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FOREWORD 
 

This report presents the results of a study conducted jointly by the Federal Highway 
Administration and the National Institute of Standards and Technology to assess the feasibility of 
using statistical experiment design and analysis methods to optimize concrete mixture 
proportions.  The laboratory phase of the study indicated that both the classical mixture method 
and the factorial approach could be applied to the problem of optimizing concrete mixture 
proportions.  The factorial approach was used as the basis for developing an Internet-based 
computer program, the Concrete Optimization Software Tool, in the second phase of this project.  
This tool, accessible on the Web, allows a potential user to learn about and try this statistical 
approach.  This report will be of interest to materials engineers and others who are involved in 
concrete construction and concrete mixture design, materials selection, and proportioning.   
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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e
(Revised March 2003)  
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CHAPTER 1 
Introduction 

 
1.1 Statement of Problem and Project Goals 
 
The purpose of this project was to investigate the use of statistical experiment design approaches 
in concrete mixture proportioning.  These statistical methods are applied in industry to optimize 
products such as gasoline, food products, and detergents.  In many cases, the products are, like 
concrete, combinations of several components.  Typically, these applications optimize a product 
to meet a number of performance criteria (user-specified constraints) simultaneously, at 
minimum cost.   For concrete, these performance criteria could include fresh concrete properties 
such as viscosity, yield stress, setting time, and temperature; mechanical properties such as 
strength, modulus of elasticity, creep, and shrinkage; and durability-related properties such as 
resistance to freezing and thawing, abrasion, or chloride penetration.  
 
This project was sponsored by the Federal Highway Administration (FHWA) and was performed 
jointly by researchers from FHWA and the National Institute of Standards and Technology 
(NIST) Building Materials and Statistical Engineering Divisions.  Both FHWA and NIST hope 
to facilitate the use of high-performance concrete (HPC) in both public and private construction, 
and are currently working to develop tools for optimizing HPC mixture proportions.  
 
HPC has been referred to as “engineered concrete,” implying that an HPC mixture is not 
specified in a generic recipe, but rather designed to meet project-specific needs [1].  Such a 
definition gives a concrete producer or materials engineer greater than usual latitude in selecting 
constituent materials and defining proportions in an HPC mixture, since fewer or possibly no 
prescriptive constraints, such as minimum cement contents or maximum water-cement (w/c) 
ratios, are included in specifications.  HPC mixtures are usually more expensive than 
conventional concrete mixtures because they usually contain more cement, several chemical 
admixtures at higher dosage rates than for conventional concrete, and one or more supplementary 
cementitious materials.  As the cost of materials increases, optimizing concrete mixture 
proportions for cost becomes more desirable.  Furthermore, as the number of constituent 
materials increases, the problem of identifying optimal mixtures becomes increasingly complex.  
Not only are there more materials to consider, but there also are more potential interactions 
among materials.  Combined with several performance criteria, the number of trial batches 
required to find optimal proportions using traditional methods could become prohibitive.   
 
The general approach to concrete mixture proportioning can be described by the following steps: 
 
1. Identifying a starting set of mixture proportions. 
 
2.  Performing one or more trial batches, starting with the mixture identified in step 1 above, and 

adjusting the proportions in subsequent trial batches until all criteria are satisfied.   
 



2 

Current practice in the United States for developing new concrete mixtures often relies upon 
using historical information (i.e., what has worked for the producer in the past) or guidelines for 
mixture proportioning outlined in American Concrete Institute (ACI) 211.1 [2]. Following the 
ACI 211.1 guidelines, an engineer would select and run a first trial batch (selecting proportions 
using ACI 211.1 or historical data), evaluate the results, adjust the proportions of various 
components, and run further trial batches until all specified criteria are met.  Typically, this is 
performed by varying one component at a time.  While both historical information and ACI 
211.1 can yield a starting point for trial batches, neither method is a comprehensive procedure 
for optimizing mixtures.  Historical information may not be valid for materials other than the 
particular ones used in a given project.  In ACI 211.1, interactions among the concrete 
constituents cannot be accounted for, and there is no means to achieve an efficiently optimized 
mixture for a given criterion.   
 
In contrast, statistical experimental design methods are rigorous techniques for both achieving 
desired properties and determining an optimized mixture for a given set of constraints.  They are 
used widely in industry to optimize products and processes [3], and have been applied in some 
research studies on improving high-performance concrete [4,5].   They have not, however, been 
applied as a general approach to concrete mixture proportioning.   
 
Employing statistical methods in the trial batch process does not change the overall approach, 
but it changes the trial batch process.   Rather than selecting one starting point, a set of trial 
batches covering a chosen range of proportions for each component is defined according to 
established statistical procedures [3].  Trial batches are then carried out, test specimens are 
fabricated and tested, and results are analyzed using standard statistical methods.  These methods 
include fitting empirical models to the data for each performance criterion. In these models, each 
response (resultant concrete property) such as strength, slump, or cost, is expressed as an 
algebraic function of factors (individual component proportions) such as w/c, cement content, 
chemical admixture dosage, and percent pozzolan replacement.   
 
After a response can be characterized by an equation (model), several analyses are possible.  For 
instance, a user could determine which mixture proportions would yield one or more desired 
properties.   A user also could optimize any property subject to constraints on other properties.  
Simultaneous optimization to meet several constraints is also possible.  For example, one could 
determine the lowest cost mixture with strength greater than a specified value, air content within 
a given range, and slump within a given range.  A method for optimizing several responses 
simultaneously is described later in the report. 
 
Mechanistic (or semimechanistic) models that were developed from results of fundamental and 
applied materials research have also been used as a basis for mixture proportioning methods [6].   
An advantage of this approach is that it does not require trial batches to obtain the models; 
however, some trial batches most likely would be needed to adjust proportions because of 
differences in material properties at the local level.  It is unlikely that a mechanistic model would 
be able to account for all possible differences in local materials.  The advantage of the trial batch 
approach is that the project-specific materials are used and accounted for in the model. 
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An additional advantage of the statistical approach is that the expected properties (responses) can 
be characterized by an uncertainty (variability).  This has important implications for 
specifications and for production.  When an empirical model equation is used to determine 
mixture proportions that yield a desired strength, the model equation gives only the expected 
mean strength; that is, if replicate mixtures were made, the model equation would predict the 
mean value.  This is not an appropriate target value for specifications, because in the long run, 
the strength would be below that value half of the time.  Instead, to ensure that most of the 
strength test results would comply with specifications, a producer would select target values for 
the mean strength to account for the variability and to ensure that, for example, 95 percent of the 
results would be expected to meet or exceed the specified value.  
 
A disadvantage of the statistical approach is that it requires an initial investment of time and 
money for planning and performing trial batches and tests.  Additionally, knowledge of good 
experimentation procedures and some knowledge of statistical analysis is needed.   Statistical 
computer programs are available to perform both experiment design and analysis, but knowing 
how to interpret and ensure the validity of statistical models is important.  For this reason, the 
second objective of this project was to develop an interactive Web site to provide users with 
rudimentary knowledge and lead them step by step through a mixture proportioning process 
using statistical methods.  The aim was not to provide a comprehensive, user-friendly software 
package, but rather to introduce producers and engineers to these methods and to provide 
sufficient results and guidance on interpretation to allow them to see potential advantages of the 
approach. 
 
Although these methods require a commitment of time and money upfront, they have the 
potential to save money during construction.  Reducing the concrete material cost by $20 per 
cubic meter (m3) could result in savings of $40,000 per km of 30-cm thick, two-lane concrete 
pavement. 
 
1.2 Scope of Report 
 
The report is organized as follows:  Chapter 1 introduces the problem and the project goals, and 
describes the scope.  Chapter 2 provides background on the statistical concepts used in this 
project, including response surface methodology (RSM) and its components: experiment design, 
model fitting and validation, and optimization.  Chapter 3 describes the laboratory experiment 
using a mixture experiment design approach, and chapter 4 describes a laboratory experiment 
using a mathematically independent variable (MIV), or factorial, approach.  Chapter 5 describes 
the development of the interactive Web site, the Concrete Optimization Software Tool (COST).    
References are provided after chapter 5.  Appendices A (mixture experiment) and B (factorial 
experiment) contain experiment designs, test data, data analysis and model fitting (tables and 
graphs) from the laboratory experiments.  Appendix C contains the COST User’s Guide, which 
describes the COST system and its use in detail.



 



 5

CHAPTER 2 
Background on Statistical Methods 

 
 
2.1  Response Surface Methodology  
 
Response surface methodology (RSM) consists of a set of statistical methods that can be used to 
develop improve, or optimize products [3].  RSM typically is used in situations where several 
factors (in the case of concrete, the proportions of individual component materials) influence one 
or more performance characteristics, or responses (the fresh and hardened properties of the 
concrete).  RSM may be used to optimize one or more responses (e.g., maximize strength, 
minimize chloride penetration), or to meet a given set of specifications (e.g., a minimum strength 
specification or an allowable range of slump values).  There are three general steps that comprise 
RSM:  experiment design, modeling, and optimization.  Each of these is described below. 
 
Concrete is a mixture of several components.  Water, portland cement, and fine and coarse 
aggregates form a basic concrete mixture.  Various chemical and mineral admixtures, as well as 
other materials such as fibers, also may be added.   For a given set of materials, the proportions 
of the components directly influence the properties of the concrete mixture, both fresh and 
hardened.   
 
2.2 Experiment Design 
 
Consider a concrete mixture consisting of q component materials (where q is the number of 
component materials).  Two experiment design approaches can be applied to concrete mixture 
optimization: the classic mixture approach, in which the q mixture components are the variables, 
[7] and the mathematically independent variable (MIV) approach, in which q mixture 
components are transformed into q-1 independent mixture-related variables [8].  Each technique 
has advantages and disadvantages.  In the classic mixture approach, the sum of the proportions 
must be 1; therefore the variables are not all independent.  This allows the experimental region of 
interest to be defined more naturally, but the analysis of such experiments is more complicated.  
The MIV approach, with the variables independent, permits the use of classical factorial and 
response surface designs [9], but has the undesirable feature that the experimental region changes 
depending on how the q mixture components are reduced to q-1 independent factors.   
 
In this report, the MIV approach is referred to as the factorial approach because factorial 
experiment designs form the basis of the approach.  The following sections present general 
(nonrigorous) descriptions of each method (for a detailed discussion of these methods, see 
reference 3). 
 
2.2.1  Mixture Approach 
 
In the mixture approach, the total amount (mass or volume) of the product is fixed, and the 
settings of each of the q components are proportions.  Because the total amount is constrained to 
sum to one, only q-1 of the factors (component variables) can be chosen independently. 
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As a simple (hypothetical) example of a mixture experiment, consider concrete as a mixture of 
three components: water (x1), cement (x2), and aggregate (x3), where each xi represents the 
volume fraction of a component.  Assume the coarse-to-fine aggregate ratio is held constant.  
The volume fractions of the components sum to one, and the region defined by this constraint is 
the regular triangle (or simplex) shown in figure 1.  The axis for each component xi extends from 
the vertex it labels (xi = 1) to the midpoint of the opposite side of the triangle  (xi = 0).  The 
vertex represents the pure component.  For example, the vertex labeled x1 is the pure water 
mixture with x1 = 1, x2 = 0, and x3 = 0, or (1,0,0).   The point where the three axes intersect, with 
coordinates (1/3,1/3,1/3), is called the centroid. 
 

 
A good experiment design for studying properties over the entire region of a three-component 
mixture would be the simplex-centroid design shown in figure 2 (this example is included as an 
illustration only, since much of this region would not represent either feasible or workable  
 

 
 

x1 (1,0,0)

x3 (0,0,1)x2 (0,1,0)

x1 (1,0,0)

x3 (0,0,1)x2 (0,1,0)

Figure 2.  Simplex-centroid design for three variables 

Figure 1.  Example of triangular simplex region from three-component 
mixture experiment 
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concrete mixtures).  The points shown in figure 2 represent mixtures included in the experiment  
and include all vertices, midpoints of edges, and the overall centroid.   
 
All responses (properties) of interest would be measured for each mixture in the design and 
modeled as a function of the components.  Typically, polynomial functions are used for 
modeling, but other functional forms can also be used.  For three components, the linear 
polynomial model for a response y is: 
 

 
where the bi * are constants and e, the random error term, represents the combined effects of all 
variables not included in the model.  For a mixture experiment, 1321 =++ xxx ; therefore, the  
model can be reparameterized in the form: 

using )( 321
*
0

*
0 xxxbb ++⋅= .  This form is called the Scheffé linear mixture polynomial [7].   

 
Similarly, the quadratic polynomial: 
 

can be reparameterized as: 
 

using )1( 321
2
1 xxxx −−⋅= , )1( 312

2
2 xxxx −−⋅= , and )1( 213

2
3 xxxx −−⋅= .   

 
Since feasible concrete mixtures do not exist over the entire region shown in figures 1 and 2, a 
subregion of the full simplex containing the range of feasible mixtures must be defined by 
constraining the component proportions.  An example of a possible subregion for the three-
component example is shown in figure 3.  It is defined by the following volume fraction 
constraints (where x1 = water, x2 = cement, x3 = aggregate):  

 
0.15 ≤  x1   ≤ 0.25 
0.10 ≤  x2   ≤ 0.20 
0.60 ≤  x3  ≤ 0.70 

 
In this case the simplex designs are usually no longer appropriate and other designs are used [3]. 
 
 

e + xb + xb + xb  =y  332211  
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*
32

*
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1

*
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3

*
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2
2

*
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2
1

*
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*
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*
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*
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*
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*
10 (4)
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The advantage of the mixture approach is that the experimental region of interest is defined more 
naturally; however, analysis of the results can be complicated, especially if the number of 
components is greater than three. 
 
2.2.2 Factorial (MIV) Approach 
 
In the factorial approach, the q components of a mixture are reduced to q-1 independent variables 
using the ratio of two components as an independent variable.  In the case of concrete, w/c is a 
natural choice for this ratio variable.  For the situation with q-1 independent variables, a 2q-1 
factorial design forms the backbone of the experiment.  This design consists of several factors 
(variables) set at two different levels.  As a simple example, consider a concrete mixture 
composed of four components: water, cement, fine aggregate, and coarse aggregate.  Three 
independent factors, or variables, xk , that can be selected to describe this system are x1 = w/c (by 
mass), x2 = fine aggregate volume fraction, and x3 = coarse aggregate volume fraction.  
Reasonable ranges for these variables might be: 
 
 0.40 ≤ x1 ≤0.50 
 0.25 ≤ x2 ≤0.30 
 0.40 ≤ x3 ≤0.45 
 
The levels for this example would be 0.40 and 0.50 for x1, 0.25 and 0.30 for x2, and 0.40 and 0.45 
for x3.  To simplify calculations and analysis, the actual variable ranges are usually transformed 
to dimensionless coded variables with a range of ±1.  In this example, the actual range of 
0.40 ≤ x1 ≤ 0.50 would translate to a coded range of -1 ≤ x1 ≤1.   Intermediate values of x1 would 
translate similarly (e.g., the actual value of 0.45 would translate to a coded value of zero).  The 
general equation used to translate from coded to uncoded is as follows: 
 
 
 
 

)(
2

)1(
minmaxmin xxxxx coded

actual −⋅
+

+= (5)

x1 (1,0,0)

x3 (0,0,1)x2 (0,1,0)

x1 = .15

x2 = .20

x1 = .25

x2 = .10

x3 = .60

x3 = .70

x1 (1,0,0)

x3 (0,0,1)x2 (0,1,0)

x1 (1,0,0)

x3 (0,0,1)x2 (0,1,0)

x1 = .15

x2 = .20

x1 = .25

x2 = .10

x3 = .60

x3 = .70

Figure 3.  Example of subregion of full simplex containing range of feasible mixtures 
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where xactual is the uncoded value, xmin and xmax are the uncoded minimum and maximum values 
(corresponding to –1 and +1 coded values), and xcoded is the coded value to be translated. 
 
Suppose that the specifications for this mixture require a slump of 75 to 150 mm and a 28-day 
strength of 30 MPa.  These specified properties are called the responses, or dependent variables, 
yi, which are the performance criteria for optimizing the mixture.  For concrete, the responses 
may be any measurable plastic or hardened properties of the mixture.  Cost may also be a 
response.   
 
As with the mixture approach, empirical models are fit to the data, and polynomial models 
(linear or quadratic) typically are used.  Equation 6 illustrates the general case of the full 
quadratic model for k =3 independent variables: 

In equation 6, the ten coefficients are represented by the bk and e is a random error term 
representing the combined effects of variables not included in the model.  The interaction terms 
(xixj) and the quadratic terms (xi

2) account for curvature in the response surface.   
 
The central composite design (CCD), an augmented factorial design, is commonly used in 
product optimization.  A complete CCD experiment design allows estimation of a full quadratic 
model for each response.  A schematic layout of a CCD for k = 3 independent variables is shown 
in figure 4.  The design consists of 2k (in this case, 8) factorial points (filled circles in figure 4) 
representing all combinations of coded values xk = ±1, 2*k (in this case, 6) axial points (hollow 
circles in figure 4) at a distance ±α from the origin, and at least 3 center points (hatched circle in 
figure 4) with coded values of zero for each xk .  The value of α usually is chosen to make the 
design rotatable1, but there are sometimes valid reasons to select other values [3]. 
   

                                                 
1If a design is rotatable, predicted values should have equal variances at locations equidistant from the origin. 

 y =  b +b x +b x +b x +b x x +b x x +b x x +b x +b x +b x + e0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 11
2

1 22
2

2 33
2

3   

Figure 4.  Schematic of a central composite design for three factors 

(6)



 10

In the absence of curvature, a model with only linear terms would be sufficient, and the factorial 
portion of the CCD is a valid design by itself in that case.  However, the presence or absence of 
significant curvature often is not known with certainty at the start.  An advantage of the CCD 
over the mixture approach is that the CCD can be run sequentially in two blocks.  The first block 
would consist of the factorial points (all combinations of xi = ±1) and some center points (at least 
3), and the second block would consist of the axial points (points along each axis at distance α 
from the origin) and additional center points (at least 2).  This approach allows analysis of the 
factorial portion before the axial portion is run.  If curvature is insignificant based on the 
factorial portion, the additional runs are not necessary.   
 
As shown in table 1, the number of coefficients in the quadratic model increases with k, and the 
number of trial batches required using a CCD begins to increase significantly for k > 5.   
 

Table 1.  Number of runs required for CCD experiment for k = 2 to 5 factors 
 

k Factorial Axial Center* Total 
2  4  4 5 13 
3  8  6 5 19 
4  16  8 5 29 
5  16**  10 5 31 

*assumes 3 CP for factorial portion and 2 CP for axial portion 
**for k=5, a half-fraction of the full factorial is sufficient to estimate all linear terms 

and 2-factor interactions without confounding.  Thus, 25-1 or 16 factorial points are 
usually sufficient 

 
 
Therefore, using a CCD to optimize a concrete mixture of more than six components may be 
uneconomical.  In such cases, one could identify the most important factors and limit them to 
five or fewer.  For example, if the cementitious materials and chemical admixtures were the most 
important components, they would be varied, while the amounts of coarse and fine aggregate 
would be held constant.  
 
Laboratory experiments were conducted using the mixture and factorial approaches to see if one 
was more appropriate for concrete mixture optimization.  The experiments are described in 
chapters 3 and 4.  The adaptability of each method for use as an interactive, Web-based program 
was also considered in developing the COST software, described in chapter 5. 
 
 
2.3  Model Fitting and Validation 
 
The polynomial models described in sections 2.2.1 and 2.2.2 are fit to data using analysis of 
variance (ANOVA) and least squares techniques [9].  Many statistical software packages have 
the capability to perform these analyses and fits.  Once a model has been fit, it is important to 
verify the adequacy of the chosen model quantitatively and graphically. 
 
Although the models (polynomials) are slightly different for the classical mixture approach and 
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the factorial approach, many of the steps involved in model selection and fitting are the same.  
The first step in each case is to perform ANOVA to select the appropriate type of model (linear, 
quadratic, etc.).  Sequential F-tests are performed, starting with a linear model and adding terms 
(quadratic, and higher if appropriate).  Under the “Source” column of the ANOVA table, the line 
labeled “Linear” indicates the significance of adding linear terms, and the line labeled 
“Quadratic” indicates the significance of adding quadratic terms.  The column labeled “DF” 
shows the degrees of freedom for each source.  The F-statistic is calculated for each type of 
model, and the highest order model with significant terms normally would be chosen.  
Significance is judged by determining if the probability that the F-statistic calculated from the 
data exceeds a theoretical value.  The probability decreases as the value of the F-statistic 
increases.  If this probability is less than 0.05 (typically, although other levels of significance 
could be used), the terms are significant and their inclusion improves the model.  An example of 
an ANOVA table for sequential model sum of squares is shown in table 2.   
 

Table 2.   Example of ANOVA sequential model sum of squares  
 

Source Sum of Squares DF Mean Square F Value Prob > F
Mean 329.27 1 329.27 – – 
Linear 96.94 5 19.39 45.64 < 0.0001 
Quadratic 6.36 15 0.42 1.00 0.5017 
Special Cubic (aliased) 3.35 7 0.48 1.26 0.3727 
Cubic (aliased) 0.00 0 – – – 
Residual 3.03 8 0.38 – – 
Total 438.95 36 12.19 – – 

 
In this example, the linear model is the highest order model with significant terms (Prob > F is 
less than 0.05); therefore, it would be the recommended model for this data.  Typically, the 
selected model will be the highest order polynomial where additional terms are significant and 
the model is not aliased. 
 
Once the type of model (e.g., linear, quadratic, etc.) is selected, the second step is to perform a 
lack-of-fit test, also using ANOVA, to compare the residual error to the pure error from 
replication.  Table 3 is an example of ANOVA for lack of fit.  If residual error significantly 
exceeds pure error, the model will show significant lack of fit, and another model may be more 
appropriate. 
 
The desired result in a lack-of-fit test is that the model selected in step 1 will not show significant 
lack of fit (i.e., the F test will be insignificant).  If the “Prob > F” value is less than the desired 
significance level (often .05), this indicates significant lack of fit.   
 
Several summary statistics can be calculated for a model and used to compare models or verify 
model adequacy.  These statistics include root mean square error (RMSE), adjusted r2,  



 12

Table 3.  Example of ANOVA lack-of-fit test 
  

 
predicted r2, and prediction error sum of squares (PRESS).   The RMSE is the square root of the 
mean square error, and is considered to be the standard deviation associated with experimental 
error.  The adjusted r2 is a measure of the amount of variation about the mean explained by the 
model, adjusted for the number of parameters in the model2.  The predicted r2 measures the 
amount of variation in new data explained by the model.  PRESS measures how well the model 
fits each point in the design.  To calculate PRESS, the model is used to estimate each point using 
all of the design points except the one being estimated.  PRESS is the sum of the squared 
differences between the estimated values and the actual values over all the points.  A good model 
will have a low RMSE, a large predicted r2, and a low PRESS.    
 
After a model is selected, standard linear regression techniques (least squares) are used to fit the 
model to the data. ANOVA is performed and an overall F-test and lack-of-fit test confirm the 
applicability of the model.  Summary statistics (r2, adjusted r2, PRESS, etc.) and the standard 
error for each model coefficient also are calculated.  
 
For the factorial approach, an iterative model fitting process was used in this research.  First, a 
full quadratic (or linear, if applicable) model is assumed, and significance tests (t-tests) are 
performed on each model coefficient.  Insignificant terms are removed and the fitting process is 
repeated using a partial quadratic (or linear, if applicable) model.  The significance tests are 
repeated and insignificant terms, if any, are removed.  The process is repeated until there are no 
insignificant terms.  At this point, if the model contains two-factor interaction or quadratic terms, 
it is checked for hierarchy.  Hierarchical terms are linear terms that may be insignificant by 
themselves but are part of significant higher order terms.  For example, x1 and x3 are hierarchical 
terms of x1x3, a two-factor interaction term.  If x1x3 is a significant term in the model, x1 and x3 
are usually included in the model to maintain hierarchy.  A hierarchical model allows for 
conversion of models between different sets of units (for a model involving temperature, 
conversion from F to C, for example). 
 
Table 4 shows an ANOVA table for a selected model from a factorial experiment.  Using the 
iterative approach, a reduced quadratic model was fit to the data.  Note that terms B, C, and E are 
not significant (“Prob > F” >.05) but were added back into the model to make it hierarchical. 
 
                                                 
2The adjusted r2 differs from the “standard” r2, which is not adjusted for the number of parameters.  The standard r2 
can be made larger by adding more parameters to the model.  This does not necessarily mean the model with more 
parameters is a better model. 

Source Sum of Squares DF Mean Square F Value Prob > F 
Linear      6271.93  22 285.09  1.17 0.4335 
Quadratic  2164.86  7 309.27  1.27 0.3703 
Special Cubic (aliased)  0.00  0 – – – 
Cubic (aliased)  0.00  0 – – – 
Pure Error  1950.91  8 243.86 – – 
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Table 4.  Example of ANOVA model fitting for 1-day strength 
 

Source Sum of 
Squares DF Mean 

Square F Value Prob > F 

Model 240.87 8 30.11 27.76 < 0.0001 
 A 213.26 1 213.26 196.66 < 0.0001 
 B 0.48 1 0.48 0.45 0.5113 
 C 0.04 1 0.04 0.04 0.8433 
 E 2.06 1 2.06 1.90 0.1819 
 A2 6.20 1 6.20 5.72 0.0257 
 AC 5.15 1 5.15 4.75 0.0404 
 AE 7.16 1 7.16 6.60 0.0175 
 BC 6.51 1 6.51 6.00 0.0227 
Residual 23.86 22 1.08 – – 
 Lack of fit 19.08 18 1.06 0.89 0.6248 
 Pure error 4.78 4 1.19 – – 
Corr. total 264.72 30    

 
Once the model fitting is performed, the next step is residual analysis to validate the assumptions 
used in the ANOVA.  This analysis includes calculating case statistics to identify outliers and 
examining diagnostic plots such as normal probability plots and residual plots.  If these analyses 
are satisfactory, the model is considered adequate, and response surface (contour) plots can be 
generated.  Contour plots can be used for interpretation and optimization. 
 
2.4  Optimization  
 
When appropriate models have been established, several responses can be optimized 
simultaneously.  Optimization may be performed using mathematical (numerical) or graphical 
(contour plot) approaches.  Generally, graphical optimization is limited to cases in which there 
are only a few responses.  
 
Numerical optimization requires defining an objective function (called a desirability or score 
function) that reflects the levels of each response in terms of minimum (zero) to maximum (one) 
desirability.  One approach uses the geometric mean of the desirability functions for each 
individual response, where n is the number of responses to be optimized [10]:   
 

n
ndddD

1

)( 21 ×××= K (7)
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Another approach is to use a weighted average of desirability functions:   

where n is the number of responses and wi are weighting functions ranging from 0 to 1. 
 
Several types of desirability functions can be defined.  Common types of desirability functions 
are shown in figure 5.   
 

 

 
 
These functions can also be expressed mathematically as well.   For example, a linear desirability 
function where minimum is best would be expressed as: 
 
 
 
 
 
for the range Ai ≤ Yi ≤ Bi and with wi = 1.   
 
Once the desirability functions (and weights, if used) are defined for each response, optimization 
may proceed.   
 
As an alternative to rigorous numerical methods, desirability can be evaluated by superimposing 
a grid of points at equal spacing over the experimental region and evaluating desirability at each 
point.  The point(s) of maximum desirability can be found by sorting the results or by creating 
contour plots of desirability over the grid area. 

n
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Figure 5.  Examples of desirability functions 
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CHAPTER 3 
Laboratory Experiment Using Mixture Approach 

 
3.1  Introduction 
 
This chapter describes the application of a statistically designed mixture experiment to the 
problem of optimizing properties of HPC.  In a mixture experiment, the total amount (mass or 
volume) of the mixture is fixed, and the factors or component settings are proportions of the total 
amount.  For concrete, the sum of the volume fractions is constrained to sum to one (as in the 
ACI mix design approach).  Since the volume fractions must sum to unity, the component 
variables in a mixture experiment are not independent.   
 
A mixture experiment was designed to find the optimum proportions for a concrete mix meeting 
the following conditions: slump of 50 to 100 mm, 1-day compressive strength of 22.06 MPa, 28-
day compressive strength of 51.02 MPa, 42-day charge passed in American Society for Testing 
and Materials (ASTM) C1202 “rapid chloride” test (RCT) less than 700 coulombs, and minimum 
cost.  The materials (components) used included water, cement, silica fume, high-range water-
reducing admixture (HRWRA), coarse aggregate, and fine aggregate. 
 
 
3.2  Selection of Materials, Proportions, and Constraints  
 
The proportions for the six-component mixture experiment initially were selected in terms of 
volume fraction and converted to weights for batching.  The minimum and maximum levels of 
each component were chosen based on typical volume fractions for non-air-entrained concrete 

with the constraint that the volume fractions sum to unity.  In addition to the individual 
constraints on each component, the paste fraction of the concrete (water, cement, silica fume, and 
HRWRA) was required to range from 25 to 35 percent by volume.  Although air is incorporated 
into concrete during mixing, it is not an initial component and therefore was not considered to be 
a component of the mixture.  Ignoring the air content as a mix component affects yield 
calculations, but these are not important for the small trial batches and can be adjusted later after 
a final mix is selected.   
 
The materials used in this study included a Type I/II portland cement, tap water, #57 crushed 
limestone coarse aggregate, natural sand, silica fume (in slurry form), and a naphthalene 
sulfonate-based HRWRA meeting ASTM C494 Type F/G.  The final volume fraction ranges of 
the 6 mixture components are shown in table 5.   The volume fractions were converted to 
corresponding weights using the specific gravities and percent solids (where applicable) obtained 
from laboratory testing or from the material supplier. 
 
3.3 Experiment Design Details 
 
Selecting an appropriate experiment design depends on several criteria, such as ability to 
estimate the underlying model, ability to provide an estimate of repeatability, and ability to check 
the adequacy of the fitted model.  The “best” experiment design depends on the choice of an 



 16

Table 5.  Material volume fraction ranges for mixture experiment 

 
underlying model which will adequately explain the data.  For this experiment, the following 
quadratic Scheffé polynomial was chosen as a reasonable model for each property as a function 
of the six components: 

 
This model is an extension of equation 4 for the 6-component case.  Because there are 21 
coefficients in the model, the design must have at least 21 runs (21 distinct mixes) to estimate 
these coefficients.  In addition to the 21 required runs, 7 additional runs (distinct mixes) were 
included to check the adequacy of the fitted model, and 5 mixes were replicated to provide an 
estimate of repeatability.  The replicates were required to test the statistical significance of the 
fitted coefficients.  Finally, a single mix was replicated during each week of the experiment to 
check statistical control of the fabrication and measurement process.  In all, a total of 36 mixes 
were planned. 
 
Commercially available computer software for experiment design was used to design and 
analyze the experiment.  The program selected 36 points from a list of candidate points that is 
known to include the best points for fitting a quadratic polynomial.  A modified-distance design 
was chosen to ensure that the design selected could estimate the quadratic mixture model while 
spreading points as far away as possible from one another.  
 
Table 6 summarizes the mixture proportions used in the experiment.   The run order was 
randomized to reduce the effects of extraneous variables not explicitly included in the 
experiment. The first three mixes were repeated at the end of the program (runs 37, 38, and 39), 
because an incorrect amount of water was used in batching the mixes. The test results from the 
incorrectly batched mixes were not included in the subsequent analysis.   Of the final 36 mixes, 8 
were replicates (one each from mixes 5, 11, 20, 38, 71 and three from mix 127). 
 
3.4  Specimen Fabrication and Testing 
 
Thirty-nine batches of concrete, each approximately .04 m3 in volume, were prepared over a 
four-week period.   A rotating-drum mixer with a 0.17 m3 capacity was used to mix the concrete. 

 
Component ID Minimum 

volume fraction 

 
Maximum 

volume fraction 
 
 Water 

 
x1 

 
 .16 

 
 .185 

 
 Cement 

 
x2 

 
 .13 

 
 .15 

 
 Silica fume 

 
x3 

 
 .013 

 
 .027 

 
 HRWRA 

 
x4 

 
 .0046 

 
 .0074 

 
 Coarse aggregate 

 
x5 

 
 .40 

 
 .4424 

 
 Fine aggregate 

 
x6 

 
 .25 

 
 .2924 

e  +  xxb  +  ...  +  xxb  +  xb  +  ...  +  xb  =y  655621126611
(10)



 17

 
Table 6.  Mixture proportions for mixture experiment 

 
Design 

ID 
Run Order w/(c+sf)

  

Water 
(kg) 

Cement
(kg) 

Silica 
Fume 
(kg) 

HRWRA
(l) 

Coarse 
Aggregate

(kg) 

Fine 
Aggregate 

(kg)   
 5(r) 

 
7, 22 

 
122.3 

 
312.9 

 
45.4 

 
3.52 

 
867.6 

 
506.3 

 
0.35  

 11(r) 
 

6, 23 
 

141.4 
 

312.9 
 

21.9 
 

3.52 
 

845.3 
 

506.3 
 

0.43  
 13 

 
15 

 
122.3 

 
312.9 

 
21.9 

 
3.52 

 
810.1 

 
592.2 

 
0.37  

 15 
 

2*, 38 
 

126.6 
 

361.1 
 

45.4 
 

5.66 
 

810.1 
 

506.3 
 

0.32  
 16 

 
8 

 
122.3 

 
312.9 

 
21.9 

 
3.52 

 
895.9 

 
506.3 

 
0.37  

 20(r) 
 

13, 34 
 

141.4 
 

312.9 
 

21.9 
 

3.52 
 

810.1 
 

541.8 
 

0.43  
 22 

 
4 

 
141.4 

 
354.8 

 
21.9 

 
3.52 

 
810.1 

 
506.3 

 
0.38  

 28 
 

16 
 

122.3 
 

312.9 
 

45.4 
 

3.52 
 

810.1 
 

563.8 
 

0.35  
 37 

 
30 

 
122.3 

 
337.0 

 
45.4 

 
5.66 

 
810.1 

 
537.9 

 
0.33  

 38(r) 
 

3*, 26, 39 
 

135.0 
 

341.1 
 

45.4 
 

3.52 
 

810.1 
 

506.3 
 

0.36  
 48 

 
28 

 
131.8 

 
312.9 

 
21.9 

 
5.66 

 
810.1 

 
561.2 

 
0.41  

 63 
 

27 
 

131.8 
 

312.9 
 

45.4 
 

5.66 
 

836.6 
 

506.3 
 

0.38  
 65 

 
31 

 
122.3 

 
337.0 

 
45.4 

 
5.66 

 
841.7 

 
506.3 

 
0.33  

 66 
 

25 
 

122.3 
 

312.9 
 

45.4 
 

5.66 
 

836.0 
 

532.2 
 

0.35  
 70 

 
29 

 
122.3 

 
361.1 

 
21.9 

 
4.59 

 
810.1 

 
548.8 

 
0.33  

 71(r) 
 

5, 35 
 

122.3 
 

361.1 
 

21.9 
 

5.66 
 

829.9 
 

526.1 
 

0.33  
 78 

 
11 

 
141.4 

 
312.9 

 
45.4 

 
5.66 

 
810.7 

 
506.9 

 
0.41  

 87 
 

24 
 

122.3 
 

312.9 
 

21.9 
 

3.52 
 

853.0 
 

549.2 
 

0.37  
 89 

 
19 

 
122.3 

 
337.0 

 
21.9 

 
3.52 

 
810.1 

 
571.9 

 
0.35  

 91 
 

9 
 

141.4 
 

312.9 
 

21.9 
 

5.66 
 

824.9 
 

521.1 
 

0.43  
 98 

 
17 

 
122.3 

 
337.0 

 
21.9 

 
3.52 

 
875.7 

 
506.3 

 
0.35  

 101 
 

10 
 

130.8 
 

361.1 
 

21.9 
 

3.52 
 

832.8 
 

506.3 
 

0.35  
 103 

 
14 

 
122.3 

 
361.1 

 
21.9 

 
4.59 

 
852.6 

 
506.3 

 
0.33  

 110 
 

21 
 

130.8 
 

361.1 
 

21.9 
 

3.52 
 

810.1 
 

529.0 
 

0.35  
 116 

 
33 

 
131.8 

 
312.9 

 
45.4 

 
5.66 

 
810.1 

 
532.8 

 
0.38  

 123 
 

36 
 

122.3 
 

337.0 
 

33.6 
 

4.59 
 

834.4 
 

530.6 
 

0.34 
 

 127(c) 
 

1*, 12, 18, 
32, 37 

 
131.5 

 
335.8 

 
21.9 

 
4.59 

 
829.9 

 
526.1 

 
0.38 

 
 163 

 
20 

 
126.6 

 
323.3 

 
27.8 

 
5.12 

 
857.5 

 
513.6 

 
0.37  

Notes: Aggregate masses are in dry condition 
  (r) replicated mix  
  (c) control mix 
 * mix that was repeated due to incorrect batching   
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Each batch included sufficient concrete for two slump tests, two fresh air content (ASTM C231) 
tests, two unit weight tests, and ten 100 mm x 200 mm cylinders.  The cylinders were fabricated 
in accordance with ASTM C192.  To obtain adequate consolidation, cylinders for concretes with 
slumps less than 50 mm were vibrated on a vibrating table; otherwise, the cylinders were rodded.  
The cylinders were covered with plastic and left in the molds for 22 hours, after which they were 
stripped and placed in limewater-filled curing tanks for moist curing at 23 ±2°C.   
 
Compressive strength tests (ASTM C39) were conducted on the cylinders at the ages of 1 day 
and 28 days.  In most cases, three cylinders were tested for each age. A fourth test was 
performed in some cases if one result was significantly lower or higher than the others.  Before 
testing, the cylinder ends were ground parallel to meet the ASTM C39 requirements using an 
end-grinding machine designed for this purpose.  The three remaining cylinders from each batch 
were used for “rapid chloride” testing according to ASTM C1202.   Three 50-mm thick slices 
taken from the middle sections of the concrete cylinders were tested at an age of 42 days. 
 
3.5  Results and Analysis 
 
3.5.1 Measured Responses   
 
The average values for slump, 1-day strength, 28-day strength, and RCT charge passed for each 
batch are shown in table 7, along with the estimated cost per cubic meter of concrete.  The cost 
of each batch was calculated from the mix proportions using approximate costs for each 
component material obtained from a local ready-mix concrete producer.  For each of the four 
responses, a model was fit using least-squares methods, validated (by examining the residuals for 
trends and outliers), and interpreted graphically using contour and trace plots.  The statistical 
analysis is described in detail for 28-day strength.  The analyses for the other properties were 
performed in a similar manner.  ANOVA tables, model statistics, and plots for all responses are 
included in Appendix A.  
 
3.5.2  Model Identification and Validation for 28-Day Strength 
 
In this section, a detailed description of the process of model identification and validation is 
provided for the response 28-day strength.  The models for other responses were identified and 
validated in the same way.  Those models are presented in the next section.   
 
The first step in the analysis is to select a plausible model.  Even though the experiment design 
used permits estimation of a quadratic model, a linear model may provide a better fit to the data.   
ANOVA is used to assess the different models.   
 
ANOVA results for 28-day strength are shown in table 8.  In this table, each row tests whether 
the coefficients of certain model terms are equal to zero.  For example, the row with source 
“Linear” tests whether the coefficients of the linear terms are equal to zero.  A low value (say, 
less than 0.05) of “Prob > F” , also called the p-value, supports the conclusion that the 
coefficients differ from zero and should be included in the model.  For the data in table 7, the 
“Prob > F” is 0.0011; therefore, the linear terms should be included in the model.  The row with 
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Table 7.  Test results and costs (mixture experiment) 
 

Design 
ID Run Slump 

(mm) 
1-Day Str

(MPa) 

28-Day 
Str 

(MPa) 

42-Day 
RCT 

(coulombs) 

Cost 
($/ m3) 

 22  4   67 21.5 48.2  1278 95.18 
 71  5  57 27.0 55.2  862 102.22 
 11  6  102 16.8 48.5  1162 91.32 
 5  7  13 22.4 48.5  387 118.85 
 16  8  35 21.6 53.1  776 92.20 
 91  9  200 16.8 60.4  1027 96.89 
 101  10  22 26.6 53.6  744 96.24 
 78  11  127 19.2 51.7  492 123.56 
 127  12  99 21.5 50.2  842 96.67 
 20  13  118 18.2 50.9  903 91.32 
 103  14  64 27.4 54.6  583 99.42 
 13  15  57 21.8 53.2  684 92.20 
 28  16  29 22.2 53.6  292 118.85 
 98  17  32 25.3 51.9  604 94.41 
 127  18  92 22.3 54.1  847 96.67 
 89  19  38 21.8 54.3  720 94.41 
 163  20  95 22.1 60.8  554 103.80 
 110  21  51 24.7 53.2  792 96.24 
 5  22  25 23.4 54.1  348 118.85 
 11  23  114 16.5 48.0  968 91.32 
 87  24  67 22.9 51.0  700 92.20 
 66  25  76 24.7 59.8  316 124.44 
 38  26  29 23.0 53.2  390 120.85 
 63  27  124 21.7 55.2  302 123.99 
 48  28  171 23.0 58.1  682 97.34 
 70  29  51 27.5 54.5  505 99.42 
 37  30  35 27.3 56.0  245 126.65 
 65  31  32 27.2 51.1  310 126.65 
 127  32  121 22.4 57.2  636 96.67 
 116  33  114 23.9 56.2  356 123.99 
 20  34  127 18.6 51.6  820 91.32 
 71  35  108 28.8 65.3  553 102.22 
 123  36  99 26.6 61.0  340 110.53 
 127  37  102 24.2 54.6  640 96.67 
 15  38  51 28.8 58.1  239 128.68 
 38  39  25 23.6 54.5  332  120.85 
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Table 8.  Sequential model sum of squares for 28-day strength (mixture experiment) 
 

Source Sum of Squares DF Mean Square F Value Prob > F 

 Mean  106212.98  1 106212.98 – – 
 Linear  257.52  5 51.50 5.46 0.0011 
 Quadratic  135.19  15 9.01 0.92 0.5665 
 Residual  147.62  15 9.84 – – 
 Total  106753.31  36 2965.37 – – 

 
 source “Quadratic” tests whether any quadratic coefficients differ from zero.  Since the “Prob 
>F” of 0.5667 exceeds 0.05, the quadratic terms should not be included in the model.   
 
A lack-of-fit test can also be performed using ANOVA.  To do so, the residual sum of squares is 
partitioned into lack-of-fit and pure error (from replicates) components.   The mean squares and 
F statistic are calculated, and the “Prob > F” is determined.  The desired result is an insignificant 
lack-of-fit, indicated by a “Prob > F” greater than 0.05.   For 28-day strength, the lack-of-fit test 
for the linear model gives “Prob > F” equal to 0.7193, which is insignificant (the ANOVA tables 
for the lack-of-fit test for 28-day strength and the other responses are provided in Appendix A). 
 
The resulting linear model for 28-day strength (y1), fit by least squares, is 
 

 
with the residual standard deviation s = 3.07 MPa.  The residual standard deviation s is defined 
as: 
 

 
where the number of observations n = 36 and the number of parameters in the fitted model p = 6. 
A value of s near the repeatability value (replicate standard deviation) is an indication of an 
adequately fitting model.  The repeatability value is 3.39 MPa, which is close to s.  
 
Residual plots are used to validate the fitted model.  The residuals are the deviations of the 
observed data from the fitted values, yi - ŷi.  The residual yi - ŷi. estimates the error terms ei in the 
model.  The ei are assumed to be random and normally distributed with mean zero and constant 
standard deviation.  The residuals, which estimate these errors, should exhibit similar properties. 
Essentially, an adequate model should capture all information in the data leaving structureless, 
random residuals.  If structure remains in the residuals, residual plots often will suggest how to 
modify the model to remove the structure.  In this study, plots of residuals versus run sequence 
and a plot of the control mix results revealed a linear trend in the data for each response.  
However, because the run sequence was randomized, this trend had little impact on the fitted 
models.  
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3.5.3   Models for Other Responses 
 
Using the same procedure described above for 28-day strength, the following models were fit to 
slump (y2), 1-day strength (y3), and 42-day charge passed (y4): 
 

 
Linear models were adequate for all responses except 1-day strength, for which the fitted model 
includes 4 quadratic terms that were found to be significant.  A natural logarithm transform was 
used to model 42-day charge passed because residual plots showed that the standard deviation of 
the data for charge passed was proportional to the mean. 
 
 
3.6  Optimization 
 
3.6.1  Graphical Interpretation 
 
Once a valid model is identified, it can be interpreted graphically using response trace plots and 
contour plots.  A response trace plot is shown in figure 6.  This figure consists of six overlaid 
plots, one for each component.  For a given component, the fitted value of the response is plotted 
as the component is varied from its low to high setting in the constrained region, while the other 
components are held in the same relative ratio as a specified reference mixture, here the centroid.  
The plot shows the “effect” of changing each component on 28-day strength.  As expected, 
increasing the amount of water decreased strength, while increasing the amount of cement 
increased strength.  HRWRA had the largest effect with higher amounts of HRWRA yielding 
higher strength.  This may be due to the improved dispersion of the cement and silica fume 
caused by higher amounts of HRWRA.  Surprisingly, an increase in silica fume appears to 
reduce strength.  However, this apparent reduction may not be significant when compared to the 
underlying experimental error. 
 
Contour plots are used to identify conditions that give maximum (or minimum) response.  
Because contour plots can only show three components at a time (the others components are set 
at fixed conditions), several must be examined.   Figure 7 is a contour plot of 28-day strength for 
water, cement, and HRWRA, with the other components fixed at their centroid values.  The plot 
indicates that strength increases rapidly by increasing HRWRA, confirming the result from the  
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response trace plot.  Therefore, in subsequent contour plots, HRWRA will be set at its high 
value.  
 
Figure 8 shows a contour plot of 28-day strength in water, cement, and silica fume, and figure 9 
shows a contour plot in water, coarse aggregate, and fine aggregate.  In each case, HRWRA is 
fixed at its high value, and the other components are fixed at the centroid settings.  These plots 
show that strength increases for low water, high cement, low silica fume, low coarse aggregate, 
and high fine aggregate.   
 
The best overall settings for 28-day strength can be found using the contour plot in figure 10, 
which shows 28-day strength in silica fume, coarse aggregate, and fine aggregate at the best 
settings of water, cement, and HRWRA.  The best settings (expressed as volume fractions) are 
water = 0.160, cement = 0.150, silica fume = 0.013, HRWRA = 0.0074, coarse aggregate = 
0.400, and fine aggregate = 0.270, with a predicted strength of 59.53 MPa.      
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Figure 6.  Response trace plot for 28-day strength (mixture experiment) 
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Figure 7.  Contour plot for 28-day strength in water, cement, and HRWRA 
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Figure 8.  Contour plot for 28-day strength in water, cement, and silica fume 
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Figure 10.  Contour plot for 28-day strength in silica fume, coarse aggregate, and 
fine aggregate 

Figure 9.  Contour plot for 28-day strength in water, coarse aggregate, 
and fine aggregate 
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3.6.2  Numerical Optimization 
 
The optimum concrete mix is defined here as that mix which minimizes cost while meeting  
specified performance criteria.  Numerical optimization using desirability functions [10] can be 
used to find the optimum mixture proportions in this situation.  A desirability function must be 
defined for each response (property).  The desirability function takes on values between 0 and 1, 
and may be defined in several ways.  Figure 11 shows the desirability functions defined for the 
responses in this experiment.   Minimum and maximum specifications are used for strength and 
RCT, resulting in desirability functions with values of 1 above the minimum or below the 
maximum, and 0 otherwise.  For example, for 1-day strength the desirability value is 0 below 
22.06 MPa and 1 above 22.06 MPa.  At 34.48 MPa, well beyond the maximum value observed in 
the data, the desirability becomes 0.  Desirabilities for 28-day strength and 42-day RCT are 
defined similarly. For slump, a range of 50 to 100 mm was specified, but the midpoint of this 
range, 75 mm was selected as the most desirable value (the target value).  Therefore, a 
desirability of 1 is given to the target value of 75 mm, with a linear decrease in desirability to a 
value of zero at the lower and upper specification limits (see figure 11).  Since cost is to be 
minimized, the desirability function for cost decreases linearly over the range of costs observed 
in the data, as shown in figure 11.   

 
The individual desirabilities can be expressed mathematically in terms of the predicted response 
values (see equation 9, page 14), which can be calculated for each mixture in the experiment.  In 
this study, the overall desirability D was defined as the geometric mean of the individual 
desirability functions di over the feasible region of mixtures [10]: 

 
The optimal mix is the one with a maximum value of D, which may be determined in several 
ways.  The simplest (but crudest) approach is to select the mixture with the largest value of D 
from the design points in the experiment.  Another approach is to consider D as a response and 
fit a model to it (as one would fit a model to 28-day strength).  A third approach is to use 

Figure 11.  Desirability functions for responses in mixture experiment 
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numerical search algorithms to find the maximum value of D [12].  The third approach was used 
here. 
 
Based on the experimental results, the mix which maximizes D, expressed in volume fractions, is 
water = 0.160, cement = 0.130, silica fume = 0.013, HRWRA = 0.0049, coarse aggregate = 
0.401, and fine aggregate = 0.290, at a cost of $93.01 per m3.   The overall desirability value for 
this mix is 0.964, and the predicted response values are slump = 75 mm, 1-day strength = 
22.07 MPa, 28-day strength = 54.72 MPa, and 42-day RCT value = 631 coulombs. 
 
3.6.3  Accounting for Uncertainty 
 
If the fitted functions for each property were known without error, the analysis would be 
complete.  However, there is uncertainty in the fitted functions, because they are estimated from 
a sample of data.  For example, at the current mix the predicted 1-day target strength is 22.07 
±1.01 MPa.  The uncertainty provided is for a 95 percent confidence interval, i.e., we are 95 
percent confident that the interval (21.06, 23.08) contains the true 1-day target strength for this 
mix.  If this mix is used, it is quite possible that actual 1-day strength results would fall below the 
minimum acceptable value of 22.06 MPa.  Therefore, each specification must be modified to 
account for uncertainties in the fitted functions.  The uncertainties in the properties of the current 
best mix can be used to modify the constraints (performance criteria) and identify a revised 
optimal mix based on these new constraints.  The revised mix must then be checked to see that 
the original specifications are met.   
 
The predicted values and 95 percent uncertainties for the remaining responses at the current best 
mix are slump = 75 ±17 mm, 28-day strength = 54.72 ±3.25 MPa, and ln(42-day RCT) = 6.448 
±0.1621.  The modified constraints on the responses which take into account the uncertainties are 
67 mm < slump < 83 mm, 1-day target strength > 23.07 MPa, 28-day target strength > 
54.27 MPa, and ln(42-day RCT) < 6.389 (42-day RCT < 595 coulombs)2.  Repeating the 
numerical optimization, the best mix for this new set of constraints (expressed as volume 
fractions) is water = 0.160, cement = 0.133, silica fume = 0.014, HRWRA = 0.0054, coarse 
aggregate = 0.409, and fine aggregate = 0.2786 at a cost of $96.35.  The predicted values and 95 
percent uncertainties for this mix are slump = 76 ±15 mm, 1-day strength = 23.05 ±0.69 MPa, 
28-day strength = 55.20 ±2.31 MPa, and ln(42-day RCT) = 6.404 ±0.114 (corresponding to a 
range of 539 to 678 coulombs).  For this mix, the 95 percent confidence intervals for all 
responses meet the original specifications.  Accounting for uncertainty increased the cost of the 
optimal mix by about 3 percent ($93.01 to $96.35).  The value of optimization can be seen by 
comparing the cost of the optimal mix ($96.35) with the range of costs for all mixtures in the 
experiment ($91.32 to $128.68 per m3).    

                                                 
1The predicted value and uncertainty for ln(42-day RCT) are provided because the ln transform was used in the 
model for RCT.  The actual 95% confidence interval for 42-day RCT ranges from 537 to 742 coulombs with a 
predicted value of 631 coulombs. 
 
2The modified constraints are calculated by adding the uncertainty to the original lower bound constraint, or 
subtracting the uncertainty from the original upper bound.  Thus, for slump, the new lower bound is 50 + 17 = 
67 mm, and the new upper bound is 100 – 17 = 83 mm.  For 1-day strength, which only has a lower bound, the new 
constraint is 22.06 + 1.01 = 23.07 MPa 
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CHAPTER 4 
Laboratory Experiment Using Factorial Approach 

 
4.1  Introduction 
 
This chapter describes the application of factorial experiment design to the problem of concrete 
mixture optimization.  In a mixture, the total amount (mass or volume) of the product is fixed, 
and the settings of each of the q components are proportions.  Because the total amount is 
constrained to sum to one, the component variables are not independent.   However, the q 
components can be reduced to q-1 mathematically independent variables using the ratio of two 
components as an independent variable [8].  In the case of concrete, w/c is a natural choice for 
this ratio variable.  If this strategy is adopted, a factorial approach may be applied. 
 
4.2  Selection of Materials, Proportions, and Constraints 
 
The materials used in this experiment were identical to those used in the mixture experiment 
(chapter 3):  Type I cement, tap water, #57 crushed limestone, natural sand, silica fume (slurry), 
and naphthalene-sulfonate-based HRWRA.   The six components were reduced to five 
independent variables:  x1 = w/c (by mass), x2 = fine aggregate volume fraction, x3 = coarse 
aggregate volume fraction, x4  = HRWRA volume fraction, x5 = silica fume volume fraction.    
 
The volume fraction ranges for coarse aggregate, fine aggregate, HRWRA, and silica fume were 
the same as used in the mixture experiment.  The range of w/c (by volume) was calculated from 
the volume fraction limits of the mixture experiment.  The lower limit of w/c was 0.16 ÷ 0.15 = 
1.067, and the upper limit was 0.185 ÷ 0.13 = 1.423.  These limits were equated to coded limits 
of  –1.5 to +1.5 to give the most similar experimental region to that of the mixture experiment.  
Table 9 shows the settings of each variable corresponding to coded values of  –1 and +1. 
 

Table 9.  Variable settings corresponding to coded values (factorial experiment) 
 

For the aggregates, HRWRA, and silica fume, volume fractions were converted to batch masses 
(batch volume for HRWRA) based on total batch size and material properties.  The batch masses 
of water and cement were calculated by constraining the sum of volume fractions of all six 
components to sum to one.  This gives two equations in two unknowns (the other equation being 

   
Variable 

   
ID Low Setting 

(coded value = -1) 
High Setting 

(coded value = 1) 

w/c ratio x1 
1.1263 

(≅ 0.36 by mass) 
1.3637 

(≅  0.43 by mass) 

Fine aggregate 
 

x2 0.2571 0.2853 

Coarse aggregate 
 

x3 0.4071 0.4353 

HRWRA 
 

x4 0.0051 0.0069 

Silica fume x5 0.0153 0.0247 
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the w/c expressed volumetrically) that can be solved for volume fraction of water and volume 
fraction of cement.  Entrapped air was ignored in these calculations, although in practice it will 
affect yield calculations and an overall adjustment to the mixture proportions may be necessary 
for proper yield. 
 
The performance criteria for the mix were as follows:  slump between 50 and 100 mm, 1-day 
strength greater than 22 MPa, 28-day strength greater than 51 MPa, and charge passed in the 
RCT less than 700 coulombs.    These are the same performance criteria used for the mixture 
experiment, except that the 1-day and 28-day strengths were rounded to 22 and 51 MPa (from 
22.06 and 51.02 MPa used in the mixture experiment)1. 
 
4.3  Experiment Design Details 
 
A central composite design (see chapter 2) was chosen for this experiment.  The actual values for 
each variable (expressed in terms of volume fraction) corresponding to the coded levels ±1 are 
shown in table 10.  A commercially available software package for experiment design and 
analysis was used to plan the experiment.  Thirty-one batches were planned in two nearly 
orthogonal blocks.  The first block consisted of a half-fraction of 16 factorial points2 and 3 center 
points, and the second block consisted of 10 axial points and 2 center points.  A total of five 
center points was chosen to allow use of the center point mixes as statistical control mixes to 
assess week-to-week variation, if any, over the five weeks of mixing (in addition to the use of 
center points as replicates to estimate pure error).  The run order within each block was 
randomized to reduce the effect of uncontrolled variables.  Center point runs were placed first 
and last (based on the total number of runs) with the remainder equally spaced, resulting in three 
center points in the factorial block and two center points in the axial block.  The mixture 
proportions for each batch are shown in table 10.   
 
One batch (run 3) was repeated at the end of the experiment because of suspiciously low strength 
values.  A center point batch was included with the repeat to check statistical control.  The 
results of the repeated batch were used in subsequent analyses. 
 
4.4  Specimen Fabrication and Testing 
 
The materials used in this study included a portland cement conforming to ASTM specification 
C150-94 Type I/II, a #57 crushed limestone coarse aggregate meeting grading requirements of 
AASHTO M43, a natural sand fine aggregate, silica fume (in slurry form), a naphthalene-
sulfonate based HRWRA (ASTM C494-98 Type F/G), and municipal tap water.  Thirty-one 
batches of concrete, each approximately 0.04 m3 in volume, were prepared over a 6-week period.  
Each batch was prepared in accordance with mixing procedures set forth in ASTM C192-95.   
 

Table 10.  Mixture proportions (per m3) for factorial experiment 

                                                 
1The mixture experiment was originally performed using English units with 1-day strength requirement of 3200 psi 
and 28-day strength requirement of 7400 psi.   
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Batch 
(run) 

  
w/c 

 

  
Fine Agg 

(kg) 

  
Coarse Agg 

(kg) 
HRWRA 

(L) 
Silica Fume 

(kg) 

  
Cement 

(kg) 

  
Water 
(kg)  

 1 0.36 
  

755.7 
  

1098.7 
  

6.90 
  

54.3 
  

408.7 
  

146.1 
 2 0.36 

  
755.7 

  
1174.8 

  
5.10 

  
54.3 

  
369.6 

  
132.2 

 3 0.40 
  

718.4 
  

1136.8 
  

6.00 
  

44.0 
  

394.9 
  

156.1 
 4 0.40 

  
718.4 

  
1136.8 

  
6.00 

  
44.0 

  
394.9 

  
156.1 

 5 0.43 
  

681.0 
  

1098.7 
  

6.90 
  

54.3 
  

405.2 
  

175.4 
 6 0.43 

  
755.7 

  
1098.7 

  
5.10 

  
54.3 

  
370.1 

  
160.2 

 7 0.43 
  

755.7 
  

1098.7 
  

6.90 
  

33.6 
  

380.2 
  

164.6 
 8 0.43 

  
681.0 

  
1098.7 

  
5.10 

  
33.6 

  
420.1 

  
181.9 

 9 0.36 
  

681.0 
  

1098.7 
  

5.10 
  

54.3 
  

453.1 
  

162.0 
 10 0.40 

  
718.4 

  
1136.8 

  
6.00 

  
44.0 

  
394.9 

  
156.1 

 11 0.43 
  

755.7 
  

1174.8 
  

5.10 
  

33.6 
  

345.0 
  

149.4 
 12 0.36 

  
681.0 

  
1098.7 

  
6.90 

  
33.6 

  
464.4 

  
166.0 

 13 0.43 
  

681.0 
  

1174.8 
  

5.10 
  

54.3 
  

370.1 
  

160.2 
 14 0.36 

  
755.7 

  
1098.7 

  
5.10 

  
33.6 

  
425.3 

  
152.1 

 15 0.43 
  

681.0 
  

1174.8 
  

6.90 
  

33.6 
  

380.2 
  

164.6 
 16 0.36 

  
755.7 

  
1174.8 

  
6.90 

  
33.6 

  
380.9 

  
136.2 

 17 0.36 
  

681.0 
  

1174.8 
  

6.90 
  

54.3 
  

408.7 
  

146.1 
 18 0.36 

  
681.0 

  
1174.8 

  
5.10 

  
33.6 

  
425.3 

  
152.1 

 19 0.43 
  

755.7 
  

1174.8 
  

6.90 
  

54.3 
  

330.1 
  

142.9 
 20 0.40 

  
718.4 

  
1212.9 

  
6.00 

  
44.0 

  
355.4 

  
140.5 

 21 0.47 
  

718.4 
  

1136.8 
  

6.00 
  

44.0 
  

357.2 
  

168.1 
 22 0.40 

  
793.1 

  
1136.8 

  
6.00 

  
44.0 

  
355.4 

  
140.5 

 23 0.40 
  

718.4 
  

1136.8 
  

7.80 
  

44.0 
  

392.4 
  

155.1 
 24 0.40 

  
718.4 

  
1136.8 

  
6.00 

  
44.0 

  
394.9 

  
156.1 

 25 0.32 
  

718.4 
  

1136.8 
  

6.00 
  

44.0 
  

441.7 
  

141.3 
 26 0.40 

  
718.4 

  
1136.8 

  
4.20 

  
44.0 

  
397.5 

  
157.1 

 27 0.40 
  

718.4 
  

1136.8 
  

6.00 
  

23.3 
  

408.1 
  

161.3 
 28 0.40 

  
718.4 

  
1060.6 

  
6.00 

  
44.0 

  
434.5 

  
171.7 

 29 0.40 
  

718.4 
  

1136.8 
  

6.00 
  

44.0 
  

394.9 
  

156.1 
 30 0.40 

  
718.4 

  
1136.8 

  
6.00 

  
64.7 

  
381.8 

  
150.9 

 31 0.40 
  

643.7 
  

1136.8 
  

6.00 
  

44.0 
  

434.5 
  

171.7 
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Precautions were taken to compensate for mortar retained by the mixer, by “buttering” the mixer 
prior to preparing each batch. The concrete was mixed using a rotating-drum machine mixer with 
a 0.17 m3 mixing capacity.  
 
Each batch included sufficient concrete for 2 slump tests, 1 unit weight and air content test 
(ASTM C138 and ASTM C231), and 10 100 mm x 200 mm cylinders.  All cylinders were 
fabricated in accordance with ASTM C192, except that external vibration (a vibrating table) was 
utilized for consolidation in lieu of rodding when slump was less than 50 mm.  Immediately 
following casting, the cylinders were covered with plastic and left in the molds at room 
temperature for 24 ± 8 hours, after which they were removed from the molds and moist cured at 
23 ± 2 °C until testing.  Specimens were tested for compressive strength in accordance with 
ASTM C39 at the ages of 1 and 28 days.  In most cases, three cylinders were tested at each age, 
however, where anomalies in either specimen condition or test results were evident, a fourth or 
fifth specimen may have been tested.  Prior to compression testing, the ends of each cylinder 
were ground plane and parallel in accordance with ASTM C39 tolerances.  Three of the 
remaining cylinders from each batch were used for the RCT testing.  Testing was performed  
according to ASTM C1202, except that the 50 mm test specimens were cut from the middle of 
each cylinder instead of from the top.  All RCTs were performed at an age of 42 days from 
casting. 
 
4.5 Results and Analysis 
 
4.5.1  Responses 
 
The average values for slump, 1-day strength, 28-day strength, and charge passed (RCT) for each 
batch are shown in table 11, along with the estimated cost (dollars per cubic meter) of the 
concrete mixture.  The costs were calculated from the mixture proportions for each batch, based 
on approximate component costs obtained from a local (mid-Atlantic) ready-mix concrete 
producer.  Each response was analyzed individually by examining summary plots of the data 
(scatterplots and means plots), fitting a model using ANOVA and least-squares methods, 
validating the model by examining the residuals for trends and outliers, and interpreting the 
model graphically.  A detailed discussion of the analysis procedure for 1-day strength is 
presented in the following 2 sections.  The analyses for the other responses were performed in a 
similar manner. The models for the other responses are reported in section 4.5.4. 
 
4.5.2  Exploratory Data Analysis for 1-Day Strength 
 
One advantage of the factorial approach is the ability to perform an initial assessment of the data 
using graphical techniques such as raw data plots, means plots, scatterplots, and cube plots. 
These techniques are illustrated in figures 12-15 (for complete sets of plots for each response, see 
appendix B).  A raw data plot of 1-day strength is shown in figure 12.  This plot illustrates the 
variation in the response (1-day strength) over time, for each run.  The control batch results,  
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Table 11.  Test results and costs (factorial experiment) 
   

Batch 
(run) 

  
Slump 
(mm) 

  
1-Day 
(MPa) 

  
28-Day 
(MPa) 

  
RCT 
(coul) 

  
Cost 

($/m3) 
 1  73 16.3 58.5 286 119.77 
 2  44 22.6 59.8 209 113.93 
 3  13 20.8 52.6 160 107.71 
 4  102 16.5 60.4 296 107.71 
 5  57 16.4 55.0 257  118.49 
 6  143 13.6 58.6 541  112.96 
 7  67 12.9 50.4 502  99.21 
 8  13 20.3 52.4 234  97.83 
 9  86 18.4 63.0 305  118.75 
 10  102 15.2 54.8 445  107.71 
 11  140 20.7 62.3 412  93.70 
 12  32 17.1 56.2 252  105.09 
 13  13 24.2 54.2 341  112.98 
 14  76 17.2 50.3 534  99.24 
 15  13 21.3 59.2 278  99.23 
 16  13 20.9 60.5 206  100.27 
 17  57 18.8 56.6 315  119.78 
 18  29 21.9 58.3 355  99.26 
 19  35 16.1 62.9 230  114.36 
 20  38 19.0 58.6 211  105.49 
 21  117 14.5 53.9 458  104.63 
 22  67 17.8 62.4 294  105.48 
 23  64 19.9 67.5 268  111.16 
 24  16 26.4 58.5 189  107.71 
 25  79 19.0 57.0 257  111.52 
 26  64 19.1 50.9 273  104.27 
 27  152 16.8 54.4 705  90.56 
 28  95 20.2 53.3 307 109.93 
 29  35 18.4 55.2 162 107.71 
 30  102 17.4 50.4 332 124.87 
 31  76 18.4 55.2 277 109.95 
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shown as hollow squares, give an indication of consistency over time.  In this case, the control 
results are all about equal, indicating no time-related effects.  Raw data plots are also helpful in 
identifying suspect data values, which may result from (for example) errors in data recording or 
data entry, equipment malfunction, or poor specimen fabrication.    
 
Figure 13 is a scatterplot showing the effects of varying one factor (w/c) on the 1-day strength.  
In this case, as expected, the 1-day strength decreases with increasing w/c.    

Figure 13.  Scatterplot showing effect of w/c on 1-day strength (factorial experiment) 
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Figure 12.  Raw data plot for 1-day strength (factorial experiment) 
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Figure 14 shows a means plot for 1-day strength.  The means plot allows comparison of the 
effects of each factor.  In this experiment, 1-day strength was clearly influenced by w/c.  Other 
factors appear to have had little effect. 

 
Finally, figure 15 shows a cube plot of 1-day strength with respect to three factors (w/c, fine 
aggregate, and coarse aggregate).  A cube plot is a convenient means of assessing quantitative 
effects of three factors on a response. 

 

Figure 14.  Means plot for 1-day strength (factorial experiment) 

Figure 15.  Example of cube plot for factorial points  
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4.5.3  Model Fitting and Validation for 1-Day Strength 
 
After assessing the data graphically, the second step in analysis is to estimate an appropriate 
model for each response. As with the mixture approach, ANOVA and least-squares regression 
techniques are used.  The first step is to use ANOVA to determine the appropriate type of model 
(e.g., linear, quadratic).  An ANOVA table for sequential model sum of squares, shown in table 
12, suggests that both linear and quadratic terms are significant.  A lack-of-fit ANOVA table 
(table 13) suggests that a quadratic model has insignificant lack-of-fit (“Prob > F” = 0.8339).   
 

Table 12.  Sequential model sum of squares for 1-day strength (factorial experiment) 
 

Source Sum of Squares DF Mean Square F Value Prob > F 

 Mean 10780.54 1 10780.54 – – 
 Linear 215.97 5 43.19 22.15 < 0.0001 
 2FI 27.35 10 2.73 1.92 0.1236 
 Quadratic 13.60 5 2.72 3.48 0.0441 
 Cubic (aliased) 1.86 5 0.37 0.31 0.8865 
 Residual 5.95 5 1.19 – – 
 Total 11045.26 31 356.30 – – 

 
 

Table 13.  Lack-of-fit test for 1-day strength (factorial experiment) 
 

Source Sum of Squares DF Mean Square F Value Prob > F 

 Linear 43.98 21 2.09 1.75 0.3129 
 2FI 16.63 11 1.51 1.27 0.4444 
 Quadratic 3.03 6 0.51 0.42 0.8339 
 Cubic (aliased) 1.18 1 1.18 0.98 0.3772 
 Pure Error 4.78 4 1.19   

 
When a central composite design is used, the full quadratic model can be estimated, but often 
some of the terms are not significant.  The following procedure3 was used to identify an 
appropriate reduced quadratic model: 
 
1) Fit the full quadratic model and for each coefficient, calculate the t-statistic for the null 

hypothesis that the coefficient is equal to zero.   
 
2) Perform the regression again with a partial model containing only those terms that are 

statistically significant (i.e., those terms that had a t-statistic greater than that for the chosen 
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significance level, in this case 0.05).   Calculate the t-statistics again and drop any terms 
which are not significant. 

 
3)  Repeat step 2 until the partial model contains only significant terms.   
 
4) Add first-order terms required to make the model hierarchical.  Hierarchical polynomial 

models make sense under linear transformations such as changing units of temperature from 
Celsius to Fahrenheit [11].   All second-order terms that appear in the model must have 
corresponding first-order terms included in order to make the model hierarchical. 

 
The ANOVA for the final hierarchical model (with the hierarchical terms shaded) is shown in 
table 14.  
  

Table 14.  ANOVA for 1-day strength model (factorial experiment) 
 

Source Sum of Squares DF Mean Square F Value Prob > F 

Model 240.87 8 30.11 27.76 < 0.0001 
 A 213.26 1 213.26 196.66 < 0.0001 
 B 0.48 1 0.48 0.45 0.5113 
 C 0.04 1 0.04 0.04 0.8433 
 E 2.06 1 2.06 1.90 0.1819 

A2 6.20 1 6.20 5.72 0.0257 
AC 5.15 1 5.15 4.75 0.0404 
AE 7.16 1 7.16 6.60 0.0175 
BC 6.51 1 6.51 6.00 0.0227 

Residual 23.86 22 1.08 – – 
 Lack of  fit 19.08 18 1.06 0.89 0.6248 
 Pure error 4.78 4 1.19 – – 
Corr. total 264.72 30 – – – 

 
For one-day strength, y2, the fitted model was: 
 

 
The adequacy of each fitted model was validated quantitatively by calculating statistical 
measures such as residual standard deviation and PRESS, and graphically by examining residual 
plots.   The residual standard deviation, s, for this model is 0.99 MPa.  A value of s near the 
repeatibility value (replicate standard deviation calculated from center points) is an indication of 
an adequately fitting model.  For this experiment, the repeatibility value is 1.04 MPa, which is 
close to s.   The PRESS statistic (see page 12) is a measure of how well the model fits each point 
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in the design (the smaller the PRESS statistic, the better the fit).  PRESS and some other 
quantitative indicators of model adequacy are shown in table 15. 

 
Table 15.  Summary statistics for 1-day strength model (factorial experiment) 

 
Std. dev.   1.04 
Mean  18.65 
C.V.  5.58 
PRESS 45.16 
R-squared 0.9099
Adjusted R-squared 0.8771
Predicted R-squared 0.8294

 
The residuals are the deviations of the observed data values from the fitted values, xI , and are 
estimates of the error terms ei in the model.  The ei are assumed to be random and normally 
distributed with mean equal to zero and constant standard deviation.  A normal probability plot 
of the residuals (shown in figure 16) is used to assess the validity of this assumption.  If the error 
terms follow a normal distribution, they will fall on a straight line on the normal probability plot. 
Because they are estimates of the error terms, the residuals should exhibit similar properties.   
 
If the assumptions are valid, plots of the residuals versus run sequence, predicted values, and 
other independent variables should be random and structureless.  If structure remains in the 
residuals, residual plots may suggest modifications to the model that will remove the structure.   

Figure 16.  Example of a normal probability plot for model validation 
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Figure 17 shows a plot of residuals versus run sequence for 1-day strength.  The plot shows no 
significant structure to the residuals.   
 

 
4.5.4  Models for Other Responses 
 
Using the same procedure described above for 1-day strength, the following models were fit to 
slump (x1), 28-day strength (x3), and 42-day RCT (x4) results: 

 
 
4.6  Optimization 
 
The objective of optimization may be to find the “best settings” (settings which maximize or 
minimize a particular response or responses) or to meet a set of specifications.  In either case, 
optimization usually involves considering several responses simultaneously.  The same 
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Figure 17.  Example of a residual plot (residuals vs. run) for model validation
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optimization strategy that was used in the classical mixture approach can be used for a factorial 
approach (see chapter 3).   
 
4.6.1  Graphical Optimization 
 
For three or fewer responses, contour plots can be useful in identifying optimum settings. 
Individual contour plots can be used to identify best settings for each response.  Figure 18 shows 
a contour plot of 28-day strength as a function of w/c and silica fume with HRWRA at its middle 
setting.  Figure 19 shows the same plot but with HRWRA at the high setting.  These plots 
illustrate that the highest strength is reached at the high level of HRWRA coupled with the low 
levels of w/c and silica fume. 
 
Contour plots can also be overlaid with the constraints for each response defining a subarea of 
settings that meet the response criteria.  For example, figure 20 shows all settings meeting the 
following criteria:  RCT < 700 and slump equal 50 to 100 mm.  The white area in the plot 
indicates the settings meeting the criteria.  The gray area on the plot shows the region of settings 
that do not meet the constraints simultaneously.  Figure 21 shows the same plot with the added 
constraint that 28-day strength > 51 MPa.  As constraints are added, the feasible region usually 
gets smaller.  In some situations, no settings will meet all of the criteria. 

Figure 18.  28-day strength in w/c and silica fume (HRWRA at middle setting) 
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Figure 19.  28-day strength in w/c and silica fume (HRWRA at high setting)
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Figure 20.  Overlay plot for RCT < 700 and slump = 50–100 mm 
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4.6.2  Numerical Optimization 
 
For more than three responses considered simultaneously, numerical optimization is often more 
practical than graphical optimization.  The numerical optimization technique using desirability 
functions described in chapter 2 and used in the classical mixture experiment (chapter 3) can also 
be applied to the factorial experiment.  Desirability functions for this experiment are similar to 
those used in the mixture experiment, except that in some cases (e.g, cost) the endpoint values 
are different.  The desirability functions are shown in figure 22. 
 

Figure 22.  Desirability functions for factorial experiment 

Figure 21.  Overlay plot for RCT < 700,  slump = 50–100 mm, and 28-day strength > 51 MPa
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Numerical optimization gave the following best settings for this concrete mixture: w/c = 0.367 
(by mass), fine aggregate volume fraction = 0.285, coarse aggregate volume fraction = 0.408, 
HRWRA volume fraction = 0.0061, and silica fume volume fraction = 0.0153.  The predicted 
response values and associated uncertainties (at a 95 percent confidence level) are slump = 74 
±19 mm, 1-day strength = 22.08 ±1.17 MPa, 28-day strength = 58.65 ±2.32 MPa, and RCT = 
378 ±30 coulombs, at a cost of $100.68 per m3.   
 
4.6.3 Accounting for Uncertainty 
 
As described for the mixture approach, the fitted functions (models) and values predicted from 
them have uncertainty associated with them because they are estimated from data.  For example, 
for the optimal mixture proportions shown above the predicted 1-day strength is 22.08 ±1.17 
MPa.  If these proportions are used, we can be 95 percent confident that the true 1-day strength 
will lie between 20.91 and 23.25 MPa.  But because the specified 1-day strength is 22 MPa, it is 
quite possible that the true 1-day strength will fall below the specified value.  Therefore, the 
constraints must be modified to account for the uncertainty in the fitted functions.  The 
uncertainties for the optimal mixture can be used to define modified constraints, and a new set of 
optimal mixture proportions can be identified for these new constraints.  The predicted responses 
based on the new optimal proportions must be checked to see that the original specifications are 
met. 
 
The modified constraints are slump between 69 and 81 mm, 1-day strength greater than 23.17 
MPa, 28-day strength greater than 53.32 MPa, and RCT less than 670 coulombs.  The best 
mixture for this new set of constraints is w/c = 0.358 (by mass), fine aggregate volume fraction = 
0.282, coarse aggregate volume fraction = 0.4071, HRWRA volume fraction = 0.0062, and silica 
fume volume fraction = 0.0153. The predicted response values and associated uncertainties (at a 
95 percent confidence level) are slump = 74 ±20 mm, 1-day strength = 23.17 ±1.26 MPa, 28-day 
strength = 59.62 ±2.68 MPa, and RCT = 363 ±32 coulombs, at a cost of $101.65 per m3.  All but 
one of the lower or upper bound values for the responses now meet the original specifications.  
The exception is the lower bound for 1-day strength, which is 21.91 MPa (compared with the 
specified value of 22 MPa).  In practice, this small difference is probably insignificant; however, 
it may be worthwhile to investigate ways to increase 1-day strength for this mix.  A slightly 
lower w/c (0.35, for example) would probably be a sufficient remedy.    The predictive models 
estimated from the experiment can be used to predict responses for settings anywhere within the 
experimental design space (i.e., anywhere within the defined variable ranges).  However, 
extrapolation beyond the design space is not recommended.   
 
In the factorial experiment, accounting for uncertainty increased the cost of the optimal mix only 
slightly (from $100.68 to $101.65).  As with the mixture experiment, the value of optimization is 
evident when the cost of the optimal mix ($101.65) is compared with the range of mixture costs 
in the experiment ($90.56 to $124.87). 
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CHAPTER 5 
Development of Interactive Web Site (COST Program)  

 
5.1 Introduction 
 
The goal of the second phase of this research project was to develop an interactive Web site that 
can be used to optimize concrete mixture proportions using the response surface approach.  The 
purpose of this Web site is to introduce this approach to the concrete community and to give 
concrete practitioners an opportunity to apply the approach to their own mixture development.  
Because the response surface approach was likely to be unfamiliar to many practicing engineers 
and producers, the aim was to make it as user-friendly as possible (within budget constraints) and 
to provide as much guidance as possible in interpreting results.     
 
5.2 Selection of Approach 
 
A systematic approach is critical when optimizing a HPC mixture subject to several performance 
criteria.  The laboratory experiments described in chapters 3 and 4 investigated two such 
approaches: the classical mixture experiment design and the factorial/CCD experiment design.   
Using either of these approaches, a trial batch and testing program can thoroughly examine the 
concrete properties of interest over the selected range of component proportions, and models 
estimated from the data can be used to identify optimal mixes.   
 
Using a statistical approach to mixture optimization requires a significant investment in trial 
batches and testing.  In both the mixture approach and factorial approach, 31 different trial 
batches were required for a 6-component mixture.  The large number of runs was required to fit a 
full quadratic model for each response and to provide control runs and replicate runs for 
estimating repeatability.     
 
If the responses are represented adequately by linear models (as opposed to quadratic), the 
number of trial batches can be reduced by as much as 50 percent.  In the mixture experiment 
(chapter 3), linear models were adequate for all but one response (1-day strength).  If linear 
model were assumed, the number of experimental runs could have been halved.  However, since 
materials and conditions vary by location, the quadratic model is a better initial assumption.   
 
The factorial approach has an advantage over the mixture approach in that it can be performed 
sequentially (see page 10 of this report).  In a sequential approach, the CCD experiment is 
divided into two parts.   The adequacy of linear models for the responses can be assessed after 
the initial portion of the experiment (for a 6-component mixture, the first part would consist of 
19 trial batches).  If linear response models are sufficient over the range of material proportions 
being considered, the second part of the experiment would not be necessary.  If not, the second 
part of the experiment can be run, and quadratic models can be fit to the data. 
 
In both approaches, the number of runs also can be reduced by holding certain variables 
constant. Reducing the number of components from 6 to 4 would reduce the number of runs in a 
factorial/CCD experiment from 31 to 19.  For example, if a user is interested primarily in a 
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property that is influenced by cement paste characteristics, he might choose to vary only the 
paste component proportions while holding aggregate constant.    
 
Based on the experimental results described in chapters 3 and 4, the two approaches, mixture and 
factorial, were evaluated to select the best approach for an interactive Web site. Technical 
suitability and practical considerations (e.g., ease of understanding, ease of use) were considered 
in deciding which method to use for the Web site.  While both methods were considered 
technically suitable, the factorial approach was considered to be more practical.  The advantage 
of sequential experimentation, which could reduce the number of required trial batches, favored 
the factorial approach.  Furthermore, materials engineers are more likely to have encountered 
factorial experiments than mixture experiments, and the factorial approach is more 
straightforward and easier to use, understand, analyze, and interpret.   Finally, the statistical 
software to be used for the Web site (DATAPLOT) was better suited for the factorial approach.   
 
5.3 Considerations in Development 
 
The following are some of the considerations that shaped the development of the COST software 
and Web site: 
 
• Introduce the response surface optimization approach in the context of concrete mixture 

proportioning.   
 

As mentioned in chapter 1, commercially available statistical software packages can provide 
the required experiment design and analysis capabilities needed for this approach. However, 
these packages are not specifically geared toward concrete mixture proportioning.   The 
purpose of the COST software is to introduce the RSM approach as a means of optimizing 
concrete mixtures.  The COST software is not intended to be a state-of-the-art, all-inclusive, 
“definitive” software product.  

 
• Minimize the required number of experimental runs needed to produce an optimal mix.   
 

Concrete producers want to minimize the effort (and cost) needed to identify optimal 
mixtures.  Therefore, the maximum number of factors was limited to five, one of which is 
water-cement ratio or water-cementitious materials ratio.  The maximum number of 
responses was also limited to five (one of which is cost).   

 
• Provide flexibility in types of component materials. 

 
The most common concrete component materials were included, and in each category of 
material (e.g., chemical admixtures, mineral admixtures, aggregates) a “user-defined” 
selection was included to accommodate unusual or new materials.  Flexibility was provided 
so a user could, for example, optimize the cementitious matrix alone (i.e., hold aggregates 
constant), or optimize the entire concrete mixture.   



  45

• Recognize the limited statistical background of many potential users.  
 

For this reason, guidance was included for analysis and interpretation as well as actually 
running the experiment.  For example, potential sources of error, the importance of 
randomization, and the importance of accuracy in batching and in following the experimental 
plan are discussed.  Because the results and circumstances for any user will vary widely, 
guidance in analysis and interpretation was limited to general aspects, such as indicating 
strong and weak factors.  More subtle statistical analysis requires human knowledge and 
judgment. 

 
• Work within constraints associated with the use of the Web and DATAPLOT software.   
 

There were several issues to contend with.  Speed was one issue—the speed of transfer to 
and from a user’s computer over the Internet to the server housing COST, and the 
computational speed of DATAPLOT.  Computations were minimized to reduce waiting 
times.  Speed was also an issue in generating graphics (plots).  Another limitation associated 
with graphics was the type and quality of graphics that could be generated and presented on 
the Web.  DATAPLOT generates postscript plots which were converted to GIF format for 
the Web site. 
 
Speed issues also prevented the use of a mathematically rigorous numerical optimization 
scheme.  Instead, numerical optimization was achieved by calculating a score function at 
each point on a superimposed grid over the range of each factor.  For 5 factors and 10 points 
per factor, this requires 105, or 100,000, calculations.  To avoid excessive computation time, 
the grids were limited in size. 
 
In addition to speed, there were file storage, access, and privacy issues.  For example, 
configuration and security constraints require that files be stored on the COST server.  They 
cannot be saved on the user’s computer.   

 
5.4 Description of the Software and Web Site 
 
5.4.1  Introduction 
 
COST is an online interactive system developed to assist engineers, concrete producers, and 
researchers in optimizing portland cement concrete mixtures for their particular applications.   
COST applies response surface methodology (RSM), a collection of statistical experiment design 
and analysis methods, to the problem of optimizing concrete mixture proportions.  RSM often is 
used in industry for product development, formulation, and improvement, and is applicable to 
problems such as concrete mixture proportioning where several input variables (factors) 
influence a performance measure (response).   
 
COST is intended to provide an introduction to concrete practitioners who are unfamiliar with 
the concepts and process of applying RSM to concrete mixture proportioning.  COST allows 
users to learn how to apply RSM to the problem of optimizing concrete mixtures. 
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There are two scenarios for which COST could be applied:   
 
1. To proportion a concrete mixture to meet a set of specifications at minimum material cost.  

This is probably the most common scenario. 
 
2. To maximize (or minimize) a particular response or responses, irrespective of cost. 
 
COST can be used to optimize cement paste, mortar, or concrete mixtures.  In all three cases, 
varying the mixture component proportions affects both fresh and hardened properties of the 
paste, mortar, or concrete.  The properties (responses) depend on the proportions of the 
components.   
 
In COST, w/c (or water-cementitious materials ratio, w/cm) is varied along with as many as four 
additional components.  These are referred to as variable factors.  Other factors may be included 
in the mixture at fixed (constant) levels, and are referred to as fixed factors.  The user can 
designate as many as five concrete properties, or responses, (e.g., slump, strength, air content, 
cost, etc.) according to the requirements of the application.   
 
COST is accessible via the Internet.  The program consists of a front-end HTML interface that 
allows the user to enter required information.  Underlying code (written in C) processes the 
input, generates the experiment designs and mixture proportions, calls routines for statistical 
analysis, and generates output.  The statistical analysis routines are part of an interactive 
statistical software package, DATAPLOT, which was developed at NIST.  COST is not intended 
to supplant or compete with commercially available experiment design and analysis software 
packages.  Rather, COST’s purpose is to introduce to the concrete practitioner the concepts of 
statistical experiment design and analysis using RSM and to explain how these concepts might 
be applied to concrete mixture proportioning.  COST is specifically geared toward applying these 
methods to concrete mixture proportioning.   
 
This section provides a brief, general overview of COST.  The COST User’s Guide, which 
describes the step-by-step approach of the Web site, is included as appendix C of this report.   
 
5.4.2  Overview of COST Six-Step Process 
 
The tasks required to optimize a concrete mixture using statistical methods have been assigned to 
the six steps listed below: 
 
• Specify responses. 
• Specify mixtures. 
• Run trial batches. 
• Enter results. 
• Analyze data. 
• Summarize analysis. 
 
In most cases, these steps will be performed in the order listed above.  Each step is described in 
detail in the COST User’s Guide (see appendix C).   
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Before starting the six-step process, the user should define the overall objective of the project.  
Typical objectives include the following: 

 
• Minimize cost while meeting several performance criteria for responses. 
• Minimize or maximize a single response or several responses. 

 
Step 1:  Specify Responses 
 
The first step is to specify the responses of interest.  Responses are the concrete properties which 
the user is interested in, and are usually dictated by job requirements.  The units (e.g., MPa, mm) 
and the allowable range of the response must also be specified.  The allowable range defines the 
performance specification for the response.  For example, a response like slump may have an 
allowable range between 50 and 100 mm.  Another response, like strength, may have a specified 
minimum value greater than 40 MPa.  
 
Step 2:  Specify Mixtures 
 
Step 2 involves specifying the concrete mixture components and their ranges.  Concrete may 
contain a variety of component materials.   Allowable material types for this version of COST 
include the following: 
  
• Water.1  
• Cement.1 
• Mineral admixtures (up to 4): fly ash, silica fume, slag, other (user specified). 
• Chemical admixtures (up to 3): all user specified. 
• Aggregates (up to 3): coarse, fine, other (user specified). 
 
Each component, or factor, may be variable or fixed (set at a constant level).  For concrete 
mixture proportioning, variable factors would usually be the mixture components expected to 
have the most significant effects on the responses.  Fixed factors would be those expected to 
have little or no effect on the responses, allowing them to be held constant in the experiment.   
Any of the components included in COST may be set as variable or fixed; however, COST limits 
the user to a maximum of five variable factors for any one experiment (the greater the number of 
variable factors, the greater the number of trial batches required).   Because w/c or w/cm is 
always considered to be one factor, as many as six material components (water, cement, and four 
others) may be varied. 
 
The user must also provide information about material properties (e.g., for cement, specific 
gravity) and costs for each component to be included.  Details on property information required 
can be found in the COST User’s Guide (appendix C). 
 
                                                 
1Water and cement are entered in terms of w/c or w/cm.  COST always requires that either w/c or w/cm be  
  included as a variable factor.   Thus, the two mixture components, water and cement, are accounted for in one  
  factor. 
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After the user has decided which factors to include, defined their ranges (for variable factors) or 
constant levels (for fixed factors), and entered required material information into the COST 
program, a trial batch plan is generated.   
 
Step 3:  Running the Experiment 
 
After generating a trial batch plan, the next step is to perform the experiment.  The experiment in 
this case is a set of trial batches from which specimens will be fabricated and tested for the 
responses specified in Step 1.    
 
Step 4:  Enter Results 
 
After testing is completed, the test results are input into COST for analysis.   The data are entered 
into a form, which is set up according to the experimental plan. 
 
Step 5:  Analyze Results 
 
Analysis of the results consists of 10 tasks, which are performed using one or more statistical 
tools.  Table 16 summarizes these analyses.  The analysis techniques employed by COST consist 
of both graphical analysis and numerical analysis (modeling), which can be classified in the 
following groups:   
 
• Quantitative description of data—task 1. 
• Assessing the experiment design—tasks 2, 3, 4. 
• Graphical description of data—tasks 5, 6. 
• Optimization (determining best settings)—tasks 7, 8, 9, 10. 
 
Examples and details on each analysis task can be found in the COST User’s Guide 
(appendix C).  
 
Step 6:  Summarize Analysis 
 
The final step summarizes the analysis.  The summary includes a list of the component variables, 
the responses, and the optimum settings based on three different perspectives:  mean values, 
individual runs, and numerical optimization.  A sample of the summary screen is shown in figure 
23. 
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Table 16.  Summary of analysis tasks and tools in COST 
 

Task # Task Description Tool(s) 

 1 Characterize response variables Summary statistics 
 2 Assess balance of design Counts plot matrix 

 3 Assess optimality of design points—  
all responses jointly 

Counts in admissible region matrix  
Percentage in admissible region plots 

 4 Assess optimality of design points—  
all four responses jointly Percentage in admissible region plots 

 5 Determine interrelationships between 
responses 

Scatterplots of response variables  
Scatterplots of response variables vs. 
factors 

 6 Assess relationship between  
response variables and factors Means plots of responses vs. factors 

 7 Determine optimal settings for  
each factor 

Best settings based on mean values 
Best settings based on individual runs 

 8 Model fitting and verification Model fitting tool 

 9 Numerical optimization Best settings based on maximum total 
score 

 10 Response prediction Response prediction tool 
 
 

 

Figure 23.  Summary screen from COST 
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5.5 Future Considerations 
 
The current version of COST, while functional, is limited in several respects, because it is Web-
based software and because of the specific architecture involved.  The software runs slowly, the 
graphical capabilities are limited, and data is stored on the host computer instead of the user’s 
computer.  A stand-alone, Microsoft® Windows®-based version of COST could be developed in 
the future.  However, there are commercially available statistical software packages that could be 
used for this application.  Because these packages are general in nature (i.e., not specifically 
geared towards concrete mixture proportioning), some care is needed to assure that they are 
being used correctly. 
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APPENDIX A. Experiment Design and Data Analysis for Mixture Experiment 
 
A.1  Experiment Design and Response Data 
 

Table A-1.  Mixture experiment design in terms of volume fractions of components 
 
Standard 

Order 
Design 

ID 
Run 

Order 
A 

Water 
B 

Cement
C 

Silica Fume
D 

HRWRA
E 

Coarse Agg 
F 

Fine Agg 
 35  127  1 0.1720 0.1395 0.0130 0.0060 0.4098 0.2598
 7  15  2 0.1656 0.1500 0.0270 0.0074 0.4000 0.2500
 14  38  3 0.1767 0.1417 0.0270 0.0046 0.4000 0.2500
 11  22  4 0.1850 0.1474 0.0130 0.0046 0.4000 0.2500
 22  71  5 0.1600 0.1500 0.0130 0.0074 0.4098 0.2598
 4  11  6 0.1850 0.1300 0.0130 0.0046 0.4174 0.2500
 2  5  7 0.1600 0.1300 0.0270 0.0046 0.4284 0.2500
 8  16  8 0.1600 0.1300 0.0130 0.0046 0.4424 0.2500
 27  91  9 0.1850 0.1300 0.0130 0.0074 0.4073 0.2573
 29  101  10 0.1712 0.1500 0.0130 0.0046 0.4112 0.2500
 24  78  11 0.1850 0.1300 0.0270 0.0074 0.4003 0.2503
 37  127  12 0.1720 0.1395 0.0130 0.0060 0.4098 0.2598
 9  20  13 0.1850 0.1300 0.0130 0.0046 0.4000 0.2674
 30  103  14 0.1600 0.1500 0.0130 0.0060 0.4210 0.2500
 5  13  15 0.1600 0.1300 0.0130 0.0046 0.4000 0.2924
 12  28  16 0.1600 0.1300 0.0270 0.0046 0.4000 0.2784
 28  98  17 0.1600 0.1400 0.0130 0.0046 0.4324 0.2500
 36  127  18 0.1720 0.1395 0.0130 0.0060 0.4098 0.2598
 26  89  19 0.1600 0.1400 0.0130 0.0046 0.4000 0.2824
 39  163  20 0.1656 0.1343 0.0165 0.0067 0.4234 0.2536
 31  110  21 0.1712 0.1500 0.0130 0.0046 0.4000 0.2612
 1  5  22 0.1600 0.1300 0.0270 0.0046 0.4284 0.2500
 3  11  23 0.1850 0.1300 0.0130 0.0046 0.4174 0.2500
 25  87  24 0.1600 0.1300 0.0130 0.0046 0.4212 0.2712
 20  66  25 0.1600 0.1300 0.0270 0.0074 0.4128 0.2628
 16  38  26 0.1767 0.1417 0.0270 0.0046 0.4000 0.2500
 18  63  27 0.1725 0.1300 0.0270 0.0074 0.4131 0.2500
 17  48  28 0.1725 0.1300 0.0130 0.0074 0.4000 0.2771
 21  70  29 0.1600 0.1500 0.0130 0.0060 0.4000 0.2710
 13  37  30 0.1600 0.1400 0.0270 0.0074 0.4000 0.2656
 19  65  31 0.1600 0.1400 0.0270 0.0074 0.4156 0.2500
 38  127  32 0.1720 0.1395 0.0130 0.0060 0.4098 0.2598
 32  116  33 0.1725 0.1300 0.0270 0.0074 0.4000 0.2631
 10  20  34 0.1850 0.1300 0.0130 0.0046 0.4000 0.2674
 23  71  35 0.1600 0.1500 0.0130 0.0074 0.4098 0.2598
 33  123  36 0.1600 0.1400 0.0200 0.0060 0.4120 0.2620
 34  127  37 0.1720 0.1395 0.0130 0.0060 0.4098 0.2598
 6  15  38 0.1656 0.1500 0.0270 0.0074 0.4000 0.2500
 15  38  39 0.1767 0.1417 0.0270 0.0046 0.4000 0.2500
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Table A-2.   Mixture experiment:  slump and 1-day strength data 
    

Obs 
 

Design ID 
 

Run 
Order 

Slump 
(mm) 

1-Day Strength 
(MPa) 

 32  127  1 50.8 54.0 24.3 24.4 24.0 – 
 6  15  2 25.4 31.8 24.6 22.9 25.9 – 
 13  38  3 19.1 19.1 22.7 22.6 22.1 – 
 10  22  4 69.9 63.5 21.1 21.4 21.8 – 
 20  71  5 63.5 50.8 26.9 27.2 26.5 27.5 
 3  11  6 108.0 95.3 16.7 16.6 17.0 – 
 1  5  7 12.7 12.7 21.7 23.3 22.2 – 
 7  16  8 38.1 31.8 21.8 21.6 21.4 – 
 25  91  9 203.2 196.9 17.1 16.6 16.7 – 
 27  101  10 25.4 19.1 26.4 26.5 26.8 – 
 22  78  11 127.0 127.0 19.2 19.3 19.0 – 
 33  127  12 101.6 95.3 20.8 21.9 21.9 – 
 8  20  13 114.3 120.7 18.3 18.0 18.3 – 
 28  103  14 63.5 63.5 28.0 26.8 27.3 – 
 5  13  15 63.5 50.8 22.7 21.7 21.0 – 
 11  28  16 31.8 25.4 21.1 22.9 22.5 – 
 26  98  17 31.8 31.8 25.2 26.4 24.2 – 
 34  127  18 95.3 88.9 21.5 21.6 23.8 – 
 24  89  19 38.1 38.1 18.1 23.1 24.0 – 
 36  163  20 95.3 95.3 22.1 21.6 22.4 – 
 29  110  21 50.8 50.8 24.5 25.1 24.4 – 
 2  5  22 25.4 25.4 22.1 24.0 24.2 – 
 4  11  23 114.3 114.3 17.1 16.5 15.9 – 
 23  87  24 63.5 69.9 24.9 20.6 23.2 – 
 18  66  25 76.2 76.2 25.0 24.1 25.1 – 
 14  38  26 31.8 25.4 22.9 23.6 22.5 – 
 16  63  27 101.6 95.3 21.6 22.0 21.4 – 
 15  48  28 177.8 165.1 22.7 22.7 23.7 – 
 19  70  29 50.8 50.8 27.5 27.3 27.6 – 
 12  37  30 38.1 31.8 26.8 27.8 27.4 – 
 17  65  31 31.8 31.8 28.6 25.5 27.6 – 
 35  127  32 120.7 120.7 22.9 22.2 22.1 – 
 30  116  33 114.3 114.3 23.9 23.7 24.1 – 
 9  20  34 127.0 127.0 18.8 18.6 18.5 – 
 21  71  35 114.3 101.6 29.5 28.0 28.9 – 
 31  123  36 76.2 69.9 26.2 26.4 27.3 – 
 32  127  37 101.6 101.6 23.9 24.3 24.2 – 
 6  15  38 50.8 50.8 29.2 27.6 29.5 – 
 13  38  39 25.4 25.4 23.3 25.4 22.2 – 
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Table A-3.  Mixture experiment:  28-day strength and RCT charge passed data 
 

Obs Design ID Run 
 Order 

28-Day Strength 
(psi) 

RCT Charge Passed 
(coulombs) 

 32  127  1 51.0 52.5 54.9  – – – – 
 6  15  2 59.4 58.7 59.5  – – – – 
 13  38  3 50.8 50.1 52.7  – – – – 
 10  22  4 47.9 48.0 48.8  – 1203 1310 1321 
 20  71  5 51.9 56.7 57.0  – 901 790 894 
 3  11  6 47.3 51.7 46.6  – 1141 1308 1038 
 1  5  7 46.1 49.4 49.9  – 422 352 – 
 7  16  8 54.6 53.2 51.5  – 708 – 843 
 25  91  9 58.8 60.4 62.1  – 1092 1113 877 
 27  101  10 57.0 52.3 51.6  – 730 736 767 
 22  78  11 51.0 55.4 48.6  – 474 454 549 
 33  127  12 51.1 52.3 47.4  – 853 885 789 
 8  20  13 51.9 50.2 50.7  – 995 922 793 
 28  103  14 60.4 56.6 46.2 55.1 607 576 565 
 5  13  15 51.0 55.6 52.8  – 575 719 758 
 11  28  16 56.5 50.8 53.4  – 327 268 282 
 26  98  17 55.5 50.5 49.8  – 580 579 653 
 34  127  18 53.7 54.2 54.3  – 841 852 848 
 24  89  19 52.6 58.3 50.2 56.3 677 656 826 
 36  163  20 61.1 61.0 60.2  – 544 552 566 
 29  110  21 52.3 52.9 54.4  – 716 804 857 
 2  5  22 56.3 52.0 53.9  – 308 441 296 
 4  11  23 49.2 47.8 46.9  – 894 1054 956 
 23  87  24 53.0 50.4 49.4  – 751 618 732 
 18  66  25 57.1 62.6 59.7  – 326 319 303 
 14  38  26 57.4 51.8 50.3  – 450 346 375 
 16  63  27 56.6 54.5 54.5  – 324 324 257 
 15  48  28 58.9 58.0 57.3  – 622 702 723 
 19  70  29 54.7 52.5 56.4  – 496 494 524 
 12  37  30 49.2 57.8 59.7 57.4 247 254 234 
 17  65  31 53.5 49.1 50.8  – 285 350 296 
 35  127  32 57.8 58.6 55.0  – 661 567 680 
 30  116  33 57.8 57.3 53.5  – 367 358 343 
 9  20  34 51.1 51.9 51.9  – 804 901 754 
 21  71  35 64.9 65.6 65.2  – 550 566 543 
 31  123  36 61.5 59.8 61.8  – 318 312 390 
 32  127  37 53.8 55.4 54.6  – 640 614 665 
 6  15  38 61.6 57.5 55.2  – 235 232 250 
 13  38  39 54.5 53.8 55.4  – 323 379 293 
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A.2 Data Analysis and Model Fitting  
 
A.2.1  Slump 
 

Table A-4.  Mixture experiment:  sequential model sum of squares for slump 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Mean  212697.8  1  212697.8 – – 
Linear  62543.72  5  12508.74  45.64  < 0.0001 
Quadratic  4107.07  15  273.80  1.00  0.5016 
Special cubic (aliased)  2164.86  7  309.27  1.27  0.3703 
Cubic (aliased)  0.00  0  – – 
Residual  1950.91  8  243.86 – – 
Total  283464.3  36  7874.01 – – 

 
Table A-5.  Mixture experiment:  lack-of-fit test for slump 

 
Source Sum of Squares DF Mean Square F Value Prob > F

Linear  6271.93  22 285.09 1.17 0.4335 
Quadratic  2164.86  7 309.27 1.27 0.3703 
Special cubic (aliased)  0.00  0 – – – 
Cubic (aliased)  0.00  0 – – – 
Pure error  1950.91  8 243.86 – – 

 
Table A-6.  Mixture experiment:  model summary statistics for slump 

 
Source Std. Dev. r2 Adj. r2 Pred. r2 PRESS 

Linear 16.56 0.8838 0.8644 0.8407 11272.43 
Quadratic 16.56 0.9418 0.8643 0.6049 27956.70 
Special cubic (aliased) 15.62 0.9724 0.8794 – undefined 
Cubic (aliased) – – – – undefined 
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Table A-7.  Mixture experiment:  ANOVA for slump mixture model  
 

Source Sum of Squares DF Mean Square F Value Prob > F
Model  62543.72  5  12508.74  45.64  < 0.0001

Linear mixture  62543.72  5  12508.74  45.64  < 0.0001
Residual  8222.84  30  274.09 – – 

Lack of fit  6271.93  22  285.09  1.17  0.4335
Pure error  1950.91  8  243.86 – – 

Corrected total  70766.56  35 – – – 
 

Table A-8.  Mixture experiment:  coefficient estimates for slump mixture model 
 

Component Coeff. 
Estimate DF Std. Error 95% CI 

Low 
95% CI 

High 
Water  155.68  1  10.12  135.03  176.34 
Cement  –37.53  1  13.34  –64.77  –10.30 
Silica fume  –80.39  1  17.95  –117.04  –43.74 
HRWRA  1092.78  1  100.02  888.51  1297.04 
Coarse aggregate  55.14  1  8.85  37.07  73.22 
Fine aggregate  71.03  1  9.29  52.06  90.00 

 
Table A-9. Mixture experiment:  adjusted effects for slump mixture model 

 

Component Adjusted 
Effect DF Std. Error Approx. t for Ho 

Effect = 0 Prob > t 

Water  –138.04 1  12.96  –2.94  0.0063 
Cement  –139.80 1  12.43  –11.25  < 0.0001 
Silica fume  –114.84 1  10.42  –11.02  < 0.0001 
HRWRA  70.00 1  6.83  10.25  < 0.0001 
Coarse aggregate  –185.17 1  20.68  –8.95  < 0.0001 
Fine aggregate  –166.11 1  22.02  –7.54  < 0.0001 

 
 
Model equation in terms of pseudocomponents: 
 
  Slump  = 155.68*A – 37.53*B – 80.39*C  + 1092.78*D + 55.14*E + 71.03*F  
 
 Model equation in terms of real components: 

 
 Slump = 2166.5*water – 2390.5*cement – 3401.2*silica fume + 24267.7*HRWRA  
  – 204.8*Coarse agg +169.9*Fine agg 
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Figure A-1.  Mixture experiment: normal probability plot for slump  

Figure A-2.  Mixture experiment:  residuals vs. run for slump  
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Figure A-3.  Mixture experiment:  Cook's distance for slump 

Figure A-4.  Mixture experiment:  trace plot for slump 
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Figure A-5.  Mixture experiment:  contour plot for slump in water, cement, and silica fume

Figure A-6.  Mixture experiment:  contour plot of slump in water, cement, and 
HRWRA 
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A.2.2 1-Day Strength 
 

Table A-10.  Mixture experiment:  sequential model sum of squares for 1-day strength 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Mean  19278.40  1  19278.40 – – 
Linear  351.33  5  70.27  57.34  < 0.0001 
Quadratic  27.14  15  1.81  2.82  0.0266 
Special cubic (aliased)  3.43  7  0.49  0.63  0.7199 
Cubic (aliased)  0.00  0 – – – 
Residual  6.19  8  0.77 – – 
Total  19666.48  36  546.29 – – 

 
 

Table A-11.  Mixture experiment:  lack-of-fit test for 1-day strength 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Linear  30.57  22 1.39 1.79 0.1992 
Quadratic  3.43  7 0.49 0.63 0.7199 
Special cubic (aliased)  0.000  0 – – – 
Cubic (aliased)  0.000  0 – – – 
Pure error  6.19  8 0.77 – – 

 
 

Table A-12.  Mixture experiment:  summary statistics for 1-day strength 
 

Source Std. Dev. r2 Adj. r2 Pred. r2 PRESS 
Linear 1.11 0.9053 0.8895 0.8611 53.89 
Quadratic 0.80 0.9752 0.9421 0.8566 55.65 
Special cubic (aliased) 0.88 0.9840 0.9302 – undefined 
Cubic (aliased) – – – – undefined 
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Table A-13.  Mixture experiment:  ANOVA for 1-day strength mixture model 
 

Source Sum of 
Squares DF Mean 

Square F Value Prob > F 

Model  373.09  9  41.45  71.84  < 0.0001 
Linear mixture  351.77  5  70.35  121.93  < 0.0001 
AF  4.14  1  4.14  7.18  0.0126 
BF  5.38  1  5.38  9.32  0.0052 
CD  3.96  1  3.96  6.86  0.0145 
DF  7.83  1  7.83  13.58  0.0011 

Residual  15.00  26  0.58 – – 
Lack of fit  8.81  18  0.49  0.63  0.8010 
Pure error  6.19  8  0.77 – – 

Corrected total  388.09  35 – – – 
 

 
Table A-14.  Mixture experiment:  coefficient estimates for 1-day strength mixture model 

 

Component Coeff. 
Estimate DF Std. Error 95% CI 

Low 
95% CI 

High 
water  12.93 1  0.62  11.64  14.21 
Cement  35.42 1  0.83  33.72  37.12 
Silica fume  24.89 1  1.15  22.52  27.25 
HRWRA  10.83 1  8.88  -7.42  29.07 
Coarse aggregate  22.04 1  0.43  21.16  22.93 
Fine aggregate  21.50 1  0.57  20.32  22.67 
Water—fine aggregate  7.58 1  2.83  1.77  13.39 
Cement—fine aggregate  -10.07 1  3.30  -16.86  -3.29 
Silica fume—HRWRA  78.71 1  30.04  16.95  140.47 
HRWRA—fine aggregate  80.50 1  21.85  35.60  125.41     

 
 
 Model equation in terms of pseudocomponents: 
 

Slump  = 12.93*A + 35.42*B + 24.89*C + 10.83*D + 22.04*E + 21.50*F + 7.58* A*F   
 – 10.07*B*F + 78.71*C*D + 80.50*D*F 

 
Model equation in terms of real components: 

 
Slump = –1209.1*water + 1775.9*cement – 74.71*SF – 11969*HRWRA   
 + 59.59*Coarse agg – 105.24*Fine agg + 4214.9*water*Fine agg  
 – 5603.1*cement*Fine agg + 43782 *SF*HRWRA + 44781*HRWRA*Fine agg 
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Figure A-7.  Mixture experiment:  normal probability plot for 1-day strength

Figure A-8.  Mixture experiment:  residuals vs. run for 1-day strength 
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Figure A-9.  Mixture experiment:  trace plot for 1-day strength 

Figure A-10.  Mixture experiment:  contour plot of 1-day strength in       
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Figure A-11.  Mixture experiment:  contour plot of 1-day strength in water, 
cement, and HRWRA 

Figure A-12.  Mixture experiment:  contour plot of 1-day strength in water, 
cement, and fine aggregate 
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Figure A-13.  Mixture experiment:  contour plot of 1-day strength in silica fume, 
HRWRA, and fine aggregate 

Figure A-14.  Mixture experiment:  contour plot of 1-day strength in silica 
fume, coarse aggregate, and fine aggregate 
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A.2.3 28-Day Strength 
   

Table A-15.  Mixture experiment:  sequential model sum of squares for 28-day strength 
 

Source Sum of Squares DF Mean  Square F Value Prob > F
Mean  106213.0  1  106213.0 – – 
Linear  257.52  5  51.50 5.46 0.0011 
Quadratic  135.19  15  9.01 0.92 0.5665 
Special cubic (aliased)  55.45  7  7.92 0.69 0.6826 
Cubic (aliased)  0.00  0 – – – 
Residual  92.17  8  11.52 – – 
Total  106753.3  36  2965.37 – – 

 
 

Table A-16.  Mixture experiment:  lack-of-fit test for 28-day strength 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Linear  190.64  22 8.67 0.75 0.7193 
Quadratic  55.45  7 7.92 0.69 0.6826 
Special cubic (aliased)  0.00  0 – – – 
Cubic (aliased)  0.00  0 – – – 
Pure error  92.17  8 11.52 – – 

 
 

Table A-17.  Mixture experiment: model summary statistics for 28-day strength 
 

Source Std. Dev. r2 Adj. r2 Pred. r2 PRESS 
Linear 3.07 0.4755 0.3894  0.2678  395.63 
Quadratic 3.14 0.7268 0.3625  –1.5516  1378.72 
Special cubic (aliased) 3.39 0.8294 0.2537 – undefined 
Cubic (aliased) – – – – undefined 
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Table A-18.  Mixture experiment:  ANOVA for 28-day strength mixture model  
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Model  257.52  5  51.50 5.46 0.0011 

Linear mixture  257.52  5  51.50 5.46 0.0011 
Residual  282.81  30  9.43 – – 

Lack of fit  190.64  22  8.67 0.75 0.7193 
Pure error  92.17  8  11.52 – – 

Corrected total  540.33  35 – – – 
 
 
Table A-19.  Mixture experiment: estimated coefficients for 28-day strength mixture model 

 

Component Coeff. 
Estimate DF Std. Error 95% CI 

Low 
95% CI 

High 
Water  48.60 1  1.88 44.77  52.43 
Cement  54.30 1  2.47 49.25  59.35 
Silica fume  50.36 1  3.33 43.56  57.15 
HRWRA  134.13 1  18.55 96.24  172.01 
Coarse aggregate  52.14 1  1.64 48.79  55.50 
Fine aggregate  54.21 1  1.72 50.70  57.73 

 
 

Table A-20.  Mixture experiment:  adjusted effects for 28-day strength mixture model 
 

Component Adjusted 
Effect DF Std. Error Approx. t for 

Ho Effect = 0 Prob > t 

Water  -12.04 1 2.40  -5.01  < 0.0001 
Cement  -6.41 1 2.31  -2.78  0.0093 
Silica fume  -6.05 1 1.93  -3.13  0.0039 
HRWRA  5.43 1 1.27  4.28  0.0002 
Coarse aggregate  -16.17 1 3.84  -4.22  0.0002 
Fine aggregate  -13.69 1 4.08  -3.35  0.0022 

 
 
Model equation in terms of pseudocomponents: 
 
 28-Day Strength  = 48.60*A + 54.30*B + 50.36*C  + 134.13*D + 52.14*E + 54.21*F  
 
Model equation in terms of real components: 

 
28-Day Strength  =  –45.22*water + 89.15*cement – 3.809*silica fume + 1972*HRWRA  
   + 38.36*Coarse agg + 87.19*Fine agg 
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Figure A-15.  Mixture experiment:  normal probability plot for 28-day strength

Figure A-16.  Mixture experiment:  residuals vs. run for 28-day strength 
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Figure A-17.  Mixture experiment: Cook’s distance vs. run for 28-day strength 

Figure A-18.  Mixture experiment:  trace plot for 28-day strength 
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Figure A-19.  Mixture experiment:  contour plot of 28-day strength in water, silica 
fume, and HRWRA 

Figure A-20.  Mixture experiment:  contour plot of 28-day strength in water, silica 
fume, and coarse aggregate 
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Figure A-21.  Mixture experiment:  contour plot of 28-day strength in cement, coarse 
aggregate, and fine aggregate 
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A.2.4 RCT Charge Passed  
 
Table A-21.  Mixture experiment:  sequential model sum of squares for RCT charge passed 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Mean  1441.26  1  1441.26 – – 
Linear  6.75  5  1.35  57.33  < 0.0001 
Quadratic  0.38  15  0.03  1.17  0.3846 
Special cubic (aliased)  0.11  7  0.02  0.57  0.7607 
Cubic (aliased)  0.00  0 – – – 
Residual  0.22  8  0.03 – – 
Total  1448.72  36  40.24 – – 

 
 

Table A-22.  Mixture experiment:  lack-of-fit test for RCT charge passed 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Linear 0.490  22 0.022 0.82 0.6666 
Quadratic 0.109  7 0.016 0.57 0.7607 
Special cubic (aliased) 0.000  0 – – – 
Cubic (aliased) 0.000  0 – – – 
Pure error 0.217  8 0.027 – – 

 
 

Table A-23.  Mixture experiment:  model summary statistics for RCT charge passed 
 

Source Std. Dev. r2 Adj. r2 Pred. r2 PRESS 
Linear 0.15 0.9053 0.8895 0.8647 1.01 
Quadratic 0.15 0.9563 0.8980 0.8044 1.46 
Special cubic (aliased) 0.16 0.9709 0.8726 – undefined 
Cubic (aliased) – – – – undefined 

 
 

Table A-24.  Mixture experiment:  ANOVA for RCT charge passed mixture model 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Model 6.75  5  1.35 57.33 < 0.0001 

Linear mixture 6.75  5  1.35 57.33 < 0.0001 
Residual 0.71  30  0.024 – – 

Lack of fit 0.49  22  0.022 0.82  0.6666 
Pure error 0.22  8  0.027 – – 

Corrected total 7.46  35 – – – 
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Table A-25.  Mixture experiment:  estimated coefficients for RCT charge passed mixture 
model 
 

Component Coeff. 
Estimate DF Std. Error 95% CI 

Low 
95% CI 

High 
 Water  7.2 1  0.094 7.01 7.39 
 Cement  6.34 1  0.12 6.09 6.60 
 Silica fume  4.10 1  0.17 3.76 4.44 
 HRWRA  5.32 1  0.93 3.43 7.22 
 Coarse aggregate  6.62 1  0.082 6.46 6.79 
 Fine aggregate  6.45 1  0.086 6.28 6.63 

 
 
Table A-26.  Mixture experiment:  adjusted effects for RCT charge passed mixture model 

 

Component Adjusted 
Effect DF Std. Error Approx. t for Ho 

Effect = 0 Prob > t 

 Water  0.84 1  0.12  7.03  < 0.0001 
 Cement  0.19 1  0.12  1.65  0.1087 
 Silica fume  -0.76 1  0.097  -7.83  < 0.0001 
 HRWRA  -0.054 1  0.063  -0.85  0.3999 
 Coarse aggregate  0.74 1  0.19  3.86  0.0006 
 Fine aggregate  0.53 1  0.20  2.62  0.0138 

 
 
Model equation in terms of pseudocomponents: 
 
ln(RCT charge passed)  = 7.20*A + 6.34*B + 4.10*C + 5.32*D + 6.62*E + 6.45*F  
 
Model equation in terms of real components: 

 
ln(RCT charge passed)  =  20.82*water + 0.629*cement - 52.33*silica fume – 23.41*HRWRA  
  + 7.235*Coarse agg + 3.190*Fine agg 
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Figure A-22.  Mixture experiment:  normal probability plot for RCT charge passed 
(no transform) 

Figure A-23.  Mixture experiment:  normal probability plot for RCT charge 
passed (natural log transform) 
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Figure A-24.  Mixture experiment:  residuals vs. predicted for RCT charge 
passed (no transform) 

Figure A-25.  Mixture experiment:  residuals vs. run for RCT charge 
passed (no transform) 
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Figure A-26.  Mixture experiment:  residuals vs. predicted for RCT charge 
passed  (natural log transform) 

Figure A-27.  Mixture experiment:  residuals vs. run for RCT charge 
passed (natural log transform) 
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Figure A-29.  Mixture experiment:  trace plot for RCT charge 
passed (natural log transform)  
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Figure A-28.  Mixture experiment:  Cook’s distance for RCT charge passed 
(natural log transform) 
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Figure 52.  Cook’s Distance for RCT (natural log  transform) Figure A-31.  Mixture experiment:  contour plot of ln (RCT charge passed) in 
water, silica fume, and HRWRA  

Figure A-30.  Mixture experiment:  contour plot of ln (RCT charge passed) in 
water, silica fume, and coarse aggregate  
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Figure A-32.  Mixture experiment:  contour plot of ln (RCT charge passed) in 
cement, HRWRA, and fine aggregate 

B: cement
0.159

D: HRWRA
0.0333

F: Fine agg
0.279

0.250 0.0046

0.130

5.600

5.625

5.650

5.675



 B-1

APPENDIX B. Experiment Design and Data Analysis for Factorial Experiment 
 
B.1 Experiment Design and Response Data 
 

Table B-1.  Factorial experiment:  design by volume fraction of factors 
 

Std 
Order 

Run 
Order Point FactorA 

w/c 
Factor B
Fine Agg

Factor C 
Coarse Agg

Factor D 
HRWRA 

Factor E 
Silica Fume 

 17  1  Center 0.39525 0.2712 0.4212 0.0060 0.0200 
 11  2  Fact 0.3576 0.2853 0.4071 0.0069 0.0247 
 7  3  Fact 0.3576 0.2853 0.4353 0.0051 0.0247 
 10  4  Fact 0.4329 0.2571 0.4071 0.0069 0.0247 
 4  5  Fact 0.4329 0.2853 0.4071 0.0051 0.0247 
 12  6  Fact 0.4329 0.2853 0.4071 0.0069 0.0153 
 2  7  Fact 0.4329 0.2571 0.4071 0.0051 0.0153 
 1  8  Fact 0.3576 0.2571 0.4071 0.0051 0.0247 
 18  9  Center 0.39525 0.2712 0.4212 0.0060 0.0200 
 8  10  Fact 0.4329 0.2853 0.4353 0.0051 0.0153 
 9  11  Fact 0.3576 0.2571 0.4071 0.0069 0.0153 
 6  12  Fact 0.4329 0.2571 0.4353 0.0051 0.0247 
 3  13  Fact 0.3576 0.2853 0.4071 0.0051 0.0153 
 14  14  Fact 0.4329 0.2571 0.4353 0.0069 0.0153 
 15  15  Fact 0.3576 0.2853 0.4353 0.0069 0.0153 
 13  16  Fact 0.3576 0.2571 0.4353 0.0069 0.0247 
 19  17  Center 0.39525 0.2712 0.4212 0.0060 0.0200 
 5  18  Fact 0.3576 0.2571 0.4353 0.0051 0.0153 
 16  19  Fact 0.4329 0.2853 0.4353 0.0069 0.0247 
 25  20  Axial 0.39525 0.2712 0.4494 0.0060 0.0200 
 21  21  Axial 0.47055 0.2712 0.4212 0.0060 0.0200 
 23  22  Axial 0.39525 0.2994 0.4212 0.0060 0.0200 
 27  23  Axial 0.39525 0.2712 0.4212 0.0078 0.0200 
 20  24  Axial 0.31995 0.2712 0.4212 0.0060 0.0200 
 31  25  Center 0.39525 0.2712 0.4212 0.0060 0.0200 
 26  26  Axial 0.39525 0.2712 0.4212 0.0042 0.0200 
 28  27  Axial 0.39525 0.2712 0.4212 0.0060 0.0106 
 24  28  Axial 0.39525 0.2712 0.3930 0.0060 0.0200 
 29  29  Axial 0.39525 0.2712 0.4212 0.0060 0.0294 
 22  30  Axial 0.39525 0.243 0.4212 0.0060 0.0200 
 30  31  Center 0.39525 0.2712 0.4212 0.0060 0.0200 
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Table B-2.  Factorial experiment:  slump and 1-day strength data 
 

Run Point Slump (mm) 1-Day Strength (MPa) 

1  Center 76 70 16.6 16.0 16.2 
2  Fact 44 44 22.2 22.5 23.0 
3  Fact 13 13 22.5 17.9 22.0 
4  Fact 102 102 15.8 16.7 16.8 
5  Fact 57 57 16.4 16.7 16.1 
6  Fact 140 146 13.4 14.2 13.2 
7  Fact 70 64 13.9 11.1 13.7 
8  Fact 13 13 17.7 22.8 20.5 
9  Center 89 83 17.9 18.6 18.7 

10  Fact 102 102 15.2 15.2 15.2 
11  Fact 140 140 20.9 20.7 20.4 
12  Fact 32 32 13.8 18.8 18.9 
13  Fact 13 13 24.5 23.3 24.7 
14  Fact 76 76 17.3 17.2 17.2 
15  Fact 13 13 22.7 19.5 21.8 
16  Fact 13 13 20.8 20.6 21.4 
17  Center 51 64 19.4 18.9 18.1 
18  Fact 32 25 21.4 22.2 22.1 
19  Fact 38 32 16.0 16.1 16.3 
20  Axial 38 38 18.7 19.3 18.9 
21  Axial 121 114 14.5 14.9 14.0 
22  Axial 70 64 18.0 17.8 17.5 
23  Axial 64 64 19.3 20.0 20.4 
24  Axial 19 13 26.0 25.4 27.7 
25  Center 83 76 20.2 17.3 19.6 
26  Axial 64 64 18.9 19.5 18.9 
27  Axial 152 152 16.4 17.0 16.9 
28  Axial 95 95 20.1 20.8 19.7 
29  Axial 38 32 17.2 20.1 18.0 
30  Axial 102 102 17.7 17.0 17.7 
31  Center 76 76 16.8 19.6 18.8 
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Table B-3.   Factorial experiment:  28-day strength and RCT charge passed data 
 

Run Point  28-Day Strength (MPa) RCT Charge Passed (coulombs)

1  Center 54.0 63.0 – – 263 296 300 
2  Fact 59.4 60.2 – – 186 472 268 
3  Fact 53.5 52.8 51.7 – 151 151 178 
4  Fact 62.7 60.8 55.1 62.9 280 329 279 
5  Fact 52.6 56.6 55.8 – 273 236 262 
6  Fact 60.4 52.1 60.6 61.3 553 585 485 
7  Fact 50.1 49.4 51.5 – 468 550 490 
8  Fact 51.0 56.3 47.2 55.2 253 240 208 
9  Center 63.5 62.5 – – 247 315 305 

10  Fact 53.8 54.2 56.3 – 460 437 439 
11  Fact 61.6 64.5 60.8 – 415 427 393 
12  Fact 56.5 55.3 56.8 – 258 258 240 
13  Fact 58.1 50.2 54.4 – 343 362 317 
14  Fact 52.3 46.6 52.1 – 596 527 481 
15  Fact 60.3 58.7 58.6 – 218 288 330 
16  Fact 60.2 58.5 62.9 – 208 194 216 
17  Center 59.9 54.5 55.5 – 299 327 318 
18  Fact 58.4 60.1 56.3 – 360 364 340 
19  Fact 65.0 59.9 63.9 – 242 243 206 
20  Axial 56.7 57.0 62.1 – 168 242 224 
21  Axial 53.9 51.1 56.7 – 463 461 449 
22  Axial 60.7 62.9 63.6 – 319 305 257 
23  Axial 68.4 66.8 67.1 – 272 280 251 
24  Axial 62.1 59.4 54.0 – 190 184 192 
25  Center 58.2 55.8 56.8 – 239 246 287 
26  Axial 52.9 48.2 51.6 – 258 281 280 
27  Axial 51.3 55.2 56.8 – 704 766 644 
28  Axial 50.0 55.2 54.8 – 268 302 351 
29  Axial 55.5 53.8 56.2 – 163 170 153 
30  Axial 50.4 49.0 51.6 – 340 304 351 
31  Center 55.8 53.3 56.5 – 262 294 274 
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B.2  Data Analysis and Model Fitting 
 
B.2.1 Slump 
 

Table B-4.  Factorial experiment:  sequential model sum of squares for slump 
 

Source Sum of  Squares DF Mean Square F Value Prob > F 
Mean 130296.6 1 130296.6 – – 
Linear  31972.38 5 6394.48 9.10 < 0.0001 
2FI  10539.29 10 1053.93 2.25 0.0755 
Quadratic  2598.70 5 519.74 1.18 0.3856 
Cubic (aliased) 2316.86 5 463.37 1.10 0.4593 
Residual 2104.40 5 420.88 – – 
Total  179828.3 31 5800.91 – – 

 
 

Table B-5.  Factorial experiment:  lack-of-fit test for slump 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Linear  17103.61 21 814.46 7.15 0.0345 
2FI  6564.32 11 596.76 5.24 0.0618 
Quadratic  3965.62 6 660.94 5.80 0.0553 
Cubic (aliased)  1648.75 1 1648.75 14.47 0.0190 
Pure error  455.64 4 113.91 – – 

 
 

Table B-6.  Factorial experiment:  ANOVA for slump model 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Model 40109.97  7 5730.00 13.99 < 0.0001 
 A 12138.75  1 12138.75 29.63 < 0.0001 
 B 606.52  1 606.52 1.48 0.2360 
 C 6048.38  1 6048.38 14.77 0.0008 
 D 2426.07  1 2426.07 5.92 0.0231 
 E 10752.67  1 10752.67 26.25 < 0.0001 
 AB 1837.19  1 1837.19 4.48 0.0452 
 CD 6300.39  1 6300.39 15.38 0.0007 
Residual 9421.67  23 409.64 – – 
 Lack of fit 8966.03  19 471.90 4.14 0.0887 
 Pure error 455.64  4 113.91 – – 
Cor total 49531.64  30 – – – 
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Table B-7.  Factorial experiment:  summary statistics for slump model 
 

Std. Dev.  20.24 R-Squared 0.8098 
Mean 64.83 Adj R-Squared 0.7519 
C.V. 31.22 Pred R-Squared 0.6275 
PRESS 18452.19 Adeq Precision 15.6200 

 
 

Table B-8.  Factorial experiment:  coefficient estimates for slump model 
 

Factor Coefficient 
Estimate DF Standard  

Error 
95% CI 

Low 
95% CI 

High 

Intercept 64.83 1 3.64 57.31 72.35 
A (w/c) 22.49 1 4.13 13.94 31.04 
B (fine agg) -5.03 1 4.13 -13.57 3.52 
C (coarse agg) -15.87 1 4.13 -24.42 -7.33 
D (HRWRA) 10.05 1 4.13 1.51 18.60 
E (silica fume) -21.17 1 4.13 -29.71 -12.62 
AB 10.72 1 5.06 0.25 21.18 
CD -19.84 1 5.06 -30.31 -9.38 

 
 
Model equation for slump in terms of coded factors: 
 
Slump = 64.83 + 22.49*A – 5.03*B – 15.87*C + 10.05*D – 21.17*E + 10.72*A*B – 

19.84*C*D 
 
 
Model equation for slump in terms of actual factors: 
 
Slump = –1365.5 – 4876.9*w/c – 8334.7*fine agg + 8256.5*coarse agg   
 + 6.6982 x 105*HRWRA – 4503.6*silica fume + 20185*w/c*fine agg  
 – 1.564 x 106 *coarse agg*HRWRA 
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Figure B-1.  Factorial experiment:  normal probability plot for slump 

Figure B-2.  Factorial experiment:  raw data plot for slump (hollow squares 
indicate control runs) 

Studentized Residuals

N
or

m
al

 %
 P

ro
ba

bi
lit

y

-2.77 -1.45 -0.13 1.18 2.50

1

5
10

20
30

50

70
80

90
95

99

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

Run

Sl
um

p 
(m

m
)



 B-7

Figure B-3.  Factorial experiment: scatterplot of slump vs. w/c 

Figure B-4.  Factorial experiment:  scatterplot of slump vs. coarse aggregate 
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Figure B-6.  Factorial experiment:  scatterplot of slump vs. HRWRA 

Figure B-5.  Factorial experiment:  scatterplot of slump vs. fine aggregate 
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Figure B-7.  Factorial experiment:  scatterplot of slump vs. silica fume 

Figure B-8.  Factorial experiment:  means plots for slump 
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Figure B-10.  Factorial experiment:  lag plot for slump 

Figure B-9.  Factorial experiment:  slump vs. run sequence 
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B.2.2 1-Day Strength 
                           

Table B-9.  Factorial experiment:  sequential model sum of squares for 1-day strength 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Mean  10780.54 1 10780.54 – – 
Linear  215.97 5 43.19 22.15 < 0.0001 
2FI  27.35 10 2.73 1.92 0.1236 
Quadratic 13.60 5 2.72 3.48 0.0441 
Cubic (aliased) 1.86 5 0.37 0.31 0.8865 
Residual 5.95 5 1.19 – – 
Total  11045.26 31 356.30 – – 

 
 

Table B-10.  Factorial experiment:  lack-of-fit test for 1-day strength 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Linear  43.98 21 2.09 1.75 0.3129 
2FI  16.63 11 1.51 1.27 0.4444 
Quadratic 3.03 6 0.51 0.42 0.8339 
Cubic (aliased) 1.18 1 1.18 0.98 0.3772 
Pure error 4.78 4 1.19 – – 

 
 

Table B-11.  Factorial experiment:  ANOVA for 1-day strength model 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Model 240.87 8 30.11 27.76 < 0.0001 
 A 213.26 1 213.26 196.66 < 0.0001 
 B 0.48 1 0.48 0.45 0.5113 

C 0.043 1 0.043 0.040 0.8433 
E 2.06 1 2.06 1.90 0.1819 
A

2 6.20 1 6.20 5.72 0.0257 
AC 5.15 1 5.15 4.75 0.0404 
AE 7.16 1 7.16 6.60 0.0175 
BC 6.51 1 6.51 6.00 0.0227 

Residual 23.86 22 1.08 – – 
Lack of fit 19.08 18 1.06 0.89 0.6248 
Pure error 4.78 4 1.19 – – 

Cor total 264.72 30 – – – 
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Table B-12.  Factorial experiment:  summary statistics for 1-day strength model 

 
Std. Dev.  1.04 R-Squared 0.9099 
Mean 18.65 Adj R-Squared 0.8771 
C.V. 5.58 Pred R-Squared 0.8294 
PRESS 45.16 Adeq Precision 22.583 

 
 

Table B-13.  Factorial experiment: coefficient estimates for 1-day strength model 
 

Factor Coefficient 
Estimate DF Standard  

Error 
95% CI 

Low 
95% CI 

High 
Intercept 18.29 1 0.24 17.80 18.79 
A (w/c) -2.98 1 0.21 -3.42 -2.54 
B (fine agg) 0.14 1 0.21 -0.30 0.58 
C (coarse agg) 0.043 1 0.21 -0.40 0.48 
E (silica fume) 0.29 1 0.21 -0.15 0.73 
A2 0.46 1 0.19 0.061 0.86 
AC 0.57 1 0.26 0.027 1.11 
AE 0.67 1 0.26 0.13 1.21 
BC -0.64 1 0.26 -1.18 -0.098 

 
Model equation for 1-day strength in terms of coded factors: 
 
1-day strength = 18.29 – 2.98*A + 0.14*B + 0.043*C + 0.29*E + 0.46*A2 + 0.57*A*C 
  + 0.67*A*E – 0.64*B*C 
 
Model equation for 1-day strength in terms of actual factors: 
 
1-day strength  = –63.8 – 860.8*w/c + 1361.3*fine agg + 450.8*coarse agg – 1431.5*silica fume  
  +323.9*(w/c)2  + 1068*w/c*coarse agg + 3780*w/c*silica fume  
 – 3208*fine agg*coarse agg 
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Figure B-11.  Factorial experiment:  normal probability plot for 1-day strength

Figure B-12.  Factorial experiment:  raw data plot for 1-day strength (hollow 
squares indicate control runs) 
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Figure B-13.  Factorial experiment:  scatterplot of 1-day strength vs. w/c 

Figure B-14.  Factorial experiment:  scatterplot of 1-day strength vs. fine aggregate
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Figure B-15.  Factorial experiment:  scatterplot of 1-day strength vs. coarse aggregate

Figure B-16.  Factorial experiment:  scatterplot of 1-day strength vs. HRWRA 
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Figure B-17.  Factorial experiment:  scatterplot of 1-day strength vs. silica fume 

Figure B-18.  Factorial experiment:  means plot for 1-day strength 
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Figure B-19.  Factorial experiment:  1-day strength vs. run sequence 

Figure B-20.  Factorial experiment:  lag plot for 1-day strength 
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B.2.3.  28-Day Strength 
 

Table B-14.  Factorial experiment:  sequential model sum of squares for 28-day strength 
 

Source Sum of Squares DF Mean Square F Value Prob > F
Mean  100300.0 1 100300.0 – – 
Linear  292.28 5 58.46 5.71 0.0012 
2FI  129.24 10 12.92 1.53 0.2208 
Quadratic 27.53 5 5.51 0.56 0.7318 
Cubic (aliased) 61.25 5 12.25 1.62 0.3050 
Residual 37.84 5 7.57 – – 
Total  100848.1 31 3253.17 – – 

 
 

Table B-15.  Factorial experiment:  lack-of-fit test for 28-day strength 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Linear  219.79 21 10.47 1.16 0.4972 
2FI  90.55 11 8.23 0.91 0.5942 
Quadratic 63.02 6 10.50 1.16 0.4620 
Cubic (aliased) 1.76 1 1.76 0.20 0.6813 
Pure error 36.08 4 9.02 – – 

 
 

Table B-16.  Factorial experiment:  ANOVA for 28-day strength model 
  

Source Sum of Squares DF Mean Square F Value Prob > F
Model 300.21  4 75.05 7.87 0.0003 
 A 16.57  1 16.57 1.74 0.1990 
 D 223.41  1 223.41 23.43 < 0.0001 
 E 7.47  1 7.47 0.78 0.3842 
 AE 52.76  1 52.76 5.53 0.0265 
Residual 247.94  26 9.54 – – 
 Lack of fit 211.86  22 9.63 1.07 0.5389 
 Pure error 36.08  4 9.02 – – 
Cor total 548.15  30 – – – 
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Table B-17. Factorial experiment:  summary statistics for 28-day strength model 
  

Std. Dev.  3.09 R-Squared 0.5477 
Mean 56.88 Adj R-Squared 0.4781 
C.V. 5.43 Pred R-Squared 0.3997 
PRESS 329.05 Adeq Precision 9.964 

 
 

Table B-18.  Factorial experiment:  coefficient estimates for 28-day strength model 
 

Factor Coefficient 
Estimate DF Standard  

Error 
95% CI 

Low 
95% CI 

High 
Intercept 56.88 1 0.55 55.74 58.02 
A (w/c) -0.83 1 0.63 -2.13 0.46 
D (HRWRA) 3.05 1 0.63 1.76 4.35 
E (silica fume) 0.56 1 0.63 -0.74 1.85 
AE 1.82 1 0.77 0.23 3.40 

 
 
Model equation for 28-day strength in terms of coded factors: 
 
28-day strength = 56.88 – 0.83*A + 3.05*D + 0.56*E + 1.82*A*E 
 
Model equation for 28-day strength in terms of actual factors: 
 
28-day strength = 124.0 – 227.3*w/c + 3390*HRWRA – 3937.5*silica fume  

+ 10262*w/c*silica fume 
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Figure B-21.  Factorial experiment:  normal probability plot for 28-day strength

Figure B-22.  Factorial experiment:  raw data plot for 28-day strength (hollow 
squares indicate control runs) 
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Figure B-23.  Factorial experiment:  scatterplot of 28-day strength vs. w/c 

Figure B-24.  Factorial experiment:  scatterplot of 28-day strength vs. fine aggregate
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Figure B-26.  Factorial experiment:  scatterplot of 28-day strength vs. HRWRA 

Figure B-25.  Factorial experiment:  scatterplot of 28-day strength vs. coarse aggregate 
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Figure B-27.  Factorial experiment:  scatterplot of 28-day strength vs. silica fume 

FIgure B-28.  Factorial experiment:  means plot for 28-day strength 
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Figure B-30.  Factorial experiment:  lag plot for 28-day strength 

Figure B-29.  Factorial experiment:  28-day strength vs. run sequence 
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B.2.4  RCT Charge Passed (coulombs) 
 

Table B-19.  Factorial experiment:  sequential model sum of squares for RCT charge  
  passed 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Mean 3155867 1 3155867 – – 
Linear 393517.2 5 78703.43 27.43 < 0.0001 
2FI 15156.50 10 1515.65 0.40 0.9252 
Quadratic 44410.76 5 8882.15 7.31 0.0040 
Cubic (aliased) 10046.83 5 2009.37 4.77 0.0557 
Residual 2104.61 5 420.92 – – 
Total 3621103 31 116809.8 – – 

 
 

Table B-20.  Factorial experiment: lack-of-fit test for RCT charge passed 
 

Source Sum of Squares DF Mean Square F Value Prob > F 
Linear 69614.70 21 3314.99 6.30 0.0432 
2FI 54458.20 11 4950.75 9.41 0.0221 
Quadratic 10047.44 6 1674.57 3.18 0.1410 
Cubic (aliased) 0.61 1 0.61 .001 0.9745 
Pure error 2104.00 4 526.00 – – 

 
 

Table B-21. Factorial experiment:  ANOVA for RCT charge passed model 
  

Source Sum of Squares DF Mean Square F Value Prob > F 
Model 441455.3 6 73575.89 74.25 < 0.0001 
 A 81666.67 1 81666.67 82.42 < 0.0001 
 B 6868.17 1 6868.17 6.93 0.0146 
 C 11440.67 1 11440.67 11.55 0.0024 
 E 292604.2 1 292604.2 295.30 < 0.0001 
 E

2 38369.41 1 38369.41 38.72 < 0.0001 
 AE 10506.25 1 10506.25 10.60 0.0034 
Residual 23780.54 24 990.86 – – 
 Lack of fit 21676.54 20 1083.83 2.06 0.2537 
 Pure error 2104.00 4 526.00 – – 
Cor total 465235.9 30 – – – 
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Table B-22.  Factorial experiment:  summary statistics for RCT charge passed model 
 

Std. Dev.  31.48 R-Squared 0.9489 
Mean 319.06 Adj R-Squared 0.9361 
C.V. 9.87 Pred R-Squared 0.8784 
PRESS 56577.00 Adeq Precision 34.166 

 
 

Table B-23.  Factorial experiment:  coefficient estimates for RCT charge passed model 
 

Factor Coefficient 
Estimate DF Standard  

Error 
95% CI 

Low 
95% CI 

High 
Intercept 291.11 1 7.22 276.20 306.01 
 A (w/c) 58.33 1 6.43 45.07 71.59 
 B (fine agg) -16.92 1 6.43 -30.18 -3.66 
 C (coarse agg) -21.83 1 6.43 -35.09 -8.57 
 E (silica fume) -110.42 1 6.43 -123.68 -97.16 
 E2 36.11 1 5.80 24.14 48.09 
 AE -25.63 1 7.87 -41.87 -9.38 

 
 
Model equation for RCT charge passed in terms of coded factors: 
 
RCT charge passed = 291.11 + 58.33*A – 16.92*B – 21.83*C – 110.42*E + 36.11*E2  
 – 25.63*A*E 
 
Model equation for RCT charge passed in terms of actual factors: 
 
RCT charge passed = 635.4 + 4445.6*w/c – 1199.8*fine agg – 1548.5*coarse agg  

– 31651*silica fume + 1.635 x 106*(silica fume)2  

– 1.448 x 105*w/c*silica fume 
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Figure B-31.  Factorial experiment:  normal probability plot for RCT charge passed 

Figure B-32.  Factorial experiment:  raw data plot for RCT charge passed (hollow squares
indicate control runs) 
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Figure B-33.  Factorial experiment:  scatterplot of RCT charge passed vs. w/c 

Figure B-34.  Factorial experiment:  scatterplot of RCT charge passed vs. fine aggregate 
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Figure B-35.  Factorial experiment:  scatterplot of RCT charge passed vs. coarse aggregate

Figure B-36.  Factorial experiment:  scatterplot of RCT charge passed vs. HRWRA 
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Figure B-37.  Factorial experiment:  scatterplot of RCT charge passed vs. silica fume 

Figure B-38.  Factorial experiment:  means plot for RCT charge passed 
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Figure B-40.  Factorial experiment:  lag plot for RCT charge passed 

Figure B-39.  Factorial experiment:  RCT charge passed vs. run sequence 
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ABSTRACT 
 
 
This user’s guide provides instructions for and examples of using the Concrete Optimization 
Software Tool (COST), a joint product of the Federal Highway Administration and the National 
Institute of Standards and Technology.  COST provides an Internet-based system for optimizing 
concrete performance based on statistical experiment design and analysis methods.  Working 
with local raw materials, COST designs an experimental program of concrete mixtures to be 
prepared and evaluated.  In these mixtures, the user can vary the water-to-cement (w/c) ratio and 
other concrete mixture parameters such as the cement, mineral and chemical admixture, and 
aggregate contents.  Once the measured responses (properties) for the prepared concretes are 
input into the COST system, it analyzes the results and determines the optimum mixture 
proportions based on user-supplied performance criteria.  Results and analysis are provided in 
both graphical and numerical formats to aid in interpretation.  Typical uses of COST might be to 
design a concrete that meets all specifications at minimum cost or to design a concrete that 
provides maximum durability within a specific cost range. 
 
Keywords: Building technology, concrete, experiment design, mixture proportioning, 
optimization, response surfaces.
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SECTION 1 
Overview 

 
C1.1  Introduction 
 
In the simplest case, portland cement concrete is a four-component mixture of water, portland 
cement, fine aggregate, and coarse aggregate.  Additional components, such as chemical 
admixtures (air entraining agents, superplasticizers) and mineral admixtures (coal fly ash, silica 
fume, blast furnace slag), may be added to the basic mixture to enhance certain properties of the 
fresh or hardened concrete.  High-performance concrete mixtures, which may be required to 
meet several performance criteria (e.g., compressive strength, elastic moduli, rapid chloride 
permeability) simultaneously, typically contain at least six components.  Thus, optimizing 
mixture proportions for high-performance concrete, which contains many constituents and is 
often subject to several performance constraints, can be a difficult and time-consuming task. 
 
The Concrete Optimization Software Tool (COST) is an online interactive system developed to 
assist engineers, concrete producers, and researchers in optimizing portland cement concrete 
mixtures for their particular applications.  COST applies response surface methodology (RSM), a 
collection of statistical experiment design and analysis methods, to the problem of optimizing 
concrete mixture proportions.  RSM is often used in industry for product development, 
formulation, and improvement, and is applicable to problems such as concrete mixture 
proportioning where several input variables (factors) influence a performance measure 
(response).   
 
COST is intended to provide an introduction to concrete practitioners who are unfamiliar with 
the concepts and process of applying RSM to concrete mixture proportioning.  COST allows 
users to learn how RSM can be applied to the problem of optimizing concrete mixtures. 
 
There are two scenarios for which COST could be applied:   
 
1. The first, and probably most common, would be the case where a user wants to proportion a 

concrete mixture to meet a set of specifications at minimum material cost.   
 
2. The second is the case where the user wants to maximize (or minimize) a particular response 

or responses, irrespective of cost. 
 
COST can be used to optimize cement paste, mortar, or concrete mixtures.  In all three cases, 
varying the mixture component proportions affects both fresh and hardened properties of the 
paste, mortar or concrete.  The properties (responses) depend on the proportions of the 
components.  Table C-1 lists examples of typical components and responses for concrete 
mixtures (components and responses other than those listed can be used). 
  
In COST, the water-cement (w/c) ratio (or water-cementitious materials (w/cm) ratio) is varied 
along with up to four additional components.  These are referred to as variable factors.  Other 
factors may be included in the mixture at fixed (constant) levels, and are referred to as fixed 
factors.  Up to five concrete properties, or responses, (e.g., slump, strength, air content, cost, etc.) 
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can be designated by the user according to the requirements of the application.  These concepts 
are explained more fully in section 2. 
 

Table C-1.  Examples of components and responses 
 

Components Responses 
Water 
Cement (including blended cements) 
Mineral admixtures 
(e.g., fly ash, silica fume, slag, 
metakaolin) 
Chemical admixtures 
(water reducers, retarders, air 
entraining agents) 
Aggregate 

Fresh properties 
(e.g., slump, air content, unit 
weight, temperature, set time) 
Mechanical properties  
(e.g., strength, modulus of elasticity, 
shrinkage, creep) 
Durability  
(e.g., freeze-thaw, scaling, alkali 
silica reaction, sulfate attack, 
abrasion) 

 
COST is accessible via the Internet.  The program consists of a front-end HTML interface that 
allows the user to enter required information.  Underlying code (written in C) processes the 
input, generates the experiment designs and mixture proportions, calls routines for statistical 
analysis, and generates output.  The statistical analysis routines are part of an interactive 
statistical software package, DATAPLOT, which was developed at the National Institute of 
Standards and Technology (NIST). 
 
C1.2  Scope 
 
COST is not intended to supplant or compete with commercially available experiment design 
and analysis software packages.  Rather, the purpose of COST is to introduce to the concrete 
practitioner the concepts of statistical experiment design and analysis using RSM and how they 
might be applied to concrete mixture proportioning.  COST is specifically geared toward the 
application of these methods to concrete mixture proportioning.   
 
This section provides a general overview of the COST program.  Section 2 of this manual 
provides step-by-step instructions for using COST.  Section 3 contains a glossary of terms, 
additional details on the statistical aspects of the experiment designs and analyses used, and a list 
of references. 
 
C1.3  System Requirements 
 
To use COST, your system must have the following components and settings: 
 
• Personal computer (Pentium®1 or equivalent) with video card and monitor set for 800 x 600 

resolution (min) and 65536 colors. 
                                                           
1 Certain commercial products are identified to completely specify the COST system.  In no case does such 

identification imply endorsement by NIST or the FHWA or that the identified products are the best available for 
the purpose. 
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• Access to the Internet (World Wide Web) and one of the following browsers:  Netscape 

Navigator 4.0 (or above) or Microsoft® Internet Explorer 4.0 (or above).  The COST 
interface uses both frames and JavaScript. 

 
C1.4  Disclaimer 
 
This software was developed at NIST by employees of the Federal Government in the course of 
their official duties.  Pursuant to Title 17, Section 105 of the U.S. Code, this software is not 
subject to copyright protection and is in the public domain.  COST is an experimental system.  
NIST and the Federal Highway Administration (FHWA) assume no responsibility whatsoever 
for its use by other parties, and make no guarantees, expressed or implied, about its quality, 
reliability, or any other characteristic.  We would appreciate acknowledgement if the software is 
used. 
 
The U.S. Department of Commerce and the U.S. Department of Transpotation make no 
warranty, expressed or implied, to users of COST and associated computer programs, and 
accepts no responsibility for its use.  Users of COST assume sole responsibility under Federal 
law for determining the appropriateness of its use in any particular application; for any 
conclusions drawn from the results of its use; and for any actions taken or not taken as a result of 
analyses performed using these tools. 
 
Users are warned that COST is intended for use only by those competent in the field of concrete 
technology and is intended to supplement the informed judgment of the qualified user.  Lack of 
accurate predictions by the COST models could lead to erroneous conclusions with regard to 
materials selection and design.  All results should be evaluated by an informed user. 
 
 
C1.5  General Information 
 
C1.5.1  COST Homepage and Main Menu 
 
The COST homepage may be accessed at http://ciks.cbt.nist.gov/cost.   The COST homepage is 
shown in figure C-1. 
 
The homepage contains a brief overview of the COST program.  The blue bar on the left side of 
the screen is the main menu.  Menu selections are described briefly below.  Details on each step 
are provided in section 2, “Using COST.” 
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Figure C-1.  COST homepage 

 
COST Home—allows user to return to the initial screen (figure C-1) at any time. 
 
Specify Responses—user enters information on responses to be measured.  Responses are the 
measured properties of the concrete (fresh or hardened) such as slump, air content, strength, 
shrinkage, etc., that are specified for the particular project.   
 
Specify Mixtures—user enters information on mixture components and proportions, and COST 
generates an experimental plan. 
 
View Experimental Plan—user can view a previously generated experimental plan. 
 
Run Trial Batches—contains guidelines for performing the trial batches according to the 
experimental plan.  This step is performed by the user in his/her laboratory, and involves 
batching, fabricating, curing, and testing specimens.  Types of specimens and test methods used 
will depend on the responses specified in step 1.  It is the user’s responsibility to determine the 
appropriate test method to use. 
 
Enter Results—user enters test results for each trial batch and each response.  
 
Analyze Data—COST provides 10 analysis tasks to assist the user in analyzing and interpreting 
the results.  The tasks include checking the experiment design, looking at trends in the data 
graphically, generating empirical (quadratic) models for each response, and optimizing according 
to individual runs, means, and models.  
 
Summarize Analysis—summary of main results of analysis. 

Menu 
Frame 

Links to 
NIST & 
FHWA 

homepages 

Overview 
of COST 
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User’s Guide—HTML version of the COST User’s Guide.  A PDF version is also available for 
download. 
 
FAQ’s—frequently asked questions. 
 
References—a list of references on statistics, response surface methods and DATAPLOT 
(software used by COST). 
 
Glossary—a glossary of statistical terms. 
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SECTION 2 
Using COST 

 
 
C2.1  Background and Preliminary Planning 

Using COST requires several steps, including planning, running trial batches, entering results, 
analyzing, interpreting, and summarizing results. These tasks have been divided into the 
following six steps (as listed in the COST menu): 
 
• Specify responses. 
• Specify mixtures. 
• Run trial batches. 
• Enter results. 
• Analyze data. 
• Summarize analysis. 
 
In most cases, these steps will be performed in the order listed above.  Each step is described in 
detail in the sections below. 
 
Before starting the six-step process, the user must perform some preliminary steps: 
 
1. Define the overall objective of the project.  Typical objectives include the following: 

 
o Minimize cost while meeting several performance criteria for responses. 
o Minimize or maximize a single response or several responses. 

 
2. Define the properties (responses) and mixture components (factors) to be included, and 

define which will be variable or fixed factors.  Variable factors include w/c or w/cm plus up 
to four additional components.  Additional factors may be included at fixed levels.  See  
“Background Information” below for further details. 
 

3. Define the performance criteria (most likely based on the job specifications) for each 
response, and the numerical ranges for each factor. 
 

4. Collect necessary material information (e.g., properties and costs of each component).  The 
required information for each type of material is listed in table C-2.   

 
C2.1.1  Responses 
 
Responses are the concrete properties of interest that will be measured and compared to specified 
performance criteria (i.e., limits on allowable values of the responses).  The responses are 
dependent variables; that is, the value of a measured response depends on the settings of the 
independent variables, or factors (see step 2 below).  Responses and performance criteria are 
often dictated by specifications.  For example, the specifications for a particular job may indicate 
that the concrete must have a slump between 50 mm and 100 mm, an air content between 4.5 
percent and 7.5 percent by volume, and 28-day strength greater than 69 MPa.  The responses in 
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this case are slump, air content and 28-day strength, and the performance criteria are the ranges 
of acceptable values of the responses.   
 
C2.1.2  Factors 
 
The factors are the independent variables that affect the measured values of the responses.  For 
concrete mixtures, these factors include mixture proportions (relative amounts of each 
component material) as well as others related to construction practice and environmental 
conditions.  COST assumes that construction and environmental conditions are fixed (as in the 
case of a set of laboratory or plant trial batches), so the factors of concern are the mixture 
proportions for each component.   
 
Concrete can contain a variety of component materials.   Allowable material types for this 
version of COST include the following: 
 
• Water. 
• Cement. 
• Mineral admixtures (up to 4): fly ash, silica fume, slag, other (user specified). 
• Chemical admixtures (up to 3): all user specified. 
• Aggregates (up to 3): coarse, fine, other (user specified). 
 
COST always requires that either w/c or w/cm be included as a variable factor.  Thus, the two 
mixture components water and cement are accounted for in this single factor. 
 
Factors may be variable or fixed (set at a constant level).  For concrete mixture proportioning, 
variable factors would usually be the mixture components expected to have the most significant 
effects on the responses.  Fixed factors would be those expected to have little or no effect, and 
would be held constant in the experiment.   Any of the factors included in COST may be set as 
variable or fixed; however, COST limits the user to a maximum of five variable factors for any 
one experiment (the greater the number of variable factors, the greater the number of trial 
batches required).   Because w/c or w/cm is always considered to be one factor, up to six material 
components (water, cement, and four others) may be varied. 
 
For all variable factors, low and high settings, or levels, must be defined.  The low and high 
settings are the range over which the factor will vary.  For example, w/c could have a range of 
0.35 (low level) to 0.45 (high level), or silica fume could have a range of 5 to 10 percent (cement 
mass replacement).  For fixed factors, a fixed (constant) level is specified.  
 
Table C-2 summarizes the information required for different types of materials. 
  
Once the user has decided on the factors to include, defined their ranges (for variable factors) or 
constant levels (for fixed factors), and obtained other necessary information (table C-2), the 
information may be entered into COST to generate a trial batch plan.   
 
In most cases, the selection of components and their ranges is up to the user; however, in some 
cases, some of the factors and levels may be designated in specifications.  For example, a 
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specification may have a maximum w/c, or minimum silica fume content.  COST does not 
provide guidance on the selection of minimum and maximum values for the components. 
 

Table C-2.  Information required for different materials 
 

Material Information Required 

Water None 

Cement Specific gravity 
Cost ($/kg) 

Mineral 
admixture 

Replacement rate (percent mass fraction of cement) 
Specific gravity 
Cost ($/kg) 

Chemical 
admixture 

Dosage rate (liters per kg cement) 
Specific gravity 
Percent solids (by mass fraction) 
Cost ($/liter) 

Aggregates 

Volume fraction (or mass fraction) 
Specific gravity 
Absorption (%) 
Moisture content (%) 
Cost ($/kg) 
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C2.2  Step 1—Specify Responses 
 
When “Specify Responses” is selected from the main menu, a form entitled “COST Input Form: 
Response Information” appears in the right frame.  This form is shown in figure C-2. 
 
 

 
 

Figure C-2.  “Response Information” form 
 
Referring to figure C-2, the following information must be entered into COST for each response: 
 
• A name for the response.  The name should be as short as possible (no more than 10 

characters) and may include alphanumeric characters and underscores (e.g., slump,  
28-day_str).  No other characters are allowed. 

 
• The units in which the response is measured. 
 
• A lower limit for the response, if applicable.  This would be a specified minimum value 

(e.g., minimum 1-day strength of 15 MPa).  If there is not a lower limit for the response, a 
default value of –100 is used. 

 
• An upper limit for the response, if applicable.  This would be a specified maximum value 

(e.g., maximum rapid chloride permeability (RCT) test result of 1000 coulombs).  If there is 
no upper limit, a default value of 99999 is used. 
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• A result weight factor between 0 and 1, to indicate the relative importance of the response 
in optimization, compared to the other responses.  A factor of 1 indicates most important.  
The default value is 1 for all responses.  If all responses are of equal importance, use the 
default values. (Note:  to optimize a single response while ignoring all others, set the weight 
factor of the response of interest to 1 and the weight factors of all others to zero). 

 
• The type of weight function to use in optimization.  Choices are: 
 

o Minimum value is best (linear decreasing from 1 to 0 over response range). 
o Maximum value is best (linear increasing 0 to 1 over response range). 
o Target value is best (linear increasing from 0 to 1 over lower half of response range, and 

decreasing from 1 to 0 over upper half of response range). 
o Within range (all values in range are equally acceptable but no values outside range are 

acceptable). 
 

The response range is defined by the lower and upper limits specified above, or by the 
minimum (or maximum) value of the response obtained in the experiment if it is greater than 
(less than) the lower (upper) limit.  A different type of weight function can be specified for 
each response, if desired. 
 

• A filename for the project, eight characters or fewer (alphanumeric characters only) and no 
extension.  The filename will be unique to a particular project, and COST will create several 
files using the same filename with different extensions as you proceed through the steps 
(Note: remember this filename, as it will be needed in subsequent steps as well). 

 
After entering the filename, the user should click on “Submit” to submit the completed form 
information to COST, or “Reset” to reset all settings to their default values.    
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C2.3  Step 2—Specify Mixtures 
 
When “Specify Mixtures” is selected from the main menu, a form entitled “COST Input Form: 
Mixture Factors and Information” appears.  Figure C-3 shows the first two sections of this form.  
The instructions for completing these sections are listed below. 

 

Figure C-3.  First two sections of “Mixture Factors and Information” input form 

 
C2.3.1  Instructions for Section 1: Number of Parameters (Factors) to Vary 
 
In section 1, the number of parameters (factors) to vary is selected.  The user may select 2 to 5 
parameters to vary (default is 4).  The number of experimental runs is also shown for each 
selection.  The number of experimental runs depends on whether the user includes 3 or 5 center 
points in the design (the number of center points is entered at the bottom of the form). 
 
• To select the number of parameters to vary, use the pulldown menu. 
 
C2.3.2  Instructions for Section 2: Select w/c or w/cm 
 
In section 2, the user selects w/c or w/cm as a factor, defines the range (low and high settings) 
for this factor, and enters information about the cement.   
 
• To select w/c or w/cm , click on the radio button next to the desired choice.   
 
• Enter the low and high settings of w/c or w/cm (by mass fraction) in the boxes labeled  

“min” and “max”, respectively. 
 
• Enter the cement specific gravity. 
 
• Enter the cement cost in dollars per kilogram. 
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C2.3.3  Instructions for Section 3:  Select Other Mixture Components 
 
The third section of the form allows selection of other mixture components (mineral admixtures, 
chemical admixtures, and aggregates).  A maximum of four additional variable factors, and any 
number of fixed factors, may be included.  The total number of variable factors selected 
(including w/c or w/cm, selected in section 2) must match the “number of parameters to vary” 
selected in section 1.   
 
The additional factors are selected from three types of materials:  mineral admixtures, chemical 
admixtures, and aggregates.  Regardless of type, the first task is to indicate whether the factor 
will be included or not, and if it will be included, whether it will be variable or fixed.  This 
setting is defined using a pulldown menu on the left of the factor name, as described in the 
following instructions (refer to figure C-4 below): 
 
• To include a component as a variable factor, select “On” in the pulldown menu at the left.  

Enter the type of material (if not predefined), the low and high settings in the “min” and 
“max” boxes, and the additional information in the other boxes. 

 
• To include a component as a fixed factor (held at a constant level), select “Off” in the 

pulldown menu on the left, and enter a nonzero fixed setting in the “min” box (the entry in 
the “max” box will be ignored).  Then enter the additional information for each fixed factor 
in the boxes. 

 
• To exclude a component completely, select “Off” in the pulldown menu on the left, and set 

the value in the “min” box to zero. All other information for these factors is ignored.  NOTE:  
this is the default setting for all factors. 

 

 
Figure C-4.  Third section of “Mixture Factors…” form (mineral admixtures section) 
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C2.3.4  Specific Instructions for Mineral Admixtures 
 
There are three pre-designated mineral admixtures (fly ash, silica fume, and slag), plus one blank 
for a user-designated choice.   Mineral admixtures ranges are defined in terms of percent cement 
mass replacement.  Specific gravity and cost must also be entered. 
 
• Enter the name of the mineral admixture (if the user-defined box is used). 
 
• To define the range for a mineral admixture, enter the min and max values in units of 

percent cement mass replacement. 
 
• Enter the specific gravity of the mineral admixture. 
 
• Enter the cost of the mineral admixture in dollars per kilogram. 
 
C2.3.5  Specific Instructions for Chemical Admixtures 
 
All chemical admixtures are user-designated, and chemical admixtures ranges are defined in 
terms of dosage rate in liters per kg of cement.   

 
Figure C-5.  Third section of “Mixture Factors…” input form (chemical admixtures  

 section) 
 
• Enter the name of the chemical admixture. 
 
• To define the range for a chemical admixture, enter the min and max values in units of 

dosage in liters per kilogram of cement (note that this is L/kg, not L/100 kg!!). 
 
• Enter the specific gravity of the chemical admixture. 
 
• Enter the percent solids (by mass fraction) of the chemical admixture. 
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• Enter the cost of the chemical admixture in dollars per liter. 
 
C2.3.6  Specific Instructions for Aggregates 
 
Aggregates include two predesignated types (coarse and fine), and one blank for a user-
designated choice.  The user-designated choice may be used for an additional aggregate or fibers.  
Aggregates may be defined in terms of volume fraction or mass fraction.  Steps for entering 
aggregate information (see figure C-6) are as follows: 

Figure C-6.  Third section of “Mixture Factors…” form (aggregates section) 
 

• Select how the aggregate range will be defined (by volume or by mass) using the pulldown 
menu at the top of the section (see figure 6). 

 
• Enter a name for the aggregate (if the user-defined box is used). 
 
• To define the range for the aggregate, enter the min and max values in units of volume 

fraction or mass fraction (depending on the selection made above). 
  
• Enter the bulk specific gravity for the aggregate. 
 
• Enter the absorption of the aggregate (in percent by mass of aggregate). 
 
• Enter the moisture content of the aggregate as batched (in percent by mass of aggregate). 
 
• Enter the cost of the aggregate in dollars per kilogram. 
 
C2.3.7  Instructions for Section 4: Additional Information 
 
In section 4, the user enters additional information needed to generate the trial batch 
experimental plan.  This information includes the number of center points to be run and a  
random number seed.  Steps for entering this information (see figure C-7) are as follows: 
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Figure C-7.  Fourth section of “Mixture Factors…” form (additional information section) 
 
• Enter the number of center points to use in the experiment, using the pulldown menu.  

Center points are experimental runs in which all factors are set at the midpoints of their 
ranges.  The coded values for the low and high settings are –1 and +1, respectively.  The 
coded values for the center points are zero.  Center point mixes are replicated to estimate 
pure error and also may be used as control mixes to assess variation over time.  It is a good 
idea to run at least 3 center points to assess this variation.    

 
• Enter a random number seed (any number less than zero).  This is used to generate a 

random run order for the experiment. 
 
• Enter the filename in which to store the information.  This name should be the same as that 

entered in “Specify Responses.”  Again, the filename is entered without an extension (COST 
adds the appropriate extensions as necessary). 

 
After entering the filename, the user may click on “Submit” to submit the information to COST 
and generate the experimental plan, or the user may click “Reset” to set all values back to their 
defaults (all information entered will be lost).     
 
When “Submit” is clicked, COST processes the input and generates an experimental plan, which 
is displayed on the screen.  The user should print this plan using the “PRINT” command in the 
browser.   An example of a portion of an experimental plan generated by COST is shown in 
figure C-8.  
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Figure C-8.  Portion of an experimental plan generated by COST 
 
The columns in the printed table shown above correspond to the run number (the order in which 
the mixtures should be prepared), the mixture number (the mixture number according to standard 
experiment design tables), mixture proportions in terms of the mass of each component per cubic 
meter of concrete, and an estimated cost for each mixture based on the individual material costs 
provided by the user.  
 
If the plan is not printed immediately, it can be viewed and printed at a later time by selecting 
“View Expt Plan” from the main menu. 
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C2.4  Step 3—Run Trial Batches 
 
The next step after generating an experimental plan is to actually perform the experiment.  The 
experiment in this case is a set of trial batches from which specimens will be fabricated and 
tested for the responses and mixture components specified in steps 1 and 2.  Before running the 
experiment, steps 1 and 2 must be complete, and the user should have a printed copy of the 
experimental plan containing the mixture proportions for the set of trial batches. 
 
When “Run Trial Batches” is selected from the main menu, the screen shown in figure C-9 
appears.  This screen does not require any input; rather, it provides instructions and guidelines 
for running the trial batches.  These guidelines are also provided below. 
 

 
 

Figure C-9.  “Run Trial Batches” screen 
 
 
C2.4.1  Guidelines for Running Trial Batches 
 
Running the experiment is the most time-consuming task because it involves physically running 
the experimental plan and collecting data on the performance variables of interest. Running the 
experiment includes the following tasks: 
 
• Ordering and preparing the materials needed for the experiment. 
• Ensuring that equipment is available and ready for use. 
• Coordinating personnel. 
• Batching, fabricating, testing, and recording data (running the experiment). 
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The following sections describe important considerations to keep in mind while performing the 
experiment. 
 
C2.4.2  Nuisance Factors and Run Sequence Randomization 
 
There are three types of factors that affect the responses in an experiment: 
 
• Variable factors. 
• Fixed factors. 
• Nuisance factors. 
 
The primary goal of the experiment is to determine optimal settings of the variable factors 
specified in step 1. These are the major factors of interest.  Depending on the objective, some 
fixed factors may have also been designated.  These are less important factors that are held 
constant throughout the experiment.   
 
The variable factors and fixed factors are controlled in the experiment.  However, in addition to 
these, there are other factors that are not controlled in the experiment but which could possibly 
affect the experimental results.  These are called nuisance factors.  It is often assumed that these 
nuisance factors do not, or should not, have any effect, but in reality they may have an effect.  
Nuisance factors may include the following:  
 
• Mid-experiment changes in instruments, equipment, environmental conditions, (temperature, 

pressure, humidity, etc.), measuring devices. 
• Test procedures/protocols. 
• Day of week. 
• Time of day. 
• Operators. 
 
Nuisance factors may affect the measured test results, which would in turn affect the data 
analysis, and ultimately the final conclusions (i.e., the estimated values for the optimal mixture 
proportions). 
 
Run sequence randomization is used to minimize the effect of nuisance factors.  Experiment 
designs are usually generated in a “standard order” based on the settings of the factors. This 
order (used by COST in the data analysis) is indicated by the “mixture number” column (column 
2) in the experimental plan generated by COST (figure C-8).  Run sequence randomization is the 
general experiment design technique in which random numbers are assigned to each of the 
specified runs in the experiment, and these random numbers determine the order in which the 
experiment is to be run (the “run order” or “run sequence”).  The experimental plan generated by 
COST is printed in run order—the first column of the experimental plan, labeled “run number,” 
is the run order to be used for the experiment (figure C-8).  
 
It is very important to follow the run sequence in order to minimize possible error in the 
experimental results caused by known or unknown nuisance factors in the experiment.  
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C2.4.3  Running the Experiment  
 
The quality and accuracy of the final mixture proportion settings will depend very much on the 
care taken in carrying out the experiment.  The following is a list of recommended practices: 
 
• Attention to detail, consistency and proper execution in batching, mixing, fabricating, curing, 

testing, and recording results are essential.  
 
• For each trial batch, use several (preferably 3 or more) specimens for each test. 
 
• The experimental plan contains 3 or 5 center point runs.  These are replicates (repeats of 

batches using the same settings) which can be used during the experiment as control mixes.  
Scheduling to allow for one control mixture per week is recommended—in this way 
significant week-to-week variation can be detected. 

 
• If possible, the same operator should perform the same tasks throughout the experiment. 
 
• Mistakes will inevitably occur even in the best laboratories, and it is important to 

acknowledge this and to be prepared to repeat a batch if it is suspected that an error has 
occurred. 
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C2.5  Step 4—Input Results 
 
This section describes how to input experimental results into the COST program for analysis. 
The following instructions assume that steps 1, 2, and 3 have been successfully completed.   
Within this step, you may perform the following tasks: 

 
• Change cost information (optional). 
• review the experimental plan (optional). 
• enter or edit the experimental results (data) for analysis (required). 
 
Instructions for each of these tasks are provided below. 
 
C2.5.1  Instructions for Changing Cost Information 
 
Before entering the test results, you may optionally change the costs of the raw materials, 
if you have updated information since the project began. Please note that these updates 
should be made before entering in the data (test results) as described below; otherwise, 
the new costs will not be in effect during the analysis phase.  To do so, click on the link “Update 
cost information.”  You will see a box with the caption “Datafile name”.  Enter the name of your 
datafile (no extension) in the box, and press the “Submit” button.  A form entitled “COST Input 
Form:  Update Material Costs for ‘DATAFILE’” will appear.  Make any necessary changes to the 
material costs and press “Submit” to save the changes. 
 
If you make a mistake and would like to reset all costs to their default values, press “Reset,” 
before pressing the “Submit” button.  If you decide not to change the costs, simply press the back 
button on your browser to return to the previous page, or select any entry from the blue menu 
sidebar. 
 
C2.5.2  Instructions for Entering/Editing Data 
 
When you are ready to enter your data, click on “Enter or edit data in chronological (run) 
order.”  You will then see a screen entitled “COST Input Form: Testing Results (Project 
Filename).”  Enter the project filename (with no extension) and press “Submit.”   
 
The next screen will be “COST Input Form:  Test Results for ‘DATAFILE.’”  The first part of this 
form, as shown in figure C-10, allows you to make changes to the response information that you 
entered in step 1 (instructions are the same as for step 1 described previously).  If you do not 
have any changes to make in the response information, simply scroll down to the second part of 
the form. 
 
The second part of the form is for entry (or editing) of the experimental results, or data. The last 
two lines in the figure C-10 show two rows of entries for the experimental test results.  The first 
column shows the run order for the experiment, and the second column shows the mixture 
number (these should correspond to the run and mixture numbers in your experimental plan).  
The third column is “Cost” (the first response). 



 C-24

 
 

Figure C-10.  Data entry form for the COST system 
 
IMPORTANT: Because the total cost of each mixture is calculated from the individual materials 
costs entered in step 1, the third column contains nonzero entries that should not be changed.   
 
The responses requiring data entry start in the fourth column (one column per response).   

 
• If you are entering results for the first time, these columns will contain zeros.  Enter the 

appropriate results in these columns for each mixture.  
 
• If you are editing a file you already created, these columns will contain nonzero values.  

Perform any necessary editing. 
 

IMPORTANT: As you enter or edit your data, please check the input as you go for typographical 
errors and to make sure that the results are entered in the correct columns and rows. 
 
It should be noted that some of the input values shown in figure C-10 are outside of the 
acceptable range specified by the lower and upper limits, as will most likely be the case for any 
real experiment. 
 
When data entry is complete, you may use the “PRINT” button on your browser to print the 
input form.   
 
IMPORTANT:  It is highly recommended that you check the printed form for accuracy, and edit 
the information if necessary (to edit, simply follow the instructions in this section). 
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C2.6  Step 5—Analyze Data 
  
The next step after entering the data is to analyze the results, with the ultimate goal of 
determining optimal mixture proportions.  The analysis techniques employed by COST consist 
of both graphical analysis and numerical analysis (modeling).  The analysis is broken down into 
10 tasks, which are described in detail below. 
 
C2.6.1  Instructions for Changing Response Information 
 
Before analyzing the data, COST gives the user the option of changing response variable limits, 
weights, and function types.  To do so, click on “Change response variable limits, weights, and 
function types.”  You will then be prompted for the filename.  After entering the filename, press 
“Submit” and follow the instructions in the section “Step 1—Specify Responses.” 
 
C2.6.2  Analysis Tasks 
 
The analysis tasks are listed by the purpose of the task followed by the statistical tool used to 
perform the task, as shown in figure C-11. For example, the purpose of task 2 is to “Assess the 
Balance of the Design,” and the tool used is “Counts Plot Matrix of Factors.”  An example and 
explanation of each task and tool is provided below.  The output of each task is a GIF file that is 
generated by DATAPLOT.  The GIF file contains tabular output, graphical output, or a 
combination of both. 
 

 
 

Figure C-11.  Analysis menu showing individual analysis tasks 
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C2.6.2.1  Task 1:  Characterize the Response Variables 
 
This task provides a quantitative summary of the data for each response.  The result of this task 
is a table of descriptive statistics such as mean, range, and standard deviation for each response.  
An example is provided below (figure C-12). 
 
 

 
Figure C-12.  Summary statistics table (output of analysis task 1) 

 
 
The summary statistics provided for each response and the total score (TS) are described in table 
C-3 (next page). 
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Table C-3.  Description of summary statistics provided in analysis task 1 

 
Statistic Description 

PROJECT GOAL optimization goal for response 
SPEC MIN minimum value specified by user 
SPEC MAX maximum value specified by user 
DATA COUNT number of data points read(runs) 
DATA # IN SPEC number of runs with response meeting spec 
DATA % IN SPEC percentage of runs with response meeting spec 
DATA MIN minimum response value 
DATA MEAN mean response value 
DATA MEDIAN median response value 
DATA MAX maximum response value 
DATA RANGE range of response values (max – min) 
DATA SD sample standard deviation 
DATA REL. SD SSD relative to mean (coefficient of variation) 
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C2.6.2.2  Task 2:  Assess the Balance of the Design 
 
This task is a check to make sure that the design is balanced.  The result of this task is a plot 
similar to figure C-13.  Figure C-13 shows a matrix of plots showing the number of design points  
(experimental runs) at each setting for all combinations of two factors.  For example, the 
highlighted box in figure C-13 shows the number of design points for the factors X2 and X3 
(fine aggregate and coarse aggregate).   There are nine numbers in this box, representing 
different settings of the factors.  The lower left number indicates that there are 4 design points 
that have the setting “-1, -1” (in coded values) for fine aggregate and coarse aggregate.   For this 
design every set of two factors has the same experimental layout (the sets of nine numbers in 
each box are the same).  For any design generated by COST, this will always be the case.  The 
percentage in the upper left corner indicates the correlation coefficient.  Ideally, this will be zero.  
For any design generated by COST, the correlation coefficient will be zero for all sets of factors, 
indicating a balanced design. 
 

 
 
 

Figure C-13.  Output of analysis task 2 (counts plot matrix of factors) 
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C2.6.2.3  Task 3: Assess Optimality of Design Points for All Responses Jointly 
 
The purpose of task 3 is to see how all the responses compare to the specifications for each 
design point.  Figure C-14 shows the output, which is a matrix of plots comparing each 
combination of two factors.  In each large box there are nine smaller boxes, corresponding to the 
nine possible design settings for two factors.  In each smaller box there will be between one and 
five numbers, depending on the number of responses being investigated.  In the example below, 
there are five responses, and thus five numbers.  The legend at the lower left of the plot indicates 
which number in the small box corresponds to which response (Y1, Y2, Y3, Y4, Y5).  In the 
example below, the large box for X2 and X3 is highlighted, and the small box corresponding to 
settings of X2 = 0, X3 = 0 is highlighted.  The numbers in the small box indicate that for these 
settings of X2 and X3, there was 1 response for Y1 that was within the acceptable region, there 
were 7 for Y2, 2 for Y3, 11 for Y4, and 11 for Y5.  This information allows the user to assess 
how well the ranges selected for the factors allow him to meet the desired specifications.  For Y1 
and Y3, only a few responses met the specification.  Therefore, for this set of mixture 
proportions, it may be difficult to optimize these responses.  A new set of acceptance criteria 
could be defined, or different ranges for the mixture proportion factors may be needed.  Other 
analysis tasks will give the user a sense of which direction the factors must be shifted. 
 

 
 

Figure C-14.  Output of analysis task 3 (counts plot matrix of factors) 
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C2.6.2.4  Task 4: Assess Optimality of Design Points for All Responses Jointly 
 
Task 4 is similar to task 3 in assessing optimality of design points.  For each combination of two 
variable settings (e.g., X2 = 0, X3 = 0), the percentage of runs falling in at least one admissible 
region (for all responses taken together) is shown (see figure C-15).  The overall percentage for 
all the runs is given in the first text line below the title.  In this case, it is 59 percent.  The overall 
percentage for the number of design points meeting all “n” (in this case, 5) acceptance criteria 
for responses is indicated on the second line below the title.  In this case, it is zero.  The gray 
squares over the numbers in the boxes indicate the highest percentage in each box, and the 
triangles indicate the lowest percentage in the box.  This gives a quick visual cue to the settings 
that are best in meeting the acceptance criteria. 

 

 
 
 

Figure C-15.  Output of analysis task 4 
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C2.6.2.5  Task 5A: Determine Interrelationships between Response Variables 
 
Figure C-16 shows a matrix of scatterplots showing data for each combination of two response 
variables (RVs).  The admissible region for each pair of RVs is indicated as a gray box 
surrounded by dashed lines.  These plots give a sense of relationships between responses and 
also a sense of how many points fall in the admissible region (as defined by the performance 
criteria set by the user) for each pair of responses.   The numbers in the upper left corner of each 
box (e.g., 2/31 = 6 percent) indicate the number of responses falling in the admissible region.  
The large gray shaded box at the bottom left of the entire plot shows the relative ease or 
difficulty of meeting the performance criteria (i.e., falling within the admissible region) for 
single responses and for pairs of responses. 
 

 
 

Figure C-16.  Output of analysis task 5A 
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C2.6.2.6  Task 5B: Interrelationships between Response Variables and Factors 
 
The output for this task (shown in figure C-17) shows the relationship between responses and 
factors.  In each plot, the response values (Y axis) are shown for each factor level (X axis).  The 
correlation coefficient (indicating the strength of the linear relationship between Y and X) is 
shown in the upper left corner of each plot.  The stronger the linear relationship, the closer this 
value will be to 1 or –1 (depending on the slope).  Examining these plots allows the user to 
assess which factors are important (controlling) for each response.  The gray shaded boxes at the 
bottom of the plot summarize the control factors (left box, percentage indicates correlation 
coefficient) and the “weak” factors (right box). 
 

. 
Figure C-17.  Output of analysis task 5B 
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C2.6.2.7  Task 6: Assess Relationship between Response Variables and Factors 
 
This task provides an assessment of the relationship between responses and factors by examining 
plots of the mean (average) values of the responses at each factor level.  Figure C-18 shows the 
output for this task.  For each response, there is a plot of the mean values at each level of each 
factor.  The gray shaded boxes indicate the admissible region for each response. Influential 
factors are those that have a definite slope (for example, silica fume for response Y1, cost, or w/c 
ratio for Y3, 1-day strength).  The steeper the slope, the more important the factor.  A flat line (or 
nearly flat) indicates little effect of the factor (for example, fine aggregate for Y5, RCT). 
 

. 

Figure C-18.  Output of analysis task 6
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C2.6.2.8  Task 7A:  Best Settings for Each Factor Based on Means 
 
This task provides a graphical means of selecting best factor settings based on mean (average) 
values of “scoring functions” calculated for each response separately as well as a total score 
function (TS).  The total score is a weighted linear combination of scores calculated for each 
response (the weight given to each response is defined in “Step 1—Specify Responses,” as the 
result weight, a value ranging from zero to 1).  Figure C-19 shows the output from this task. 

 
The best settings (as coded values) are shown in parentheses on the right side of each plot.  The 
best setting based on total score are shown in the gray box at the bottom of the plot, in both 
coded and actual units.  As in task 6, a steep slope indicates a large influence of a particular 
factor on the score, while a flat slope indicates little or no influence.  

 
Figure C-19.  Output of analysis task 7A 
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C2.6.2.9  Task 7B:  Best Factors Based on Individual Runs 
 
This task produces a plot (figure C-20) showing the best settings for total score (weighted linear 
combination of scores for individual responses) based on individual runs.  The total scores for 
each run are calculated, sorted (lowest to highest) and plotted along the X axis.  The Y axis is 
used to differentiate between the individual runs.  Each run is indicated by its number in the 
experimental plan, and the coded values of each factor are provided in parentheses on the right.  
These values are staggered for readability.  The topmost number has the highest total score.    
 
 

. 
Figure C-20.  Output of analysis task 7B 
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C2.6.2.10  Task 8: Model Fitting and Verifications 
 
In this task, an empirical mathematical model is fitted to the data for each response, and to the 
total score, using the standard regression methods (least squares).   A full quadratic model is fit 
initially, and then reduced by eliminating terms with significance level less than 0.05.  When the 
task is selected, the response to be fitted is selected using a pull-down menu.  In addition to the 
response variables (up to five), a model may also be fitted to total score.  For a complete analysis 
of all responses, task 8 must be thus executed multiple times, once for total score and once for 
each response variable.  Output similar to figure C-21 is produced for the each selected response 
variable.   The output provides a plot for the response as a function of each factor, showing all 
response data for the coded values of each factor.  These plots may indicate trends (see for 
example, the plot for silica fume in figure C-21, which indicates a downward trend in RCT test 
results with increasing silica fume).  In addition to the plots, a summary box of the important 
terms in the model is provided to the right of the second row of plots, and the actual model is 
printed below the plots.  The model is in terms of CODED values (the model can be translated to 
actual factor values).  The model can be used to predict the response values for settings other 
than those used in the experiment (but within the experimental space)—a calculator for doing 
this is provided in task 10. 

 
Figure C-21.  Output of analysis task 8 (for response RCT) 
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C2.6.2.11  Task 9: Numerical Optimization 
 
This task uses numerical optimization techniques to identify the optimal settings for total score, 
over the entire experimental space.  This optimization is performed during the model fitting for 
total cost in task 8, so when task 9 is executed, the COST system simply returns a table 
indicating the best settings as determined by the numerical optimization, as shown in figure C-
22. 
 

 
Figure C-22.  Output of analysis task 9 
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C2.6.2.12  Task 10:  Response Prediction 
 
As shown in figure C-23, this task provides a calculator for predicting response values using the 
models from task 8.  The user enters values for each factor (in terms of actual values) and the 
program calculates the responses and the total score.  Calculations can be performed for up to 10 
different combinations of factors. 
 

 
Figure C-23. Calculator for predicting responses based on models 
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C2.7  Step 6—Summarize Analysis 
 
This step simply returns a table summarizing the three different optimum settings (from analysis 
tasks 7A, 7B, and 9) determined by the COST system, as shown in figure C-24. 
 

 
 

Figure C-24.  Example summary returned by the COST system
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