 
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Figure 2. Drawing. Example curves fit by Launay and Gachon to their concrete data and plotted in 
the deviatoric plane.(10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
psi = 145.05 MPa 

Figure 3. Graph. Example plots of the failure surfaces of LS-DYNA Model 159 in the meridian 
plane. 
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psi = 145.05 MPa 

Figure 4. Drawing. Example plots of the failure surfaces of LS-DYNA Model 159 in the deviatoric 
plane. 

                              

Strength Degradation. Concrete softens to near zero strength in the tensile and low confining 
pressure regimes. This behavior is shown in Figure 5 for a variety of uniaxial strengths.(9) Concrete 
also softens at moderate pressures, but the concrete will exhibit a residual strength. This behavior 
is demonstrated in Figure 6 for concrete tested in TXC at a variety of confining pressures. 
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psi = 145.05 MPa 

Figure 5. Graph. Softening response of concrete in uniaxial compression                                     
(reprinted from the Comité Euro-Internacional du Béton (CEB) - Federation for Prestressing (FIP) 

Model Code 1990, courtesy of the International Federation for Structural Concrete (fib)).(11) 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
psi = 145.05 MPa 

Figure 6. Graph. Variation of concrete softening response with confinement.                              
Source: Joy and Moxley.(12) 
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Stiffness Degradation. As concrete softens, its stiffness also degrades. Consider the cyclic load 
data shown in Figure 7 through Figure 9 for uniaxial stress in both tension and compression. The 
unloading occurs along a different slope than the initial loading slope (elastic modulus). 
 
 

 
 

psi = 145.05 MPa 
 

Figure 7.  Graph. The slope during initial loading is steeper than during subsequent loading  
for this uniaxial tensile stress data. Source: Reprinted with permission from Elsevier.(13)   
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Figure 8. Graph. The slope during initial loading is steeper than during subsequent loading  

for this uniaxial compressive stress data. Source: Reprinted with permission from                   
Aedificatio Verlag.(14) 

 
Figure 9. Graph. These loading/unloading data demonstrate that concrete stiffness degrades 

simultaneously with strength. Source: Reprinted with permission from Aedificatio Verlag.(14) 
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Dilation. Standard concrete exhibits volume expansion under compressive loading at low 
confining pressures close to pure shear and uniaxial compression. This expansion is called dilation 
and is as shown in Figure 10 and Figure 11 for uniaxial and biaxial compression data. The 
volumetric strain decreases initially, because Poisson’s ratio is less than 0.5; therefore, the 
specimens compact in the elastic regime. Dilation initiates just before peak strength (upon initial 
yield) and continues throughout the softening regime. Concrete does not dilate at high confining 
pressures greater than about 100 MPa (14,504 psi) (not shown).  

 
Figure 10. Graph. Concrete dilates in uniaxial compressive stress. Source: Reprinted from Defense 

Technical Information Center.(15) 

Figure 11. Graph. Concrete dilates in biaxial compression. Source: Data curves scanned from 
Kupfer et al., American Concrete Institute (ACI).(16) 
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Shear Enhanced Compaction. Concrete hardens due to pore compaction. Consider the pressure-
volumetric strain curves schematically shown in Figure 12. This figure demonstrates that the 
pressure-volumetric strain curve measured in isotropic compression tests is different from that 
measured in uniaxial strain tests. This difference means that the amount of compaction depends on 
the amount of shear stress present. This phenomenon is known as shear enhanced compaction. 
Slight shear enhanced compaction at low confining pressures is expected in roadside safety 
applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 
psi = 145.05 MPa 

Figure 12. Graph. The different pressure-volumetric strain behaviors measured in isotropic 
compression versus uniaxial strain indicate shear enhanced compaction. Source: Data curves 

scanned from Joy and Moxley.(12) 

 
 
Strain Rate Effects. The strength of concrete increases with increasing strain rate, as shown in 
Figure 13 and Figure 14. For roadside safety applications, strain rates in the 1 to 10 per second  
( /sec) range will produce peak strength increases of about 20 to 50 percent in compression and 
well more than 100 percent in tension. The initial elastic modulus does not change significantly 
with strain rate.(17)  
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Figure 13. Graph. A variety of data sources indicates that the compressive strength of concrete 

increases with increasing strain rate. Source: Reprinted with permission from American Society of 
Civil Engineers.(17) 

 
Figure 14. Graph. Rate effects are more pronounced in tension than in compression. Source: 

Reprinted from Ross and Tedesco.(18) 



 

 13

OVERVIEW OF MODEL THEORY 

This concrete material model was developed to simulate concrete used for the National 
Cooperative Highway Research Program (NCHRP) 350 roadside safety hardware testing.(19)  
Performing roadside safety analyses with a finite element code requires a comprehensive material 
model for concrete, particularly for modeling strain softening in the tensile and low confining 
pressure regimes. Concrete material model 159 is an enhanced version of the concrete model that 
the developer has successfully used and progressively developed since 1990 on defense contracts 
to analyze dynamic loading of reinforced concrete structures. The concrete model is grouped into 
six formulations for ease of discussion: elastic update, plastic update, yield surface definition, 
damage, rate effects, and kinematic hardening. Model input parameters used in these formulations, 
which provide a fit of the model to data, are:  
 
 K  bulk modulus  
 G  shear modulus 

 α  TXC surface constant term 
 θ  TXC surface linear term 
 λ  TXC surface nonlinear term 
 β  TXC surface exponent 
 
 α1  TOR surface constant term 
 θ1  TOR surface linear term 
 λ1  TOR surface nonlinear term 
 β1  TOR surface exponent 
 
 α2  TXE surface constant term 
 θ2  TXE surface linear term 
 λ2  TXE surface nonlinear term 
 β2  TXE surface exponent 
 
 NH  Hardening initiation 
 CH  Hardening rate 
 
 X0  Cap initial location 
 R  Cap aspect ratio 
 W  Maximum plastic volume compaction 
 D1  Linear shape parameter 
 D2  Quadratic shape parameter 
 
 B  Ductile shape softening parameter 
 Gfc   Fracture energy in uniaxial stress 
 D  Brittle shape softening parameter 
 Gft  Fracture energy in uniaxial tension 
 Gfs  Fracture energy in pure shear stress  
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 pwrc   Shear-to-compression transition parameter  
 pwrt   Shear-to-tension transition parameter   
 pmod   Modify moderate pressure softening parameter                           
 
 η0c  Rate effects parameter for uniaxial compressive stress 
 NC  Rate effects power for uniaxial compressive stress 
 η0t  Rate effects parameter for uniaxial tensile stress 
 Nt  Rate effects power for uniaxial tensile stress 
 overc  Maximum overstress allowed in compression 
 overt  Maximum overstress allowed in tension 
 Srate  Ratio of effective shear stress to tensile stress fluidity parameters 
repow  Power which increases fracture energy with rate effects 
 
Model control parameters are: 
 
 NPLOT Plotting parameter selection  
 INCRE Maximum strain increment for subincrementation 
 IRATE Option to turn rate effects on or off 
  
 ERODE Option to erode with strain at which erosion initiates 
 RECOV Option to recover stiffness in compression from tensile damage 
 IRETRC Option to retract (IRETRC = 1) or not retract (IRETRC = 0) cap 
 PreD           Damage level for predamaged concrete 
 

ELASTIC UPDATE 

Concrete is typically assumed to be isotropic; therefore, Hooke’s Law is used for the elastic stress-
strain relationship. Hooke’s law depends on two elastic constants: the bulk modulus (K) and the 
shear modulus (G). 
 

PLASTIC UPDATE 

Following an initial elastic phase, concrete will yield and possibly fail, depending on the state of 
stress (or type of test being simulated). The yield stresses are defined by a three-dimensional yield 
surface. The functional form of the yield surface is discussed in the next section. This section 
briefly discusses the plasticity algorithm responsible for setting the initial yield stresses. 
 
At each time step, the stress is updated from the strain rate increments and the time step via an 
incremental form of Hooke’s Law (an elastic increment). This updated stress is called the trial 
elastic stress and is denoted σij

T.  If the trial elastic stress state lies on or inside the yield surface, 
the behavior is elastic, and the plasticity algorithm is bypassed. If the trial elastic stress state lies 
outside the yield surface, the behavior is elastic-plastic (with possible damage, hardening, and rate 
effects), and the plasticity algorithm returns the stress state to the yield surface. This elastic-plastic 
stress is called the inviscid stress, and is denoted σij

P. 
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Details of the return algorithm are well documented.(20,21) For those knowledgeable about 
plasticity, the algorithm enforces the plastic consistency condition with associated flow. For 
efficiency, the algorithm employs subincrementation, rather than iteration, to ensure accurate 
return of the stress state to the yield surface. Subincrementation is invoked when the current strain 
increment exceeds a maximum strain limit specified by the user, or defaulted by the model.  
 
The associative return algorithm predicts dilation of the concrete after the yield surface is engaged 
in the tensile and low confining pressure regimes. Modeling dilation is one reason for employing a 
sophisticated plasticity algorithm rather than a simple Mises return algorithm. Simple return 
algorithms do not model dilation.  
 

YIELD SURFACE 

The concrete model is a cap model with a smooth or continuous intersection between the failure 
surface and hardening cap. The general shape of the yield surface in the meridonal plane is shown 
in Figure 15 and Figure 16. This surface uses a multiplicative formulation to combine the shear 
(failure) surface with the hardening compaction surface (cap) smoothly and continuously. The 
smooth intersection eliminates the numerical complexity of treating a compressive ‘corner’ region 
between the failure surface and cap. This type of model is often referred to as a smooth cap model 
or as a continuous surface cap model (CSCM).  

 

 
Figure 15. Illustration. General shape of the concrete model yield surface in three dimensions.  

 



 

 16

 
 

Figure 16. Illustration. General shape of the concrete model yield surface in two dimensions in the 
meridonal plane.  

 
 

The original formulation of the smooth cap model was developed as a function of two stress 
invariants.(22)  The developer extended the formulation to three stress invariants and verified the 
three-invariant formulation by comparing smooth-cap results with analytical results for the 
axisymmetric compression of a Mohr-Coulomb medium around a circular hole.(20,23)  
 
The yield surface is formulated in terms of three stress invariants because an isotropic material has 
three independent stress invariants. The model uses J—the first invariant of the stress tensor, J′2—
the second invariant of the deviatoric stress tensor, and J′3—the third invariant of the deviatoric 
stress tensor. The invariants are defined in terms of the deviatoric stress tensor, Sij and pressure, P, 
as shown in Figure 17: 
 
 

 

 
Figure 17. Equation. Stress invariant J 1, J′2, and J′3. 

 
The three invariant yield function is based on these three invariants, and the cap hardening 
parameter, κ, as shown in Figure 18: 
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Figure 18. Equation. Yield function f. 

 
Here Ff is the shear failure surface, Fc is the hardening cap, and ℜ is the Rubin three-invariant 
reduction factor. Multiplying the cap ellipse function by the shear surface function allows the cap 
and shear surfaces to take on the same slope at their intersection, as discussed in subsequent 
paragraphs.  
 
Trial elastic stress invariants are temporarily updated via the trial elastic stress tensor, σT. These 
are denoted J1

T, J′2T, and  J′3T. Elastic stress states are modeled when f (J1
T, J′2T, J′3T, κΤ  ) < 0. 

Elastic-plastic stress states are modeled when f (J1
T, J′2T, J′3T, κ Τ ) > 0.  In this case, the plasticity 

algorithm returns the stress state to the yield surface so that f (J1
P, J′2P, J′3P, κ P) = 0. 

 
Shear Failure Surface. The strength of concrete is modeled by the shear surface in the tensile and 
low confining pressure regimes. The shear surface fF  is defined along the compression meridian 
as shown in Figure 19: 

 

 
Figure 19. Equation. Shear failure surface function Ff. 

 
Here the values of α, β, λ, θ  are selected by fitting the model surface to strength measurements 
from TXC tests conducted on plain concrete cylinders (and then adjusting these parameters to 
account for compaction and damage). The TXC data are typically plotted as principal stress 
difference versus pressure. The principal stress difference (axial stress minus confining stress) is 
equal to the square root of 3J′2. The shear surface is shown in Figure 20, Figure 21, and Figure 22 
for typical concrete values.  
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        psi = 145.05 MPa 

Figure 20. Graph. Schematic of shear surface. 

 

 
psi = 145.05 MPa 
Figure 21. Graph. Schematic of two-part cap function. 
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psi = 145.05 MPa 

Figure 22. Graph. Schematic of multiplicative formulation of the shear and cap surfaces. 

Cap Hardening Surface. The strength of concrete is modeled by a combination of the cap and 
shear surfaces in the low to high confining pressure regimes. More importantly, the cap is used to 
model plastic volume change related to pore collapse (although the pores are not explicitly 
modeled). The initial location of the cap determines the onset of plasticity in isotropic compression 
and uniaxial strain. The elliptical shape of the cap allows the onset for isotropic compression to be 
greater than the onset for uniaxial strain, in agreement with shear enhanced compaction data. 
Without ellipticity, a “flat” cap would produce identical onsets. The motion of the cap determines 
the shape (hardening) of the pressure-volumetric strain curves via fits with data. Without cap 
motion, the pressure-volumetric strain curves would be perfectly plastic.  
 
The isotropic hardening cap is a two-part function that is either unity or an ellipse, as shown in 
Figure 21. When the stress state is in the tensile or very low confining pressure region, the cap 
function is unity: yield strength via the equation in Figure 18 is independent of the cap. When the 
stress state is in the low to high confining pressure regimes, the cap function is an ellipse:  yield 
strength depends on both the cap and shear surface formulations. The two-part cap function is 
defined as shown in Figure 23: 
 
 

 
 

Figure 23. Equation. Cap failure surface function Fc. 

 
where L(κ)is defined as shown in Figure 24: 
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Figure 24. Equation. L of kappa. 

 
The equation in Figure 23 is equal to unity for J1 ≤ L(κ). The equation in Figure 23 describes the 
ellipse for J1 > L(κ). The intersection of the shear surface and the cap is at J1 = κ.  κ0 is the value 
of J1 at the initial intersection of the cap and shear surfaces before hardening is engaged (before 
the cap moves). The equation in Figure 24 restrains the cap from retracting past its initial location 
at κ0. 
 
A simpler, but less complete, way of writing the equations in Figure 23 and Figure 24 is shown in 
Figure 25: 

 
 

 

Figure 25. Equation. Simple cap failure surface function Fc. 

The intersection of the cap with the J1 axis is at J1 = X(κ). This intersection depends on the cap 
ellipticity ratio R, where R is the ratio of its major to minor axes, as shown in Figure 26: 
 

 
Figure 26. Equation. X as a function of kappa.  

 
The cap moves to simulate plastic volume change. The cap expands (X(κ) and κ increase) to 
simulate plastic volume compaction. The cap contracts (X(κ) and κ decrease) to simulate plastic 
volume expansion, called dilation. The motion (expansion and contraction) of the cap is based on 
the hardening rule, shown in Figure 27:  

 

Figure 27. Equation. Plastic volume strain ε p
v. 

 
Here ε p

v is the plastic volume strain, W is the maximum plastic volume strain, and D1 and D2 are 
model input parameters. X0 is the initial location of the cap when κ  = κ0. 
 

The five input parameters (X0, W, D1, D2, and R) are obtained from fits to the pressure-volumetric 
strain curves in isotropic compression and uniaxial strain. X0 determines the pressure at which 
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compaction initiates in isotropic compression. R, combined with X0, determines the pressure at 
which compaction initiates in uniaxial strain. D1 and D2 determine the shape of the pressure-
volumetric strain curves. W determines the maximum plastic volume compaction. 

Rubin Scaling Function. Concrete fails at lower values of J′2 (principal stress difference) for TXE 
and TOR tests than it does for TXC tests conducted at the same pressure. This was previously 
demonstrated in Figure 1 through Figure 4. This situation indicates that concrete strength depends 
on the third invariant of the deviatoric stress tensor, J′3. When viewed in the deviatoric plane, a 
three invariant yield surface is triangular or hexagonal in shape, as shown in Figure 28.  

 
The Rubin scaling function ℜ determines the strength of concrete for any state of stress relative to 
the strength for TXC.( 24)  Strengths like TXE  and TOR are simulated by scaling back the TXC 
shear strength by the Rubin function: ℜFf. The Rubin function ℜ is a scaling function that changes 
the shape (radius) of the yield surface in the deviatoric plane as a function of angle    as shown in 
Figure 28. This shape may be a circle (Drucker-Prager, Maximum Octahedral Shear Stress, von 
Mises), a hexagon (Mohr-Coulomb), or an irregular hexagon-like shape (Willam-Warnke) in 
which each of six sides is quadratic (rather than linear) between the TXC and TXE states.  
 
For comparison, a two-invariant model cannot simultaneously model different strengths in TXC, 
TXE, and TOR. When viewed in the deviatoric plane, the two-invariant yield surface is a circle, as 
shown in Figure 28.  A two-invariant formulation is modeled with the Rubin function equal to  
ℜ =1 at all angles around the circle. This means that the TXC, TOR, and TXE strengths are 
modeled the same.  

                       

 
 

Figure 28. Illustration. Example two- and three-invariant shapes of the concrete model  
in the deviatoric plane. 

β̂
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The angle       is confined to the range -π/6 <      < π  and is related to the invariants J′2 and J′3, as 
shown in Figure 29: 

 

 
 

Figure 29. Equation. Angle beta hat in the deviatoric plane. 

 
 I   is a normalized invariant which remains in the range –1 <      < 1. For the standard laboratory 
tests just discussed, the values of       and      are shown in Figure 30:  
 

 

 

Figure 30. Equation. Relationship between beta hat and J hat.  

 

The form of the Rubin scaling function is shown in Figure 31:  
 

                          

 

 
Figure 31. Equation. Rubin scaling function ℜ. 
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The value of ℜ depends on the state of stress through the angle    , and on experimentally 
determined values (fits to data) for Q1 and Q2 as functions of pressure. Strength in TOR is modeled 
as Q1Ff . Strength in TXE is modeled as Q2Ff. 
 
The Rubin three-invariant formulation is implemented because it is more flexible in fitting data 
than the more commonly used Willam-Warnke formulation. Four example fits of the Rubin 
formulation are listed below. 
 

1. Most general fit: the shape of the yield surface in the deviatoric plane transitions with 
pressure from triangular, to irregular hexagonal, to circular. Input values for all eight 
parameters: α1, λ1, β1, θ1 and α2, λ2, β2, θ2 are shown in Figure 32.  

 
 

 
Figure 32. Equation. Most general form for Q1 and Q2. 

 

 
2. Mohr-Coulomb fit: a straight line fit between the TXE and TXC states. The strength ratios 

are estimated from the Mohr-Coulomb friction angle φ as shown in Figure 33. 
 

 
Figure 33. Equation. Mohr-Coulomb form for Q1, Q2. 

 
3. Two-parameter fit: the strength ratios Q1 and Q2 remain constant with pressure. Input α1 

and α2, with all other Rubin parameters set equal to zero. This allows the user to model the 
yield surface as an irregular (bulging) hexagonal shape in the deviator plane. 

 
4. Willam-Warnke fit: select Q2 as a constant or as a function of pressure. Fit Q1 to the 

Willam-Warnke TOR surface, as shown in Figure 34. 

 
Figure 34. Equation. Willam-Warnke form for Q1. 

 
Currently, the eight input parameters, which define Q1 and Q2, set the shape of the three-invariant 
yield surface when the pressure is compressive, but not when the pressure is tensile. When the 
pressure is tensile, the model automatically sets Q1 = 0.5774 and Q2 = 0.5. These values simulate a 
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triangular yield surface in the deviatoric plane, and cannot be overridden by the user. With a 
triangular yield surface, the strengths attained in uniaxial, equal biaxial, and equal triaxial tensile 
stress simulations are approximately equal.  
 
For a smooth transition between the tensile and compressive pressure regions, the user should take 
care to set Q1 = 0.5774 and Q2 = 0.5 at zero pressure. This is accomplished by setting α1 – λ1 = 
0.5774 and α2  – λ2 = 0.5774. 
 

DAMAGE FORMULATION 

Concrete exhibits softening (strength reduction) in the tensile and low to moderate compressive 
regimes. Softening is modeled via a damage formulation. Without the damage formulation, the cap 
model predicts perfectly plastic behavior for laboratory test simulations such as direct pull, 
unconfined compression, TXC, and TXE.  This behavior is not realistic. Although perfectly plastic 
response is typical of concrete at high confining pressures, it is not representative of concrete at 
lower confinement and in tension. 

The damage formulation models both strain softening and modulus reduction. Strain softening is a 
decrease in strength during progressive straining after a peak strength value is reached. Modulus 
reduction is a decrease in the unloading/loading slopes typically observed in cyclic unload/load 
tests. The damage formulation is based on the work of Simo and Ju, shown in Figure 35.(25) Strain 
softening and modulus reduction are demonstrated in psi = 145.05 MPa 
Figure 36 for the concrete model. 
 

 
Figure 35. Equation. Damaged stress σ dij. 

 
Here d is a scalar damage parameter that transforms the stress tensor without damage, denoted σ vp, 
into the stress tensor with damage, denoted σ d. The damage formation is applied to the stresses 
after they are updated by the viscoplasticity algorithm. The damage parameter d ranges from zero 
for no damage to 1 for complete damage. Thus 1 − d is a reduction factor whose value depends on 
the accumulation of damage. The effect of this reduction factor is to reduce the bulk and shear 
moduli isotropically (simultaneously and proportionally). 
 
Damage initiates and accumulates when strain-based energy terms exceed the damage threshold. 
Damage accumulation via the parameter d is based on two distinct formulations, which is called 
brittle damage and ductile damage. 
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psi = 145.05 MPa 

Figure 36. Graph. This cap model simulation demonstrates strain softening and modulus reduction. 

 
Brittle Damage. Brittle damage accumulates when the pressure is tensile. It does not accumulate 
when the pressure is compressive. Brittle damage accumulation depends on the maximum 
principal strain, εmax, as shown in Figure 37:  

 

 
Figure 37. Equation. Brittle damage threshold τb. 

Here τ b is an energy-type term that depends on the accumulation of total strain via εmax. Brittle 
damage initiates when τ b exceeds an initial threshold r0b. 
 
Ductile Damage. Ductile damage accumulates when the pressure is compressive. It does not 
accumulate when the pressure is tensile. Ductile damage accumulation depends on the total strain 
components, εij, as shown in Figure 38:  

 
Figure 38. Equation. Ductile damage threshold τd. 
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Here τd is an energy-type term. The stress components σij are the elasto-plastic stresses (with 
kinematic hardening) calculated before application of damage and rate effects. Therefore, this 
strain-energy term does not represent the true strain energy in the concrete. Ductile damage 
initiates when τ d exceeds an initial threshold r0d. 
 
Damage Threshold. Brittle and ductile damage initiate with plasticity. This effectively means that 
the initial damage surface is coincident with the plastic shear surface. Therefore, a distinct damage 
surface is not defined by the user. Damage initiates at peak strength on the shear surface where the 
plastic volume strain is dilative. Damage does not initiate on the cap where plastic volume strain is 
compactive. 
 
One exception to initiation of damage with initiation of plasticity is when rate effects are modeled 
via viscoplasticity. With viscoplasticity, the initial damage threshold is shifted (delayed), as shown 
in Figure 39:  
 

 
Figure 39. Equation. Viscoplastic damage threshold r0.  

 

Here r s is the damage threshold before application of viscoplasticity, and r0
 is the shifted threshold 

with viscoplasticity. When η is greater than zero (rate effects are modeled), the initial damage 
threshold is scaled up by the term in brackets. Hence, damage initiation is delayed while plasticity 
accumulates. This shift requires no input parameters and is hardwired into the model based on the 
viscoplastic theory previously discussed. 
 
Damage accumulates when either the brittle or ductile energy term, generically called τ n, exceeds 
the current damage threshold, rn. Here the subscript ‘n’ indicates the nth time step. Once damage 
initiates, the value of the damage threshold increases. The new threshold at time step n + 1, 
denoted rn+1, is set equal to the exceeded value of τ .  If the previous value of τ did not exceed the 
previous threshold (an increment without damage), the threshold does not increase. 
Mathematically this is expressed as shown in Figure 40: 
 

 
Figure 40. Equation. Incremental damage threshold, small rn+1. 

 
Hence each strain energy term (brittle or ductile) must increase in value above its previous 
maximum in order for damage to accumulate. When energy remains constant or decreases, damage 
temporarily stops accumulating. The description given here is effectively that of an expanding 
damage surface. 
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Softening Function. As damage accumulates, the damage parameter d increases from an initial 
value of zero, towards a maximum value of 1. Damage accumulates with τ according to the 
following functions, shown in Figures 41 and 42: 
 
Brittle Damage 

 
 

Figure 41. Equation. Brittle damage small d of tau. 

 
Ductile Damage  

 
 

Figure 42. Equation. Ductile damage small d of tau. 

 
An alternative softening function is suggested in appendix A. The parameters A and B or C and D 
set the shape of the softening curve plotted as stress-displacement or stress-strain. The parameter 
dmax is the maximum damage level that can be attained. It is set equal to approximately 1 in the 
tensile and low confining pressure regimes. Brittle damage is set to 0.999 to avoid computational 
difficulties associated with zero stiffness at a value of 1. At moderate confining pressures, it is less 
than 0.999, in agreement with TXC data with residual strength. It is set to less than 0.999 by the 
formula shown in Figure 43:  
 

 

 
Figure 43. Equation. Variation of dmax with stress invariant ratio. 

 
The power 1.5 was chosen by the developer based on examination of single element simulations 
and could be included as a user-supplied input parameter at a later date. The maximum damage 
level also varies with rate effects, as shown in Figure 44. The nondimensional term in parentheses 
is a stress invariant ratio that is equal to 1 in unconfined compression and less than 1 for stress 
states with confinement, as shown in Figure 45. 
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Figure 44. Equation. Variation of dmax with rate effects. 

 

 
 

 
Figure 45. Schematic representation of four stress paths and their stress invariant ratios. 

 
 
In addition to reducing the maximum damage level with confinement (pressure), the compressive 
softening parameter, A, may also be reduced with confinement. The formulation is shown in Figure 
46:  
 

 
Figure 46. Equation. Reduction of A with confinement. 

 
Here pmod is a user-specified input parameter. Its default value is 0.0. Input positive value of 
pmod reduces A when the maximum damage is less than 0.999; otherwise A is unaffected by 
pmod. Thus, it is only active at moderate confinement levels. 
 
The maximum increment in damage that can accumulate over a single time step is 0.1 (10 percent). 
This maximum increment is set internally to avoid excessive damage accumulation over a single 
time step. Excessive damage accumulation can lead to unstable behavior. This 0.1 damage 
increment was chosen by the developer based on examination of numerous multielement 
simulations and could be included as a user-supplied input parameter at a later date. 
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Regulating Mesh Size Sensitivity. If the equations shown in Figure 41 and Figure 42 are used as is 
to model softening, the softening behavior would be mesh size dependent.  This behavior means 
that different mesh refinements would produce different computational results, typically with the 
greatest damage accumulation in the smallest elements. This behavior is undesirable and is the 
result of modeling smaller fracture energy in the smaller elements. The fracture energy is the area 
under the stress-displacement curve in the softening regime. Direct use of the equations shown in 
Figure 41 and Figure 42 is demonstrated in the concrete model evaluation report for direct pull and 
unconfined compression of concrete cylinders.(1) The calculations without softening regulation 
demonstrate that convergence of the solution is not attained as the mesh is refined to a reasonable 
element size of about 19 to 38 millimeters (mm) (0.75 to 1.5 inches) for concrete.  
 
It is desirable for a computational solution to converge as the mesh is refined. Regulatory methods 
promote convergence by reducing or eliminating element-to-element variation in fracture energy. 
The fracture energy is a property of a material, and special care must be taken to treat it as such. 
Several possible approaches are available for regulating mesh size dependency. One approach is to 
manually adjust the damage parameters as a function of element size to keep the fracture energy 
constant. However, this approach is not practical because the user would need to input different 
sets of damage parameters for each size element. A more automated approach is to include an 
element length scale in the model. This is done by passing the element size through to the material 
model and internally calculating the damage parameters as a function of element size. Finally, 
viscous methods for modeling rate effects have also been proposed (in the literature) to regulate 
mesh size dependency. However, if rate-independent calculations are performed, then viscous 
methods will be ineffective.  
 
To regulate mesh size sensitivity, the concrete model maintains constant fracture energy regardless 
of element size. This is done by including the element length, L (cube root of the element volume), 
and a fracture energy type term, Gf , in the softening parameter A of the equation in Figure 41, or C 
of the equation in Figure 42. The most general way to maintain constant fracture energy is to 
derive an expression for the fracture energy by integrating the analytical stress-displacement curve 
as shown in Figure 47: 
 

 
Figure 47. Equation. Fracture energy integral for Gf. 

 
Here x is the displacement and x0 is the displacement at peak strength, f′ . The fracture energy is 
defined in terms of the damage softening parameters (with dmax = 1) and element length by 
substituting either damage formulation (equations in Figure 41 or in Figure 42) into and 
performing the integration. To accomplish the integration, the damage threshold difference (τ – r0) 
must be specified. The damage threshold difference is dependent on whether brittle or ductile 
damage is modeled. Brittle softening (P < 0) and ductile softening (P > 0) are regulated separately, 
because brittle damage accumulation is modeled differently from ductile damage accumulation. 
 
For brittle damage, the relationship between the fracture energy, Gf, the softening parameters, C 
and D, the initial damage threshold, r0b, and element size, L, is shown in Figure 48: 
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Figure 48. Equation. Brittle damage fracture energy Gf. 

 
This expression was obtained by integrating the equation in Figure 47 using the definition of the 
damage threshold difference shown in Figure 49: 
 

 
Figure 49. Equation. Brittle damage threshold difference τ minus small r0b. 

 
Rearranging the equation in Figure 48 gives the softening parameter C shown in Figure 50: 
 

 

 
Figure 50. Equation. Brittle softening parameter C. 

 
For ductile damage, the relationship between the fracture energy, Gf, the softening parameters, A 
and B, the initial damage threshold, r0d, and element size, L, is shown in Figure 51: 
 

 
Figure 51. Equation. Ductile damage fracture energy Gf. 

 
This expression was obtained by integrating the equation in Figure 47 using the definition of the 
damage threshold difference shown in Figure 52: 

 

 
Figure 52. Equation. Ductile damage threshold difference τ − r0d. 
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The integral on the right of the equation in Figure 51 reduces to a dilogarithm, which is not 
solvable in closed form. Therefore, its value is internally calculated by the LS-DYNA concrete 
model during the initialization phase. Its value depends on the input parameter B and is termed 
dilog.  
 
Rearranging the equation in Figure 51 gives the softening parameter A shown in Figure 53: 
 

 
 

Figure 53. Equation. Ductile softening parameter A. 

 
In summary, to regulate mesh size dependency, the concrete model requires input values for B and 
Gfc rather than for A and B. Similarly, the concrete model requires input values for D and Gft rather 
than for C and D. When the brittle damage threshold is attained, the concrete material model 
internally solves the equation in Figure 48 for the value of A based on the initial element size, the 
initial brittle damage threshold, the brittle fracture energy, and a user-specified input value for B. 
When the ductile damage threshold is attained, the concrete material model internally solves the 
equation in Figure 51 for the value of C based on the initial element size, the initial ductile damage 
threshold, and the ductile fracture energy, and a user-specified input value for D. 
  
Refer to the concrete model evaluation report, which discusses cylinder compression calculations 
conducted with regulation of the softening response.(1) The calculations conducted in tension 
demonstrate that brittleness increases with mesh refinement until convergence is attained. 
Conversely, the calculations conducted in compression demonstrate that brittleness decreases with 
mesh refinement until convergence is attained. 
 
Specifying the Fracture Energy.  The user specifies three distinct fracture energy values. These 
are the fracture energy in uniaxial tensile stress, Gft, pure shear stress, Gfs, and uniaxial 
compressive stress, Gfc. The model internally selects the brittle or ductile fracture energy from 
equations that interpolate between the three fracture energy values as a function of the stress state. 
The stress state is defined by a nondimensional stress invariant ratio call trans. The interpolation is 
as shown in Figures 54 and 55: 
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Figure 54. Equation. Brittle damage threshold Gf Brittle.  
 
 

 
Figure 55. Equation. Ductile damage threshold Gf 

Ductile. 

Here trans is the interpolation parameter whose value ranges between 0 in pure shear stress to 1 in 
uniaxial tensile or compressive stress. The interpolation depends on two user-specified input 
parameters. These are pwrt for the tensile-to-shear transition and pwrc for the shear-to-
compression transition. 
 
Fracture Energy with Rate Effects. When rate effects are modeled with viscoplasticity, the user 
has the option to increase the fracture energy as a function of the rate effect. This is accomplished 
via the repow parameter as shown in Figure 56:  

 
Figure 56. Equation. The fracture energy with rate effects, Gvp

f .  

 
Here Gf is either the brittle or ductile fracture energy calculated from the user-specified input 
values, and         is the value that is scaled up with rate effects. A value of repow = 1 is 
recommended. With a value of 1, the increase in fracture energy with rate effects is approximately 
proportional to the increase in strength with rate effects. With a value of repow = 0, constant 
fracture energy is maintained independent of rate effects. Refer to appendix B of the concrete 

  vp 
f G 
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model evaluation report for a review of calculations conducted with repow ranging between 0 and 
1.(1)  They indicate that repow = 0 tends to model a response that is more brittle than measured in 
bridge rail impact tests. The recommended range is between 0.5 and 1.  
 
Tracking Damage. Two distinct damage parameters are tracked. One parameter is the ductile 
damage parameter, denoted d d. The ductile damage parameter increases in value whenever the 
ductile damage formulation is active (pressure is compressive) and τ exceeds the current damage 
threshold. The value of the ductile damage parameter never decreases, even temporarily. 
The other parameter is the brittle damage parameter d b. The brittle damage parameter increases in 
value whenever the brittle (pressure tensile) damage formulation is active and τ exceeds the 
current damage threshold. When inactive, the brittle damage parameter is temporarily set equal to 
zero in order to model stiffness recovery with crack closing. In other words, brittle damage drops 
to zero (stiffness is recovered) whenever the pressure switches from tensile to compressive. The 
maximum value of d b is recovered when the brittle formulation becomes active again (when the 
pressure becomes tensile again).  
 
A user-specified input parameter, called recov, is available to control stiffness recovery. It is by 
default zero, which means 100 percent recovery of stiffness and strength when pressure becomes 
compressive. A value of 1 would provide no recovery of stiffness and strength; hence brittle 
damage remains at its maximum level. Values between 0 and 1 model partial recovery. Its 
implementation is shown in Figure 57: 
 

  
Figure 57. Equation. Default damage recovery of d of τt .  

 
The damage parameter applied to the six stresses is equal to the current maximum of the brittle or 
ductile damage parameter: d=max(d b, d d). 
 
An option is also available to control stiffness recovery as a function of volumetric strain as well as 
pressure, as shown in Figure 58: 
 

 
 

Figure 58. Equation. Optional damage recovery of d of τt.  
 
To select this option, recov is specified by the user with an initial value between 10 and 11, rather 
than between 0 and 1. When recov is 10 or greater, a flag is internally set to base stiffness recovery 
on volumetric strain as well as pressure. In addition, the concrete model internally subtracts 10 
from recov to obtain a value between 0 and 1 for use in the above formulation. 
 
Element Erosion. An element loses all strength and stiffness as d→1. To prevent computational 
difficulties, such as mesh tangling and shooting nodes, element erosion is available as a user 
option. An element erodes when d > 0.99 and the maximum principal strain is greater than a user-
supplied input value.  
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RATE EFFECTS FORMULATION 

Rate effects formulations are implemented to model an increase in strength with increasing strain 
rate such as that previously shown in Figure 13. The rate effects formulations are applied to the 
plasticity surface, the damage surface, and the fracture energy. This section discusses rate effects 
as they apply to the plasticity surface. Rate effects as they apply to the damage surface and fracture 
energy were previously discussed in the section on damage formulation above.  
 
Viscoplastic Formulation. The viscoplastic algorithm is applied to the yield surface. The 
implementation is based on the Simo et al. extension of the commonly used Duvaut-Lions 
formulation to cap models.(26) The Simo et al. extension requires one rate effects parameter, 
denoted by η. This parameter is called the fluidity coefficient and is a user-specified input 
parameter.  
 
The basic viscoplastic update algorithm is simple to implement. At each time step, the algorithm 
interpolates between the elastic trial stress and the inviscid stress (without rate effects) to set the 
viscoplastic stress (with rate effects), as shown in Figure 59: 
 

     
 

Figure 59. Equation. Viscoplastic stress update for σvp
ij. 

 

This interpolation depends on the fluidity coefficient, η, and the time step, Δt. When η = 0, the 
inviscid stress is attained so that the solution is independent of strain rate. As η → ∞, the elastic 
trail stress is attained at each and every time step. This corresponds to the absence of plastic flow. 
Therefore, plastic flow decreases as rate effects increase. At each time step, the viscoplastic stress 
is bounded between the current rate-independent stress and the elastic trial stress. The viscoplastic 
algorithm allows the viscoplastic stress state to lie outside the yield surface.  
 
The model’s flexibility in fitting high strain rate data is improved by converting the single 
parameter viscoplastic formulation to a two-parameter formulation. This is a simple modification, 
shown in Figure 60, in which:(27) 

 
Figure 60. Equation. Two-parameter η. 

 

The two input parameters are η0 and n. The user can fit rate effects data at two strain rates, instead 
of at one strain rate, which provides a better fit to the data.  
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The behavior modeled by the viscoplastic update for direct pull and unconfined compression 
simulations is as shown in Figure 61: 
 

 
 

Figure 61. Equation. Dynamic strengths, f ′T dynamic, and f ′C dynamic. 

 

Here it is shown that the dynamic strength (viscoplastic) is equal to the static strength (inviscid) 
plus a dynamic overstress equal to E     η where E is Young’s modulus and      is the effective 
strain rate. The effective strain rate depends on all six strain components as shown in Figure 62:  
   
 

 
 

Figure 62. Equation. Effective strain rate     . 

 

The overstress modeled in tension is the same as that modeled in compression. This means that at 
high strain rates, the dynamic-to-static strength ratio in tension is about a factor of 10 greater than 
the dynamic-to-static strength ratio in compression, because the tensile strength is about one-tenth 
the compressive strength. Hence, the viscoplastic model simulates larger rate effects in tension 
than in compression, consistent with the data trend previously shown in Figure 14. 
 
Viscoplastic Input.  Although the basic two parameter formulation models more significant rate 
effects in tension than compression, the user may still wish to fit tensile and compressive strain 
rate data with different viscoplastic fluidity parameters. This is done with four user-specified input 
parameters. These are η0t and nt for fitting uniaxial tensile stress data, and a separate set, η0c and 
nc, for fitting the uniaxial compressive stress data. 
 
For stress states between uniaxial tensile stress and uniaxial compressive stress, the fluidity 
parameter is interpolated as a function of stress invariant ratio. The interpolation is shown in 
Figures 63 and 64: 
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Figure 63. Equation. Variation of fluidity parameter η in tension. 

 

 
 

Figure 64. Equation. Variation of fluidity parameter η in compression. 

 

Here, the effective ηt , ηs , and ηc are the fluidity parameters in uniaxial tensile stress, shear stress, 
and uniaxial compressive stress. They are determined from five input parameters as shown in 
Figure 65: 
 

 

 
Figure 65.  Equation. Effective fluidity parameters, ηt, ηc, and η s. 

 
The effective fluidity parameter in shear is determined from a single input scaling parameter, 
Srate. 
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This viscoplastic model may predict substantial rate effects at high strain rates (      > 100). To 
limit rate effects at high strain rates, the user may input overstress limits in tension (overt) and 
compression (overc). These input parameters limit calculation of the fluidity parameter as shown 
in Figure 66: 

 
Figure 66.  Equation. Overstress limit of η. 

 

where over = overt when the pressure is tensile, and over = overc when the pressure is 
compressive. 
 

KINEMATIC HARDENING 

In unconfined compression, the stress-strain behavior of concrete typically exhibits nonlinearity 
and dilation prior to the peak. This behavior was previously demonstrated in Figure 5 and Figure 
10. This type of behavior is modeled with an initial shear yield surface, NHFf , which hardens until 
it coincides with the ultimate shear yield surface, Ff. Two input parameters are required. One 
parameter, NH, initiates hardening by setting the location of the initial yield surface as a fraction of 
the final yield surface. Reasonable values are approximately 0.7 < NH  ≤ 1.0. A second parameter, 
CH, determines the rate of hardening (amount of nonlinearity).  
 
The state variable that defines the translation of the yield surface is known as the back stress and is 
denoted by αij. The incremental backstress is Δαij. The value of each back stress component is 
zero upon initial yielding and reaches a maximum value at ultimate yield. The total stress is 
updated from the sum of the initial yield stress (         ) plus the back stress (see Figures 67 and 68):  

 
 

Figure 67.  Equation. Back stress α ij n + 1. 

 

 
Figure 68.  Equation. Updated stress with hardening, σP

ij n+1. 

 

The hardening rule defines the growth of the back stress. Hardening rules are typically based on 
stress or plastic strain. The model bases hardening upon stress to ensure that the translating shear 
surface coincides with the ultimate surface (lack of proper translation is a problem with plastic 
strain based rules). This process is accomplished by defining the incremental back stress, as shown 
in Figure 69:    
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Figure 69.  Equation. Incremental back stress, Δαij. 

 
Here CH is the user input parameter that determines the rate of translation, Gα is a function that 
properly limits the increments, and          – αij are the elastoplastic stress components that 
determines the direction of translation for each component. Also included in the formulation is the 
effective strain rate increment,     , and the time step, Δt. These terms are internally calculated by 
the material model and LS-DYNA, and are included to keep the hardening response independent 
of time step, time step scale factor, and strain increment. 
 
The input parameter CH is the rate of translation used in unconfined compression. In the brittle 
regime (and for pure shear stress) the rate of translation is internally increased to 10 CH. For stress 
states with low confinement, the rate of translation transitions between the brittle value and the 
input value are shown in Figures 70 and 71: 
 

 

 
Figure 70.  Equation. Brittle rate of translation CH

 Brittle. 

 
 

 
Figure 71.  Equation. Ductile rate of translation CH 

Ductile. 

 

The function Gα restricts the motion of the yield surface so that it cannot translate outside the 
ultimate surface.(23)  The functional form of Gα is determined from the functional form of the yield 
surface. It is defined as shown in Figure 72: 

 

ε&Δ
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2J ′

2J ′

 
Figure 72.  Equation. The limiting function Gα. 

The value of the limiting function is Gα = 1 at initial yield, because αij = 0 at initial yield. The 
value of the limiting function is Gα = 0 at ultimate yield, because the numerator equals the 
denominator (for the main term in brackets) at ultimate yield. Thus, Gα limits the growth of the 
back stress as the ultimate yield surface is approached. The developer has chosen to square the 
term in brackets based on review of the behavior of single element simulations. The square power 
could be replaced with a user-defined input parameter at a later date. 
 
Each term in the denominator warrants a verbal description. The term on the left is the      value of 
the ultimate yield surface, evaluated at the pressure invariant with backstress (before  application 
of damage and viscoplasticity). The term on the right is the       value of the initial yield surface, 
evaluated at the pressure invariant without backstress (also before application of damage and 
viscoplasticity). 
 
Use of the kinematic hardening formulation modifies the shear surface definition, as shown in 
Figure 73: 
 

 

 
Figure 73.  Equation. Modified shear failure surface, Ff. 

If kinematic hardening is not requested (CH and NH are set to zero), then the value of NH  is 
internally reset to 1.0. In this way, the original (ultimate) shear surface is recovered. 
 

MODEL INPUT 

Ease of use is an important consideration for the roadside safety community. Many users have 
significant experience performing LS-DYNA analyses, but they are less experienced in material 
modeling topics. Often, users lack the necessary time, data, and material modeling experience to 
accurately fit a set of material model parameters to data. The ability of a material model to 
simulate real world behavior not only depends on the theory of the material model, but on the fit of 
the material model to laboratory test data. The current version of concrete material model 159 has 
up to 37 input parameters, with a minimum of 19 parameters that must be fit to data. The model 
has been made easy to use by implementing a set of standardized material properties for use as 
default material properties.  
 
Default material model parameters are provided for the concrete model based on three input 
specifications: the unconfined compression strength (grade), the aggregate size, and the units. The 
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parameters are fit to data for unconfined compression strengths between about 20 and 58 MPa 
(2,901 to 8,412 psi), with emphasis on the midrange between 28 and 48 MPa (4,061 and 6,962 
psi). The unconfined compression strength affects all aspects of the fit, including stiffness, three-
dimensional yield strength, hardening, and damage. The fracture energy affects only the softening 
behavior of the damage formulation. Softening is fit to data for aggregate sizes between 8 and 32 
mm (0.3 and 1.3 inches).  
 
The suite of material properties was primarily obtained through use of the CEB-FIP Model 
Code.(11)  This code is a synthesis of research findings and contains a thorough section on concrete 
classification and constitutive relations. Various material properties, such as compressive and 
tensile strengths, stiffness, and fracture energy, are reported as a function of grade and aggregate 
size.  

Bulk and Shear Moduli 

Young’s modulus of concrete varies with concrete strength, as shown in Table 1. These 
measurements are taken from an equation in CEB, as shown in Figure 74: 

 

 
 

Figure 74.  Equation. Default Young’s modulus E. 

 

Here, E is Young’s modulus and EC  = 18.275 MPa (2,651 psi) (which is the value of Young’s 
modulus when f ' c = 10 MPa (1,450 psi)). This value of EC is for simulations that are modeled 
linear to the peak (no prepeak hardening). Poisson’s ratio is typically taken as being between 0.1 
and 0.2. A value of ν = 0.15 is selected here and is assumed to remain constant with concrete 
strength. Based on this information, the default bulk and shear moduli (K and G) in Table 1 are 
derived from the classical relationships between stiffness constants, as shown in Figure 75:  

 
 

 
Figure 75.  Equation. Shear and bulk moduli, G and K. 

 

The equations in Figure 74 and Figure 75 are implemented in the concrete model initialization 
routines to set the default moduli of concrete as a function of concrete compressive strength. 
 
Alternatively, the ACI Committee 318 suggests the formula shown in Figure 76 for the elastic 
modulus: 
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Figure 76.  Equation. ACI Young’s modulus, Ec. 

 

where wc is the density of concrete in kilograms per meters cubed (kg/m3). For normal weight 
concrete with wc = 2,286 kg/m3 (5,040 pounds per feet cubed (lb/ft3)), this formula reduces to the 
equation shown in Figure 77: 
 
 

 
Figure 77.  Equation. Reduced ACI Young’s modulus, Ec. 

 

This formula gives Young’s moduli that are within ±9 percent of those given by Figure 74, as 
shown in Table 2. 
 

Table 1. These default bulk and shear moduli of concrete are derived from the formula for Young’s 
modulus provided in CEB. 

 
Unconfined Compression 

Strength 
MPa (psi) 

Young’s 
Modulus       
GPa (ksi) 

Poisson’s 
Ratio 

Bulk 
Modulus 
GPa (ksi) 

Shear 
Modulus 
GPa (ksi) 

 
20  (2,901) 

 
23.0  (3,336) 

 
0.15 

 
11.0 (1,595) 

 
10.0 (1,450) 

 
28  (4,061) 

 
25.8  (3,742) 

 
0.15 

 
12.3 (1,784) 

 
11.2 (1,624) 

 
38  (5,511) 

 
28.5  (4,134) 

 
0.15 

 
13.6 (1,973) 

 
12.4 (1,798) 

 
48  (6,962) 

 
30.8  (4,467) 

 
0.15 

 
14.7 (2,132) 

 
13.4 (1,944) 

 
58  (8,412) 

 
32.8  (4,757) 

 
0.15 

 
15.6 (2,263) 

 
14.3 (2,074) 

GPa = gigapascals    
MPa = megapascals    
ksi = kips per square inch 
psi = pounds per square inch 
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Table 2. These bulk and shear moduli for concrete are derived from a formula for Young’s 
modulus suggested by ACI Code Committee. 

Unconfined Compression 
Strength 

MPa (psi) 

Young’s 
Modulus 
GPa (ksi) 

Poisson’s 
Ratio 

Bulk 
Modulus 
GPa (ksi) 

Shear 
Modulus 
GPa (ksi) 

 
20   (2,901) 

 
21.0 (3,046) 

 
0.15 

 
10.0 (1,450) 

 
  9.1 (1,320) 

 
28   (4,061) 

 
24.9 (3,611) 

 
0.15 

 
11.9 (1,726) 

 
10.8 (1,566) 

 
38   (5,511) 

 
28.9 (4,192) 

 
0.15 

 
13.8 (2,002) 

 
12.6 (1,827) 

 
48   (6,962) 

 
32.6 (4,728) 

 
0.15 

 
15.5 (2,248) 

 
14.2 (2,060) 

 
58   (8,412) 

 
35.8 (5,192) 

 
0.15 

 
17.0 (2,466) 

 
15.6 (2,263) 

 

Triaxial Compression Surface 

The TXC yield surface equation is fit to four strength measurements. For roadside safety 
applications, the regimes of interest are primarily the tensile and low confining pressure regimes. 
Hence, the first and most common measurement fitted is unconfined compression, in which the 
pressure is one-third the strength. The second measurement is uniaxial tension, which is often 
called direct pull. The third measurement is triaxial tension (equal tension in three directions), 
which sets the apex of the TXC yield surface. The fourth measurement is TXC at a specified 
pressure. The pressure selected is 70 MPa (10,153 psi). The fit to this measurement anchors the 
yield surface at low to moderate pressure.  
 
Strength measurements are given in Table 3. The uniaxial compression and tension measurements 
are taken from tables and information provided in CEB. The triaxial tension measurement is equal 
to the uniaxial tension measurement. This choice, along with appropriate selection of the three-
invariant scale factors, will model the biaxial tension strength approximately equal to the uniaxial 
tension strength. This is the recommendation in CEB. 
 
The TXC measurement (principal stress difference) is taken from a review of test data. For 
example: 
 

• Measurements made for three similar concretes with f 'c = 45 MPa (6,527 psi) indicate an 
average triaxial strength of about 120 MPa (17,405 psi) (principal stress difference) at a 
pressure of 69 MPa (10,008 psi).(25) 
 

• Measurements reported by reference 28 for normal strength concrete with f 'C = 25 MPa 
(3,626 psi) indicate a principal stress difference of 69 MPa (10,008 psi) at a pressure of 37 
MPa (5,366 psi).  
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Table 3. Approximate strength measurements used to set default TXC yield surface parameters. 

 
 

Measurement Type 
 

Strengths 
Set 1 

 
Strengths 

Set 2 

 
Strengths 

Set 3 

 
Strengths 

Set 4 

 
Strengths 

Set 5 
Uniaxial Compression f 'C 
MPa (psi) 

 
20 (2,901) 

 
28 (4,061) 

 
38  (5,511) 

 
48 (6,962) 

 
  58  (8,412) 

Uniaxial Tension  f 'T 
MPa (psi) 

 
 1.6   (232) 

 
  2.2 (319.1) 

 
  2.9   (421) 

 
  3.5   (508) 

 
  4.1   (595)

Triaxial Tension 
MPa (psi) 

 
1.6   (232) 

 
  2.2 (319.1) 

 
2.9  (421) 

 
  3.5   (508) 

 
  4.1   (595)

Triaxial Compression 
2.75 f 'C at P = 1.5 f 'C  
MPa (psi) 

 
55 (7,977) 

 
77 (11,168) 

 
105 (15,229) 

 
132 (19,145) 

 
160 (23,206)

 
The TXC yield surface equation relates strength to pressure via four parameters as shown in Figure 
78: 
 

 
Figure 78.  Equation. TXC Strength. 

 

At each value of unconfined compressive strength, the four strength parameters (α, λ, β, θ ) are 
simultaneously fit to the four strength values via an iterative procedure. Fitted values at five 
strengths are given in Table 4.  
 
Obviously, a user may wish to analyze concrete at strengths other than the five listed. To 
accomplish this, quadratic equations as a function of unconfined compression strength are fit 
through each parameter, P, as shown in Figure 79: 
 

 
 

Figure 79.  Equation. Interpolation parameter P. 

For the TXC yield surface, the parameter P represents either α,  λ,  β, or θ. The fitted values of AP, 
BP, and CP are given in Table 5. Fitted values of AP, BP, and CP for all other concrete model input 
parameters (TOR and TXE yield surfaces, cap, damage, rate effects parameters) are given in 
subsequent sections. 
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Table 4. TXC yield surface input parameters as a function of unconfined compression strength. 

Unconfined 
Compression 

Strength 
MPa (psi) 

 α 
MPa (psi) 

λ    
MPa (psi) 

β 
 

MPa-1  (psi-1) 
θ 

 
20  (2,901) 

 
12.8 (1,856) 

 
10.5 (1,523) 

 
1.929E-02 

 
0.266 

 
28  (4,061) 

 
14.2 (2,060) 

 
10.5 (1,523) 

 
1.929E-02 

 
0.290 

 
38  (5,511) 

 
15.4 (2,234) 

 
10.5 (1,523) 

 
1.929E-02 

 
0.323 

 
46  (6,672) 

 
15.9 (2,306) 

 
10.5 (1,523) 

 
1.929E-02 

 
0.350 

 
58  (8,412) 

 
15.9 (2,306) 

 
10.5 (1,523) 

 
1.929E-02 

 
0.395 

MPa-1 = 0.006895 psi-1 
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Table 5. Quadratic equation coefficients which set the default TXC, TOR, and TXE yield surface 
parameters as a function of unconfined compression strength.  

Input Parameter 
P AP BP CP 

TXC Surface 
α (MPa) 

-0.003 
(MPa-1) 0.3169747 7.7047 

(MPa) 

λ (MPa) 0 
(MPa-1) 0 10.5 

(MPa) 

β (MPa-1) 0 
(MPa-3) 

0 
(MPa-2) 

1.929E-02 
(MPa-1) 

θ 1.3216E-05 
(MPa-2) 

2.3548E-03 
(MPa-1) 0.2140058 

TOR Surface 
α1   

0 
(MPa-2) 

0 
(MPa-1) 

0.74735 
 

λ1 0 
(MPa-2) 

0 
(MPa-1) 

0.17 
 

β 1(MPa-1) -1.9972e-05 
(MPa-3) 

2.2655e-04 
(MPa-2) 

8.1748e-02 
(MPa-1) 

θ1  (MPa-1) -3.8859e-07 
(MPa-3) 

-3.9317e-04 
(MPa-2) 

1.5820e-03 
(MPa-1) 

TXE Surface 
α2    

0 
(MPa-2) 

0 
(MPa-1) 

0.66 
 

λ2  0 
(MPa-2) 

0 
(MPa-1) 

0.16 
(MPa) 

 β2 (MPa-1) -1.9972e-05 
(MPa-3) 

2.2655e-04 
(MPa-2) 

8.2748e-02 
(MPa-1) 

θ2  (MPa-1) -4.8697e-07 
(MPa-3) 

-1.8883e-06 
(MPa-2) 

1.8822e-03 
(MPa-1) 

psi = 145.05 MPa  
MPa-1 = 0.006895 psi-1 

           MPa-2 = 0.000047538 psi-2 
         MPa-3 = 0.000000328 psi-3 

Triaxial Extension and Torsion Surfaces  

The Rubin scaling functions determine the strength of concrete for any state of stress relative to the 
TXC strength.(17)  The strength ratios are shown in Figure 80: 
 

 

 
Figure 80.  Equation. Most general form for Q1, Q2. 
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where Q1 is the TOR/TXC strength ratio, and Q2 is the TXE/TXC strength ratio. Each ratio may 
remain constant or vary with pressure. The default fits of these equations to data are given in Table 
6 and Table 7, and are based on the following data and assumptions: 
  

• The shape of the yield surface in the deviatoric plane is triangular when the pressure is 
tensile. This means that Q1 = 0.5774 and Q2 = 0.5. In this case, Q1 and Q2 are set internally, 
and the values of α1, λ 1, β 1, θ 1, and α2, λ2, β2, θ2 are not used. These fits model biaxial 
tensile strengths that are within 1 percent of the uniaxial tensile strengths, as specified in 
CEB.  
 

• The shape of the yield surface in the deviatoric plane transitions from a triangle at P = 0 to 
an irregular hexagon for P > 0. In this case, Q2 is set to give a biaxial compression strength 
that is approximately 15 percent larger than the uniaxial compressive strength                                  
(f 'BC  = 1.15f 'C ), as specified in CEB. This CEB specification agrees with the data of 
reference 16.  This reference suggests a biaxial compressive strength that is approximately 
16 percent higher than the unconfined compressive strength. 
 

• The fits in tension and compression will smoothly intersect at values of Q1 = 0.5774 and  
Q2 = 0.5 in pure shear (P = 0).  
 

Table 6. TOR yield surface input parameters as a function of unconfined compression strength. 

Unconfined 
Compression 

Strength 
MPa (psi) 

 
    α1    

 

 
λ1 

 

β1     

 MPa-1  (psi-1) 
θ1 

MPa-1  (psi-1) 

 
20 (2,901) 

 
0.74735 

 
0.170 

 
0.07829 

 
1.372E-03 

 
28 (4,061) 

 
0.74735 

 
0.170 

 
0.07252 

 
1.204E-03       

 
38 (5,511) 

 
0.74735 

 
0.170 

 
0.06135 

 
9.247e-04     

 
46 (6,672) 

 
0.74735 

 
0.170 

 
0.05004 

  
6.382E-04 

 
58 (8,412) 

 
0.74735 

 
0.170 

 
0.02757 

 
1.147E-04 

MPa-1 = 0.006895 psi-1 
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Table 7. TXE yield surface input parameters as a function of unconfined compression strength. 

Unconfined 
Compression 

Strength 
MPa (psi) 

  α2     λ2   
β2  

MPa-1 (psi-1) 
 θ2 

MPa-1 (psi-1) 

 
20 (2,901) 

 
0.66 

 
0.16 

 
0.07829 

 
1.649E-03 

 
28 (4,061) 

 
0.66 

 
0.16 

 
0.07252 

 
1.450E-03       

 
38 (5,511) 

 
0.66 

 
0.16 

 
0.06135 

 
1.102e-03     

 
46 (6,672) 

 
0.66 

 
0.16 

 
0.05004 

 
7.687e-04 

 
58 (8,412) 

 
0.66 

 
0.16 

 
0.02757 

 
1.310E-04 

MPa-1 = 0.006895 psi-1 
 

Again, because users may want to analyze concrete at a strength other than the five listed, 
quadratic equations as a function of unconfined compression strength are fit through each set of 
parameter values for the TOR and TXE surfaces. The quadratic equation coefficients were 
previously given in Table 5.  
 

Cap Location, Shape, and Hardening Parameters  

The cap parameters are selected by fitting pressure-volumetric strain curves measured in 
hydrostatic compression and uniaxial strain tests. Default fits, given in Table 8, are based on the 
following data and assumptions: 

 
• The initial cap location is the pressure invariant at which the hydrostatic  

pressure-volumetric strain curve becomes nonlinear. Nonlinearity initiates at lower 
pressures for lower strength concrete. Hence, the initial cap location decreases with 
decreasing concrete strength.  

 
• The cap shape, combined with the initial cap location, sets the pressure at which the 

uniaxial-strain pressure-volumetric strain curve becomes nonlinear. A cap shape parameter 
of 5 is typical and is commonly used by the developer to fit concrete with f ' c = 45 MPa 
(6,527 psi).  

 
• The maximum plastic volume change sets the range in volumetric strain over which the 

pressure-volumetric strain curve is nonlinear (from onset to lock-up). Typically, the 
maximum plastic volume change is approximately equal to the porosity of the air voids. A 
value of 0.05 indicates an air void porosity of 5 percent. It is not expected that the pores in 
roadside safety applications will compact fully. Therefore, this parameter is judgmentally 
set to provide a reasonably shaped pressure-volumetric strain curve in the low-to-moderate 
pressure regime applicable to roadside safety testing.  
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• The linear cap hardening parameter sets the shape of the pressure-volumetric strain curve, 

although it produces a sudden transition at the onset of nonlinearity. The quadratic cap 
hardening parameter smoothes this transition. 

 
An example pressure-volumetric strain curve from an isotropic compression simulation is given in 
Figure 81. This figure demonstrates how each parameter affects the shape of the curve.  
 
The cap initial location varies with compressive strength. The quadratic equation is used to obtain 
the cap location at a compressive strength other than the five tabulated. The quadratic equation 
coefficients are:  AP = 8.769178e-03 MPa-1, BP = –7.3302306e-02, and CP = 84.85 MPa (12,306 
psi).     
  

Table 8. Cap shape, location, and hardening parameters as a function of unconfined  
compression strength. 

 

Unconfined 
Compression 

Strength 
MPa (psi) 

 
Cap 

Shape
R 

 
Cap Location 

Xo 
MPa (psi) 

Maximum 
Plastic 
Volume 

Change W 

Linear 
Hardening 

D1 
MPa (psi) 

Quadratic 
Hardening 

D2 
MPa2 (psi2) 

 
20  (2,901) 

 
 5 

 
87 (12,618) 

 
0.05 

 
2.50e-04 

 
3.49e-07 

 
28  (4,061) 

 
5 

 
90 (13,053) 

 
0.05 

 
2.50e-04 

 
3.49e-07 

 
38  (5,511) 

 
5 

 
95 (13,779) 

 
0.05 

 
2.50e-04 

 
3.49e-07 

 
48  (6,962) 

 
5 

 
102 (14,794) 

 
0.05 

 
2.50e-04 

 
3.49e-07 

 
58  (8,412) 

 
5 

 
110 (15,954) 

 
0.05 

 
2.50e-04 

 
3.49e-07 

psi = 145.05 MPa  
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psi = 145.05 MPa 

Figure 81. Graph. This isotropic compression simulation demonstrates how the cap parameters set 
the shape of the pressure-volumetric strain curve.  

 

Damage Parameters   

Concrete softens in the tensile and low confining pressure regimes. For modeling purposes, 
fracture energy is defined as the area under the softening portion of a stress-displacement curve 
from peak stress to complete softening. One equation in CEB relates the measured fracture energy 
in tension to the unconfined compression strength and the maximum aggregate size, as shown in 
Figure 82: 
 

 
Figure 82.  Equation. The default fracture energy GF. 
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Table 9. Coefficients for the fracture energy equation.  

 
Maximum Aggregate Size 

mm (inches) 
GF0 

KPa-cm (psi-inches) 
 

 8  (0.31 inches) 
 

2.5  
 

16  (0.62 inches) 
 

3.0 
 

32  (1.26 inches) 
 

3.8 
KPa-cm = kilopascals-centimeters  
1 KPa-cm = 0.05710 Psi-inch 

 
Here GF0 is the fracture energy at f ′c = 10 MPa (1,450 psi) as a function of the maximum 
aggregate size. CEB actually lists the value of GF0  as 5.8 for 32-mm (1.26-inch) aggregate, but it 
has been replaced with 3.8 to make GF consistent with CEB tabulated values. The fit of the 
quadratic equation to these GF0 values as a function of aggregate size in mm is AP  = 0.000520833 
cm/KPa, BP  = 0.75 cm, and CP = 1.9334 KPa-cm.  
 
Tensile fracture energies calculated from the equation in Figure 82 at five specific concrete 
strengths are given in Table 10. 
 

Table 10. Tensile fracture energies tabulated in CEB as a function of concrete strength.  

 
Unconfined 

Compression 
Strength 

MPa (psi) 

8-mm (0.31-inch) 
Aggregate 

KPa-cm (psi-inches) 

16-mm (0.62-inch) 
Aggregate 

KPa-cm (psi-inches) 

32-mm (1.26-inch) 
Aggregate 

KPa-cm (psi-inches) 

 
20 (2,901) 

 
4.0 

 
5.0 

 
6.5 

 
28 (4,061) 

 
5.0 

 
6.0 

 
8.0 

 
38 (5,511) 

 
6.5 

 
7.5 

 
9.5 

 
48 (6,962) 

 
7.0 

 
9.0 

 
1.15 

 
58 (8,412) 

 
8.5 

 
1.05 

 
1.30 

      1 KPa-cm = 0.05710 Psi-inch 
 
The concrete material model requires specification of the fracture energies in uniaxial tensile 
stress, uniaxial compressive stress, and pure shear stress. Default values for the tensile fracture 
energy are given by the equation in Figure 82. Default values for the compressive fracture energy 
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ε&

are set at 100 times the tensile fracture energy. Default values for the shear fracture energy are set 
equal to the tensile fracture energy.  
 
Other input parameters required are the brittle and ductile damage thresholds and the maximum 
damage levels:  
 

• Each damage threshold sets the elastic strain energy level at which softening initiates. The 
brittle damage threshold is set equal to the elastic strain energy level in unconfined tension 
at peak stress. The ductile damage threshold is set equal to the elastic strain energy level in 
unconfined compression at peak stress.  
 

• The shape of the softening curves is set by the parameters B and D. A value of B = 100.0 is 
set in compression for gradual initial softening (flat top). A value of D = 0.1 is set in 
tension for brittle initial softening (pointed top).  
 

• The maximum damage parameters set the maximum damage levels attained in unconfined 
compression and tension. The maximum damage levels are set equal to 0.99 for both brittle 
and ductile formulations.  

 

Strain Rate Parameters 

Concrete exhibits an increase in strength with increasing strain rate (refer to Figure 13 and Figure 
14). Data are typically reported in terms of the ratio of dynamic to static strength, called the 
dynamic increase factor (DIF). CEB provides specifications for the DIF, as discussed in appendix 
D. However, the CEB specifications are not a good fit to the tensile data previously shown in 
Figure 14. Therefore, the DIF used and shown in Figure 83 is based on the developer’s experience 
on various defense contracts, particularly for concrete with strength around f 'c = 45 MPa (6,527 
psi). These specifications provide a good fit to both the tension and compression data previously 
shown in Figure 13 and Figure 14.   
 
DIF specifications are approximately met by running numerous calculations and selecting the 
viscoplastic rate effects parameters via a trial and error method. The viscoplastic parameters are 
applied to the plasticity, damage, and fracture energy formulations. These parameters are η0t and 
nt for fitting uniaxial tensile stress data, and η0c and nc for fitting uniaxial compression data. 
Quadratic equation coefficients are dependent on the unconfined compression strength, but are 
independent of the aggregate size. 
 
The default parameters in tension are nt = 0.48, with quadratic equation coefficients for η0t of AP = 
8.0614774E-13, BP = −9.77736719E-10, and CP = 5.0752351E-05 for time in seconds and stress in 
pounds per square inch. The default parameters in compression are nc = 0.78, with quadratic 
equation coefficients for η0c of AP = 1.2772337-11, BP = −1.0613722E-07, and CP = 3.203497-04. 
Rate effects parameters in pure shear stress are set equal to those in tension via Srate = 1.  
 
The overstress limits in tension (overt) and compression (overc) limit rate effects at high strain 
rates (    > 100). The overstress quadratic equation coefficients for overt are AP = 1.309663E-02 
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MPa-1, BP = −0.3927659, and CP = 21.45 MPa. These provide tensile and compressive overstress 
limits of 21 MPa (3,046 psi) at an unconfined compression strength of 30 MPa (4,351 psi).  

 
The literature contains conflicting information about whether fracture energy is strain rate 
dependent. One possibility is to model the fracture energy independent of strain rate (repow = 0). 
Another possibility is to increase the fracture energy with strain rate by multiplying the static 
fracture energy by the DIF (repow = 1). The developer’s experience has been to increase the value 
of the fracture energy with strain rate; hence, repow = 1 is the default value. This value provides 
good correlations with test data for most of the problems analyzed and discussed in the companion 
concrete model evaluation report.(1) However, the Texas T4 bridge rail simulations correlate best 
with data if the fracture energy increases with the square root of the strain rate (repow = 0.5). 
  

 
Figure 83. Graph. Approximate tensile and compressive dynamic increase  

factors for default concrete model behavior. 

Units  

Five systems of units are provided. These are: 
 
 EQ. 0.  GPa, mm, milliseconds, kg/mm3, kilonewtons (kN) 
 EQ. 1.  MPa, mm, milliseconds, grams per millimeter cubed (g/mm3), newtons (N) 
 EQ. 2.  MPa, mm, seconds, milligram per mm3 (mg/mm3), N 
 EQ. 3.  psi, inch, seconds, pound-seconds squared per inch to the fourth (lb-s2/inch4), lb 
            EQ. 4.  Pa, m, seconds, kg/m3, N 
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Chapter 3.   Users Manual 

This chapter is intended to be a brief Users Manual for those who want to run the model with a 
cursory, rather than indepth, understanding of the underlying theory and equations. This chapter 
begins with a description of the LS-DYNA concrete model input, followed by a brief theoretical 
description of the model theory. All information in this chapter is included in the  
LS-DYNA Keyword Users Manual.(6) 

 

LS-DYNA INPUT 

*MAT_CSCM {OPTION} 
 
This is material type 159. This is a smooth or continuous surface cap model and is available for 
solid elements in LS-DYNA. The user has the option of inputting his or her own material 
properties (<BLANK> option), or requesting default material properties for normal strength 
concrete (CONCRETE). 
 
Options include: 
 
<BLANK> 
CONCRETE 
 
In selecting an option the keyword cards appear: 
 
*MAT_CSCM  
*MAT_CSCM _CONCRETE 
 
Define the following card for all options. 
 
Card Format 
 
Card 1 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
MID 

 
RO 

 
NPLOT 

 
INCRE 

 
IRATE 

 
ERODE 

 
RECOV 

 
IRETRC 

 
Type 

 
I 

 
F 

 
I 

 
F 

 
I 

 
F 

 
F 

 
F 

 
 
Card 2 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
PreD 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Type 

 
F 
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Define the following card for the CONCRETE option. Do not define for the <BLANK> option. 
 

 
Card 2 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
f 'C 

 
Dagg 

 
UNITS 

 
 

 
 

 
 

  

 
Type 

 
F 

 
F 

 
I 

 
 

 
 

 
 

  

 
Define the following cards for the <BLANK> option. Do not define for CONCRETE. 
 

 
Card 3 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
G 

 
K 

 
α 

 
θ 

 
λ 

 
β 

 
NH 

 
CH 

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 

 
Card 4 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

Variable α1 θ1 λ1 β1 α2 θ2 λ2 
 

β2 
 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 

 
Card 5 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
R 

 
X0 

 
W 

 
D1 

 
D2 

   

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
 

  

 

 
Card 6 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
B 

 
Gfc  

 
D 

 
Gft 

 
Gfs 

 
pwrc 

 
pwrt 

 
pmod 

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
 
Card 7 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
η0c 

 
Nc 

 
η0t 

 
Nt 

 
overc 

 
overt 

 
Srate 

 
repow 

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 
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Define for all options.  
 
Variable Description                                                                                               
     
   MID   Material identification. A unique number must be chosen. 
 
   RO      Mass density.   
 
   NPLOT      Plotting options: 

EQ. 1.    Maximum of brittle and ductile damage (default). 
EQ. 2   Maximum of brittle and ductile damage, with recovery of 
   brittle damage.  
EQ. 3.   Brittle damage. 
EQ. 4.    Ductile damage. 
EQ. 5.   κ  (intersection of cap with shear surface). 
EQ. 6.   X0 (intersection of cap with pressure axis). 
EQ. 7.   p

vε  (plastic volume strain). 
 

INCRE Maximum strain increment for subincrementation. If left blank, a default value is 
set during initialization based upon the shear strength and stiffness.  

                
   IRATE    Rate effects options: 
                        EQ.  0. Rate effects model turned off (default). 
                          EQ.  1. Rate effects model turned on. 
 

ERODE Elements erode when damage exceeds 0.99 and the maximum principal strain 
exceeds 1-ERODE. For erosion that is independent of strain, set ERODE equal to 
1.0. Erosion does not occur if ERODE is less than 1.0. 

 
RECOV    The modulus is recovered in compression when RECOV is equal to 0 (default). The 

modulus remains at the brittle damage level when RECOV is equal to 1. Partial 
recovery is modeled for values of RECOV between 0 and 1. 

 
IRETRC       Cap retraction option: 

                        EQ.  0. Cap does not retract (default). 
                          EQ.  1. Cap retracts.  

 
PreD Preexisting damage (0 ≤ PreD < 1). If left blank, the default is zero (no preexisiting 

damage).  
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Define for CONCRETE option. 
 
Variable Description 
 

f 'C  Unconfined compression strength. If left blank, default is 30 MPa (4,351 psi).  
 
   Dagg  Maximum aggregate size. If left blank, default is 19 mm (0.75 inch). 
  
   
   UNITS        Units options: 
   EQ. 0.  GPa,  mm, milliseconds, kg/mm3, kN 
   EQ. 1.  MPa, mm, milliseconds, g/mm3,  N 
   EQ. 2.  MPa, mm, seconds,  mg/mm3,  N 
   EQ. 3.  psi,  inch, seconds,  lb-s2/inch4, lb 
                                    EQ. 4.  Pa, m, seconds, kg/m3, N 
 
 
Remarks: 

Default concrete input parameters are for normal strength concrete with unconfined 
compression strengths between about 20 and 58 MPa (2,901 and 8,412 psi). 

 
Define for <BLANK> option only. 
 
Variable Description   
 
 G  shear modulus 
 K  bulk modulus 
 
      α  TXC surface constant term  
 θ  TXC surface linear term 
 λ  TXC surface nonlinear term 
 β  TXC surface exponent 
 
      α1  TOR surface constant term 
       θ1  TOR surface linear term 
       λ1  TOR surface nonlinear term 
     β1  TOR surface exponent 
 
 α2  TXE surface constant term  
     θ2  TXE surface linear term 
       λ2  TXE surface nonlinear term 
     β2  TXE surface exponent 
 
 NH  hardening initiation 
 CH  hardening rate 
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 R  cap aspect ratio   
 X0  cap initial location 
 W  maximum plastic volume compaction 
 D1  linear shape parameter 
 D2  quadratic shape parameter 
 
 B  ductile shape softening parameter 
 Gfc   fracture energy in uniaxial stress 
 D  Brittle shape softening parameter 
 Gft   fracture energy in uniaxial tension 
 Gfs  fracture energy in pure shear stress  
 pwrc   shear-to-compression transition parameter   
 pwrt   shear-to-tension transition parameter 
 pmod  modify moderate pressure softening parameter                          
 
 η0c  rate effects parameter for uniaxial compressive stress 
 NC  rate effects power for uniaxial compressive stress 
 η0t  rate effects parameter for uniaxial tensile stress 
 Nt  rate effects power for uniaxial tensile stress 
 overc  maximum overstress allowed in compression 
 overt  maximum overstress allowed in tension 
 Srate  ratio of effective shear stress to tensile stress fluidity parameters 
repow  power that increases fracture energy with rate effects 
 

MODEL FORMULATION AND INPUT PARAMETERS 

This is a cap model with a smooth intersection between the shear yield surface and hardening cap, 
as shown in Figure 84. The initial damage surface coincides with the yield surface. Rate effects are 
modeled with viscoplasticity.  

 
Figure 84. Illustration. General shape of the concrete model yield surface in two dimensions.  
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Stress Invariants. The yield surface is formulated in terms of three stress invariants: J1, the first 
invariant of the stress tensor; J′2, the second invariant of the deviatoric stress tensor; and J′3, the 
third invariant of the deviatoric stress tensor. The invariants are defined in terms of the deviatoric 
stress tensor, Sij and pressure, P, as shown in Figure 85: 
 

 

 
Figure 85. Equation. Three stress invariants, J1, J′2, J′3. 

 

Plasticity Surface. The three invariant yield function is based on these three invariants, and the cap 
hardening parameter, κ, as shown in Figure 86: 
 

 
Figure 86. Equation. Plasticity yield function f. 

Here Ff is the shear failure surface, Fc is the hardening cap, and ℜ is the Rubin three-invariant 
reduction factor. The cap hardening parameter κ is the value of the pressure invariant at the 
intersection of the cap and shear surfaces.  
 
Trial elastic stress invariants are temporarily updated via the trial elastic stress tensor, σT. These 
are denoted J1

T, J′2T, and J′3T. Elastic stress states are modeled when f (J1
T, J′2T, J′3T, κΤ ) < 0. 

Elastic-plastic stress states are modeled when f (J1
T, J′2T, J′3T, κΤ ) > 0. In this case, the plasticity 

algorithm returns the stress state to the yield surface in a manner that f (J1
P, J′2P, J′3P, κ P) = 0. 

 
Shear Failure Surface. The strength of concrete is modeled by the shear surface in the tensile and 
low confining pressure regimes (see Figure 87): 
 

 
Figure 87. Equation. Shear surface function Ff. 

 

Here the values of θλβα  and,,,  are selected by fitting the model surface to strength 
measurements from TXC tests conducted on plain concrete cylinders.  
 
Rubin Scaling Function. Concrete fails at lower values of J′2 (principal stress difference) for TXE 
and TOR tests than it does for TXC tests conducted at the same pressure. The Rubin scaling 
function ℜ determines the strength of concrete for any state of stress relative to the strength for 
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TXC, via ℜFf. Strength in TOR is modeled as Q1Ff . Strength in TXE is modeled as Q2Ff, in 
Figure 88, where:  
 

 

 
Figure 88. Equation. Most general form for scaling functions Q1, Q2. 

 

Cap Hardening Surface. The strength of concrete is modeled by a combination of the cap and 
shear surfaces in the low to high confining pressure regimes. The cap is used to model plastic 
volume change related to pore collapse (although the pores are not explicitly modeled). The 
isotropic hardening cap is a two-part function that is either unity or an ellipse, as shown in Figure 
89: 
 

 
Figure 89. Equation. Cap surface function, Fc.  

 

where L(κ) is defined in Figure 90: 
 
 

 

 
Figure 90. Equation. Definition of L of kappa. 

 

The equation for Fc is equal to unity for J1 ≤ L(κ). It describes the ellipse for J1 > L(κ). The 
intersection of the shear surface and the cap is at J1 = κ. κ0 is the value of J1 at the initial 
intersection of the cap and shear surfaces before hardening is engaged (before the cap moves). The 
equation for L(κ) restrains the cap from retracting past its initial location at κ0.  
 
The intersection of the cap with the J1 axis is at J1 = X(κ). This intersection depends on the cap 
ellipticity ratio R, where R is the ratio of its major to minor axes (see Figure 91):  
 

 
Figure 91.  Equation. Pressure invariant X as a function of kappa.   
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The cap moves to simulate plastic volume change. The cap expands (X(κ) and κ increase) to 
simulate plastic volume compaction. The cap contracts (X(κ) and κ decrease) to simulate plastic 
volume expansion, called dilation. The motion (expansion and contraction) of the cap is based on 
the hardening rule, as shown in Figure 92:  
 

 
 

Figure 92.  Equation. Plastic volume strain hardening rule, ε pv. 

 

Here ε pv is the plastic volume strain, W is the maximum plastic volume strain, and D1 and D2 are 
model input parameters. X0 is the initial location of the cap when κ = κ0. 
 
The five input parameters (X0, W, D1, D2, and R) are obtained from fits to the  
pressure-volumetric strain curves in isotropic compression and uniaxial strain. X0 determines the 
pressure at which compaction initiates in isotropic compression. R, combined with X0, determines 
the pressure at which compaction initiates in uniaxial strain. D1 and D2 determine the shape of the 
pressure-volumetric strain curves. W determines the maximum plastic volume compaction. 
 
Shear Hardening Surface. In unconfined compression, the stress-strain behavior of concrete 
exhibits nonlinearity and dilation before the peak. This type of behavior is modeled with an initial 
shear yield surface, NHFf , which hardens until it coincides with the ultimate shear yield surface, Ff. 
Two input parameters are required. One parameter, NH, initiates hardening by setting the location 
of the initial yield surface. A second parameter, CH, determines the rate of hardening (amount of 
nonlinearity).  
 
Damage. Concrete exhibits softening in the tensile and low to moderate compressive regimes (see 
Figure 93): 
 

 

 
Figure 93.  Equation. Transformation of viscoplastic stress to damaged stress, σd

ij. 

 

A scalar damage parameter, d, transforms the viscoplastic stress tensor without damage, denoted 
σ vp, into the stress tensor with damage, denoted σ d. Damage accumulation is based on two 
distinct formulations, which are called brittle damage and ductile damage. The initial damage 
threshold is coincident with the shear plasticity surface; thus, the user does not have to specify the 
threshold.  
 
Ductile Damage. Ductile damage accumulates when the pressure (P) is compressive and an 
energy-type term, τd, exceeds the damage threshold, r0d. Ductile damage accumulation depends on 
the total strain components, εi j, as shown in Figure 94:  
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Figure 94.  Equation. Ductile damage accumulation, τ d. 

 

The stress components σij are the elasto-plastic stresses (with kinematic hardening) calculated 
before application of damage and rate effects.  
 
Brittle Damage. Brittle damage accumulates when the pressure is tensile and an energy-type term, 
τb, exceeds the damage threshold, r0b.  Brittle damage accumulation depends on the maximum 
principal strain, ε max, as shown in Figure 95:  
 

 
Figure 95.  Equation. Brittle damage accumulation, τb. 

 

Softening Function. As damage accumulates, the damage parameter d increases from an initial 
value of zero, towards a maximum value of 1, via Figures 96 and 97:   
 

 
 
                

Figure 96. Equation. Brittle damage, d of τb. 

 

 
Figure 97.  Equation. Ductile damage, d of τd. 

 

The damage parameter applied to the six stresses is equal to the current maximum of the brittle or 
ductile damage parameter. The parameters A and B or C and D set the shape of the softening curve 
plotted as stress-displacement or stress-strain. The parameter dmax is the maximum damage level 
that can be attained. It is calculated internally and is less than 1 at moderate confining pressures. 
The compressive softening parameter, A, may also be reduced with confinement, using the input 
parameter pmod, as shown in Figure 98:  
 

 
Figure 98.  Equation. Reduction of A with confinement. 
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Regulating Mesh Size Sensitivity. The concrete model maintains constant fracture energy, 
regardless of element size. The fracture energy is defined here as the area under the stress-
displacement curve from peak strength to zero strength.  Constant fracture energy is achieved by 
internally formulating the softening parameters A and C in terms of the element length, L (cube 
root of the element volume), the fracture energy, Gf, the initial damage threshold,τ0t  or τ0c , and the 
softening shape parameters, D or B. 
 
The fracture energy is calculated from up to five user-specified input parameters (Gfc, Gft, Gfs, 
pwrc, pwrc). The user specifies three distinct fracture energy values. These are the fracture energy 
in uniaxial tensile stress, Gft, pure shear stress, Gfs, and uniaxial compressive stress, Gfc. The model 
internally selects the fracture energy from equations, which interpolate between the three fracture 
energy values as a function of the stress state (expressed via two stress invariants). The 
interpolation equations depend on the user-specified input powers pwrc and pwrt, as shown in 
Figure 99:  
 

 
Figure 99.  Equation. Brittle and ductile damage thresholds, Gf. 

 

The internal parameter trans is limited to range between 0 and 1.  
 
Element Erosion. An element loses all strength and stiffness as d→1. To prevent computational 
difficulties with very low stiffness, element erosion is available as a user option. An element 
erodes when d > 0.99 and the maximum principal strain is greater than a user-supplied input value, 
1-ERODE.    
 
Viscoplastic Rate Effects. At each time step, the viscoplastic algorithm interpolates between the 
elastic trial stress,      , and the inviscid stress (without rate effects),      , to set the viscoplastic 
stress (with rate effects),  :      as shown in Figure 100: 

 

 
Figure 100. Equation. Viscoplastic stress, σvp

ij.    

 
This interpolation depends on the effective fluidity coefficient, η, and the time step, Δt. The 
effective fluidity coefficient is internally calculated from five user-supplied input parameters and  
interpolation equations shown in Figure 101: 
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Figure 101. Equation. Variation of the fluidity parameter η in tension and compression. 

 

The input parameters are η0t and Nt for fitting uniaxial tensile stress data, η0c and Nc for fitting the 
uniaxial compressive stress data, and Srate for fitting shear stress data. The effective strain rate is 
shown in Figure 102: 
 
 

Figure 102. Definition of effective strain rate.  

 

This viscoplastic model may predict substantial rate effects at high strain rates (    >100). To limit 
rate effects at high strain rates, the user may input overstress limits in tension (overt) and 
compression (overc). These input parameters limit calculation of the fluidity parameter, as shown 
in Figure 103: 

 

Figure 103. Equation. Overstress limit of η. 

 

where over = overt when the pressure is tensile, and over = overc when the pressure is 
compressive. 
 
The user has the option of increasing the fracture energy as a function of effective strain rate via 
the repow input parameter, as shown in Figure 104: 
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Figure 104.  Equation. Fracture energy with rate effects,            . 

 

Here           is the fracture energy enhanced by rate effects, and f′  is the yield strength before 
application of rate effects (which is calculated internally by the model). The term in brackets is 
greater than, or equal to 1, and is the approximate ratio of the dynamic to static strength. 
 

 



 

 65

 

Chapter 4.   Examples Manual 

This chapter contains example problems that help users become familiar with set up and usage of 
the concrete material model. These are single element simulations in tension and compression. 
These simulations demonstrate two methods of setting up the concrete material property input. The 
fast and easy method is to use default material properties selected as a function of concrete 
compressive strength and maximum aggregate size. The more detailed method is to specify all 
material properties individually. In addition to analyzing plain concrete, the user may wish to 
analyze reinforced concrete. Modeling steel reinforcement is discussed in appendix B. Numerous 
other example problems for plain and reinforced concrete are given in the companion concrete 
model evaluation report.(1) 

Concrete material model input is given in Figure 105 for default concrete parameters and in Figure 
106 for user-specified properties. A complete input file, with nodes and elements, is given in 
appendix C. This file is for tensile loading in uniaxial stress of a single element. To convert to 
compressive loading, change the sign of the ordinate under *DEFINE_CURVE at the bottom of the 
file. 

 
Figure 105. Computer printout. Example concrete model input for default material property input 

(option mat_CSCM_concrete). 

Single element stress-strain results are shown in Figure 107 for concrete with a compressive 
strength of 30 MPa (4,351 psi) and a maximum aggregate size of 19 mm (0.75 inches). These 
results can be achieved using either the default input shown in Figure 105 or the user-specified 
input shown in Figure 106.  Note that the peak strength attained in compression matches the 
specified strength listed in Figure 105, which is 30 MPa (4,351 psi). Results are plotted with  
LS-POST as cross-plots of element z-stress versus z-strain. As additional exercises, the user can 
vary the unconfined compressive strength, aggregate size, and rate effects to examine the variation 
in concrete behavior with these quantities. 
 
Note that the concrete tensile strength is less than 10 percent of the compressive strength. Because 
of concrete’s low tensile strength, unintended tensile damage may occur in the vicinity of contact 
surfaces, as discussed in the concrete evaluation report.(1) 
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Figure 106. Computer printout. Example concrete model input for user-specified material property 

input (option MAT_CSCM). 
 

 
psi = 145.05 MPa 

Figure 107. Graph. Example single element stress-strain results for 30 MPa (4,351 psi) concrete  
with 19-mm (0.75-inch) maximum aggregate size. 
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Appendix A.  Modeling Softening 

 
Two formulations the developer has employed to model softening are shown in Figures 108 and 
109: 
 

 
Figure 108.  Equation. Old generic damage, small d of τ. 

 

 

 

Figure 109.  Equation. New generic damage, small d of τ. 

 

The first formulation is the original one used by the developer in older versions of the smooth cap 
concrete model, as well as the soil model (MAT 147). The second formulation is an updated 
formulation used by the developer in the concrete model 159 discussed in this report, as well as the 
wood model (MAT 143). 
 

The equation in Figure 109 has the same number of parameters as the equation in Figure 108, but 
provides a slightly different fit. Differences in the two softening functions are given in Figure 110 
and Figure 111 for dmax = 1. Three different fits are generated for each function. One softening 
parameter is varied (A or B); the second is held constant (B or A). Note that the updated softening 
function can model a flat or steep descent upon initiation of damage, whereas the original 
softening function can only model a steep descent.  
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Figure 110. Graph. Behavior of the original softening function. 

 
Figure 111. Graph. Behavior of the updated softening function. 
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Appendix B.  Modeling Rebar 

Steel is a critical component of reinforced concrete structures, particularly those subjected to 
dynamic loads. The stress-strain behavior of Grade 60 rebar in tension is shown in Figure 112 and 
Figure 113 at two strain rates.(29)  Strain rate affects the initial yield strength more than it does the 
ultimate yield strength. Rebar behaves in a ductile manner until it breaks at an ultimate strain 
greater than about 20 percent. 
 

 
Figure 112. Graph. Rebar yields in a ductile manner at a quasi-static rate of 0.0054/s. Source: U.S. 

Army Engineer Waterways Experiment Station.(29) 

 

 
Figure 113. Graph. Rebar exhibits rate effects at a strain rate of 4/s. Source: U.S. Army Engineer 

Waterways Experiment Station.(29) 
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Rebar is explicitly modeled as beam elements. The properties of the steel are not smeared with 
those of the concrete. Rebar may be simulated with existing models in LS-DYNA, such as Model 
#24 (Piecewise Linear Plasticity). The minimum information needed to model rebar is the nominal 
yield strength. 
 
Typical properties for rebar Model # 24 include: 

• Young’s modulus E = 200 GPa (29,000 ksi). 
• Poisson’s Ratio ν = 0.3. 
• Initial yield strength of 476 MPa (69,037 psi). 
• Failure strain of between 13 and 20 percent. 
• Tabulated values for yield strength versus plastic strain. These values are extracted from 

tensile test data like that shown in Figure 113. 
• Load curve for rate effects, as shown in Table 11. This table gives the dynamic increase 

factor versus effective strain rate. 
 

Table 11. Example load curve for modeling rebar strain rate effects  
with LS-DYNA Material Model #24. 

 

 
 
There are two methods of incorporating rebar into the concrete mesh. One is to use common nodes 
between the rebar and concrete. However, generating a mesh with common nodes may be tedious. 
A second method is to couple the rebar to the concrete via the 
*CONSTRAINED_LAGRANGE_IN_SOLID command. This formulation couples the slave part (rebar) to 
the master part (concrete). No information needs to be specified other than the slave and master 
parts via the *SET_PART_LIST command. 
 
When analyzing reinforced concrete structures, the time step is often controlled by the rebar. If the 
run time is long due to an excessively small time step, the user may employ a trick to increase the 
time step when using common nodes. The trick is to connect the rebar beam elements to the 
concrete hex elements at every other node, instead of every node. This effectively doubles the size 
of the rebar elements, and therefore doubles the time step. However, some researchers have 
reported that this may cause unrealistic deformation in the elements in the impact regime. This is 
because rebar nodes connected to the concrete move less than the unconnected rebar nodes. 

 
Load Curve Quantities 

 
Point 1 

 
Point 2 

 
Point 3 

 
Point 4 

 
Point 5 

 
Point 6 

 
Strain Rate  (1/s) 

 
0 

 
0.00001 

 
1 

 
5 

 
100 

 
100,000 

 
Dynamic Increase Factor 

 
1.0 

 
1.01 

 
1.21 

 
1.71 

 
2.0 

 
2.0 
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Appendix C.  Single Element Input File  

 
*KEYWORD 
*TITLE 
Unconfined Tension of Concrete 
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$  Control Output 
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
*CONTROL_TERMINATION 
$   endtim    endcyc     dtmin    endneg    endmas 
      0.60 
$ 
*DATABASE_BINARY_D3PLOT 
$       dt       
     0.001 
$ 
*DATABASE_EXTENT_BINARY 
$    neiph     neips    maxint    strflg    sigflg    epsflg    rltflg    engflg 
                                       1 
$   cmpflg    ieverp    beamip 
                    
$ 
*DATABASE_GLSTAT 
$       dt 
      0.01 
$ 
*DATABASE_MATSUM 
$       dt 
      0.01 
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$  Define Parts, Sections, and Materials 
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$...>....1....>....2....>....3....>....4....>....5....>....6....>....7....>....8 
$ 
*PART 
$      pid       sid       mid     eosid      hgid     
Concrete  
         1         1       159                   1 
$ 
*SECTION_SOLID 
$      sid    elform 
         1         1 
$ 
*HOURGLASS 
$     HGID       IHQ        QM 
         1         5      0.01 
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$ 
*MAT_CSCM_CONCRETE  
$                                                                  
$ Concrete f'c = 30 MPa  Maximum Aggregate Size is 19 mm 
$ 
$      MID        RO     NPLOT     INCRE     IRATE     ERODE     RECOV    IRETRC                    
       159 2.320E-09         1       0.0         0      1.05       0.0         0 
$ 
$     PreD  
       0.0 
$ 
$      f'c      Dagg     UNITS                                                                   
      30.0      19.0         2 
$  
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$  Define Nodes and Elements 
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$...>....1....>....2....>....3....>....4....>....5....>....6....>....7....>....8 
$ 
*NODE 
$   node               x               y               z      tc      rc 
       1    0.000000E+00    0.000000E+00    0.000000E+00       7        
       2    25.400000000    0.000000E+00    0.000000E+00       5 
       3    25.400000000    25.40000E+00    0.000000E+00       3 
       4    0.0000000000    25.40000E+00    0.000000E+00       6 
       5    0.0000000000    0.000000E+00    25.40000E+00       4 
       6    25.400000000    0.000000E+00    25.40000E+00       2 
       7    25.400000000    25.40000E+00    25.40000E+00       0 
       8    0.0000000000    25.40000E+00    25.40000E+00       1 
$ 
*ELEMENT_SOLID 
$    eid     pid      n1      n2      n3      n4      n5      n6      n7      n8 
       1       1       1       2       3       4       5       6       7       8 
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$  Define Loads 
$ 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$...>....1....>....2....>....3....>....4....>....5....>....6....>....7....>....8 
$ 
*BOUNDARY_PRESCRIBED_MOTION_NODE 
$      nid       dof       vad      lcid        sf       vid 
         5         3         0         1 1.000E+00 
         6         3         0         1 1.000E+00 
         7         3         0         1 1.000E+00 
         8         3         0         1 1.000E+00 
$ 
*DEFINE_CURVE 
$     lcid       
         1 
$           abscissa            ordinate 
               0.000               0.254 
           500.00000               0.254 
$ 
*END 
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Appendix D.  CEB Specification for Rate Effects 

The CEB provides DIFs for both the tensile and compressive strengths in uniaxial stress, as shown 
in Figures 114 and 115:(11) 
 
Tensile Strength 
 

 

Figure 114.  Equation. CEB tensile strength dynamic increase factor, DIFten. 

 

Here      is the effective strain rate (s-1), which depends on all six strain rate components, and 
      = 30E-06 s-1. 

 
Compressive Strength 

 

 
Figure 115.  Equation. CEB compressive strength dynamic increase factor, DIFcomp. 
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The CEB specification is plotted in Figure 116. The specification is valid for strain rates up to 
about 300 s-1. Note that DIF is more pronounced in tension than in compression. However, the 
tensile DIF is not in very good agreement with the tensile data previously reported in Figure 14.  

 
Figure 116.  Graph. Dynamic increase factors specified in CEB. 
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