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relationships built into them. Since these datasets are known, the RAD can serve as a test bed, 
indicating how well a model reflects underlying cause-and-effect relationships. 

This report details a study performed by researchers working under the Federal Highway 
Administration’s Exploratory Advanced Research Program. In the study, the researchers created 
a RAD generation framework on macroscopic and microscopic levels for a diverse selection of 
roadway facility types and developed a web-based tool. The tool’s framework provides users 
with the ability to generate RAD for multiple years at macroscopic segment and microscopic trip 
levels. This report should be of interest to academics and researchers developing crash 
modification factors or functions and statistical models to determine how the models best 
represent real-world relationships. This volume is the first in a series. Volume Ⅱ in the series is 
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CHAPTER 1. INTRODUCTION AND MOTIVATION 

Safety analysis primarily focuses on identifying and quantifying the influences of factors that 
contribute to traffic collisions and the consequences of these factors. A traditional analysis 
paradigm that relies on observed data only allows relative comparisons between analysis 
methods and lacks the ability to show how well the methods mimic the true underlying 
crash-generation process. This process is often unobserved or known only partially, with varying 
degrees of uncertainty. At the same time, existing data sources and the availability of data for 
model calibration and validation pose significant challenges to safety performance and crash 
modification analysis. Most safety performance analysis employs cross-sectional and time series 
datasets. Researchers make assumptions about the data, but whether these assumptions truly 
characterize the safety data that are generated in the real world often remains unknown. 

One possible solution to address this issue is for researchers to artificially generate realistic 
artificial data (RAD) by making assumptions about the underlying crash generation process 
(Bonneson and Ivan 2013). These generated RAD can then provide a context for investigating 
various questions and verifying assorted assumptions related to safety performance and crash 
modification analyses. The idea is that these RAD can potentially be aggregated at any spatial or 
temporal resolution to mimic data from the real world. Furthermore, because researchers 
generating RAD have complete knowledge of the data-generation process, they can compare the 
performance of varied safety analysis methods. 

In this study, the research team proposed two approaches to generate RAD: a macroscopic and a 
microscopic approach. In the macroscopic approach, researchers generated RAD at the site level 
by segment or intersection. Roadway sites that contained traffic and roadway characteristics—
such as annual average daily traffic (AADT), lane width, shoulder width, curvature, and speed 
limit—were generated first, by facility type. The team then generated crashes using known 
model structures (e.g., Poisson and negative binomial (NB) models), based on generated site-
level characteristics. Meanwhile, the microscopic approach built a high-resolution disaggregate 
data-generation process that mimicked crash occurrences on road facilities at the trip level and 
accommodated the influence of a full range of crash-contributing factors. 

The microscopic approach employed detailed information for trips, including start and end time, 
start and end location, characteristics (including solo or group), vehicle used, and precise route. 
The crash generation process involved employing gathered data to identify vehicles involved, 
location, injury severity (including fatal, incapacitating, non-incapacitating, and uninjured), and 
crash type (including head-on, rear-end, and vehicle-pedestrian). The generated crashes were 
further aggregated based on location (intersections versus segments) and time (day, week, 
month, and year). 

Next, the research team conducted two types of case studies to supplement RAD generation and 
validate the proposed RAD frameworks. The first case study estimated different types of 
statistical models, using datasets generated by the RAD procedure developed in this study, to 
illustrate how RAD could be used to make comparisons between analysis methods. The second 
case study used driving simulation to evaluate the effects of an advanced forward collision 
warning (FCW) system on crash occurrence. 
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The three objectives of this study were as follows: 

1. Develop frameworks for RAD generation that can be used to evaluate methods used for 
both safety performance and crash modification analysis: The proposed RAD framework 
operates at both the site and trip level and incorporates the influence of a full range of 
crash-contributing factors. RAD frameworks are general enough to generate crash data 
for all roadway facility types, including segments and intersections. The frameworks can 
also generate data for different combinations of inputs, including modeling methods, 
model formulation, input specification, and unobserved heterogeneity. Researchers 
specifically focused on generating RAD to address known knowledge gaps related to 
aggregation issues, statistical and structural methodologies for safety analysis, and crash 
data challenges. 

2. Develop DREDGE as a stand-alone software application: The application is customizable 
and can be executed to prepare multiple realizations of RAD. The application embeds 
features so RAD can be distributed efficiently; this embedding ensures that the integrity 
of the RAD process for evaluating methods is maintained. The stand-alone RAD software 
can also be used to study the uncertainty and stochasticity inherent to RAD generation 
and to evaluate model robustness.1 

3. Demonstrate proposed RAD tool feasibility and applicability using two types of case 
studies: The first case study estimates different types of statistical models using the RAD 
generated from this study to demonstrate how the RAD can be used to make comparisons 
between analysis methods. The second case study uses driving simulation to evaluate the 
effects of an advanced FCW system on crash occurrence.

 
1FHWA. DREDGE (standalone RAD software). 
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CHAPTER 2. LITERATURE REVIEW 

The research team conducted a comprehensive review of previous research efforts on RAD 
approaches across various domains: statistics, econometrics, computer science, ecology, 
medicine, and psychology. In all these disciplines, the primary goal was to assess the ability of 
analysis methods to draw inferences about the underlying assumptions and assertions that 
generated the data. Researchers followed criteria to select studies for this review based on a 
simple core principle of RAD generation. The data generated in the research effort had to be 
based on a framework that was built on research assumptions—as opposed to real observed 
data-based simulation efforts. 

The criteria eliminated two major sets of transportation studies that generate simulated data. 
First, several travel demand modeling forecast systems, such as activity-based models and 
synthetic population generators, generate individual-level synthetic data—for example, Eluru, 
Bhat, and Hensher (2008), Kitamura et al.(2000), and Konduri et al.(2016). However, the 
generation is entirely based on models estimated using observed data. Second, artificial data are 
generated in microsimulation frameworks for traffic flow modeling. In these studies, the 
simulated data are generated based on well-calibrated traffic flow models—for example, Asano, 
Iryo, and Kuwahara (2010); Mamun et al. (2020); Ranade, Sadek, and Ivan (2007); and Yu and 
Abdel-Aty (2014). Hence, these studies are also not appropriate for this review. 

During the review process, the research team identified 30 research studies (based on the RAD 
generation criteria) that employed artificial data generation in their analyses. These studies 
included transportation (including transportation safety and travel behavior), medical science, 
data science, education, ecological modeling, information analytics, and environmetrics. The 
research team then prepared a summary of the literature review with the objective of developing 
a comprehensive RAD framework. Thus, as opposed to providing a study-by-study summary of 
earlier research, this review provides insight on the important elements of RAD frameworks that 
can be observed from earlier research efforts. 

A concise summary of earlier research efforts on RAD generation is presented in table 1. This 
table provides information on study objectives, dataset adopted and study region (if known), 
software and procedures followed for generating RAD, conceptual methods and framework 
employed, contributing field of the study (for example transportation safety), and exact nature of 
the dependent variable (categorical or continuous). For the ease of presentation, the studies 
presented in table 1 are categorized into two groups based on the discipline of the study: first, 
studies related to transportation and second, studies related to other disciplines, including 
statistics, economics, ecology, and computer science. 
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Table 1. Summary of existing literature on RAD generation. 

Study 
Study 

Objective(s) 

Dataset 
Adopted 
(Study 

Region if 
Known) 

Software/Procedure for RAD 
Generation Conceptual Methods Field No. of Alt. 

Transportation Domain 
Bhat (2003)  

To propose the 
use of scrambled 
Halton sequence 
for simulation 
estimation. 

 
Simulated 
dataset 

 
Generated data using unordered 
discrete choice models using 
the matrix programming 
language GAUSS (Aptech 
Systems 2023). 

 
Mixed probit and multinomial probit models 

 
Travel behavior 
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Cummings, 
McKnight, and 
Weiss (2003) 

To review three 
methods for 
estimating relative 
risks in matched-
pair crash data. 

Simulated 
and 
observed 
dataset 

Generated crash data 
employing Stata® Statistical 
Software with an assumed 
probability of fatality as a 
function of speed and seatbelt 
use (StataCorp 2023). 

Mantel–Haenszel stratified methods, double-
pair comparison method, conditional Poisson 
regression, 
and Cox proportional hazards regression  

Safety 2 

Salim et al. 
(2007) 

To simulate 
intersection 
environment and 
collision and 
traffic data 
learning. 

Simulated 
dataset 

Vehicles are generated with 
different speed, position, and 
trajectory. 
 

Ubiquitous intersection awareness 
framework Safety — 

Paez and Scott 
(2007) 

To develop a 
discrete choice 
model that 
incorporates 
elements of social 
influence and 
more conventional 
factors. 

Simulated 
dataset 

A Monte Carlo simulation was 
designed to explore the 
properties of the econometric 
model proposed. 

Logit probability formulation Travel behavior — 

Bhat et al. 
(2010) 

To propose a 
CML approach to 
estimate 
ordered-response, 
discreet choice 
models with 
flexible, copula-
based spatial 
correlation 
structures. 

Simulated 
and 
observed 
dataset (San 
Francisco 
Bay area) 

Considered three independent 
variables. Drew values from 
univariate normal distribution. 
Assumed fixed coefficients. 
Generated error terms using 
correlation structure. Generated 
25 different datasets with 500 
observations. 

Copula-based, spatial ordered-response 
model structure Travel behavior 4 
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Study 
Study 

Objective(s) 

Dataset 
Adopted 
(Study 

Region if 
Known) 

Software/Procedure for RAD 
Generation Conceptual Methods Field No. of Alt. 

Bhat and 
Sidharthan 
(2010) 

To investigate the 
ability of the 
MACML 
estimator to 
recover 
parameters from 
finite samples. 

Simulated 
dataset 

Considered five independent 
variables. Drew values from 
univariate normal distribution. 
Assumed random coefficients. 
Generated error terms from 
univariate normal distribution 
with 0.5 variance. Generated 20 
datasets with 5,000 
observations. 

Cross-sectional random coefficients model, 
panel interindividual random coefficients 
model, panel intraindividual and 
interindividual random coefficients 

Travel behavior 5 

Pinjari and 
Bhat (2010) 

To investigate 
nonworker 
out-of-home 
discretionary 
activity time-use 
and activity 
timing decisions 
on weekdays. 

Simulated 
and 
observed 
dataset (San 
Francisco 
Bay area) 

Assumed independent variable 
values were uniformly 
distributed. Assumed 
coefficients were nested 
extreme values. Generated data 
for 2,500 hypothetical 
individuals, with an assumption 
that each individual chose the 
value to maximize the total 
random utility. 

MDCNEV Travel behavior 3 

Ferdous et al. 
(2010) 

To model 
interactions in 
nonwork activity 
decisions across 
household and 
non-household 
members at the 
level of activity 
generation. 

Simulated 
and 
observed 
dataset  

Drew values for independent 
variables from univariate 
normal distribution. Assumed a 
fixed coefficient and used it to 
compute the utility for each 
individual using a linear 
combination. Generated error 
terms using predefined 
correlation structure. Repeated 
the process at least 50 times.  

Multivariate, ordered-response system 
framework Travel behavior 3, 4, 5 

Ye and Lord 
(2011) 

To examine the 
effects of 
underreporting 
crash data. 

Simulated 
and 
observed 
dataset 
(Texas) 

Weighted exogenous sample 
maximum likelihood estimator 
method was used for 
appropriately weighting the 
crash outcomes to address the 
underreporting issue in crash 
data.  

MNL, OP, and ML models Safety 5 
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Study 
Study 

Objective(s) 

Dataset 
Adopted 
(Study 

Region if 
Known) 

Software/Procedure for RAD 
Generation Conceptual Methods Field No. of Alt. 

Geedipally, 
Lord, and 
Dhavala (2012) 

To apply an NB, 
generalized linear 
model with 
Lindley mixed 
effects to the 
analysis of traffic 
crash data. 

Simulated 
and 
observed 
dataset (road 
segments in 
Indiana, 
Michigan) 

NB NB-Lindley generalized linear model Safety 0 to α 

Lord and Kuo 
(2012) 

To examine the 
effects of site 
selection criteria. 

Simulated 
dataset 

Used R software to generate 
sites with crash counts with a 
predefined overall mean for 
different dispersion parameters 
(R Foundation 2021).  

Compared four types of before and after 
studies: Naïve method, control group 
method, EB method based on the method of 
moment, and EB method based on a control 
group. 

Safety — 

Bhat et al. 
(2013) 

To apply the 
MACML 
approach for 
multiple MDCP 
models. 

Simulated 
dataset 
(Michigan) 

Considers five independent 
variables. Draws values from 
univariate normal distribution. 
Generates error terms from 
positive covariance matrix. 
Undertakes data generation 
process 20 times with different 
realizations of coefficient and 
error terms. 

MACML  Travel behavior 5, 10 

Eluru (2013) 

To investigate the 
performance of 
ordered and 
unordered injury 
severity response 
frameworks. 

Simulated 
dataset 

Considered three independent 
variables. Assumed parameters 
that provide the same aggregate 
shares. Generated 5 realizations 
of the data with 5,000 
observations each for each 
proportional value. Generated a 
total of six aggregate sample 
shares. 

MNL, OL, and GOL Safety 4 

Paleti and Bhat 
(2013)  

To compare the 
MSL inference 
and CML 
approaches. 

Simulated 
dataset 

Drew independent variables 
from univariate normal 
distribution while coefficients 
were assumed and drawn from 
multivariate normal 
distribution. Considered both 
independent and correlated 
realizations. Generated data at 
least 50 times. 

CML and MSL approach Travel behavior 5 
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Study 
Study 

Objective(s) 

Dataset 
Adopted 
(Study 

Region if 
Known) 

Software/Procedure for RAD 
Generation Conceptual Methods Field No. of Alt. 

Wu, Lord and 
Zou (2015) 

To generate CMFs 
using a regression 
model to estimate 
the crash counts 
and compare with 
the actual crash 
distribution 

Simulated 
dataset 

Assumed CMF values for lane 
width, curve density, and 
pavement friction and used 
them to generate simulated 
crash counts. 

Evaluated the conditions for adopting NB 
regression models for before after studies. Safety 0 to α 

 Council et al. 
(2017) 2 

To use ARD to 
assess the 
performance of 
cross-sectional 
analysis methods. 

RAD (rural 
two-lane 
highways, 
Washington) 

Implemented data generation 
by SAS® programs based on an 
assumed model structure for 
AADT and roadway geometry 
factors. 

All available methods of crash count and 
severity analysis Safety 0 to α 

Nontransportation Domain 

Gamel and 
Vogel (1997) 

To compare 
parametric and 
nonparametric 
survival methods. 

Simulated 
clinical 
dataset 

Estimated three parametric 
models using data from breast 
cancer trials. Assumed the 
relationships generated survival 
data in HT Basic 
(Transera 1991). 

Parametric (log-normal) and nonparametric 
test (logrank test, Gray-Tsiatis and 
Laska-Meisner methods) 

Medical science 0 to α 

Scott and 
Wilkins (1999) 

To evaluate data 
mining 
procedures. 

Artificial 
dataset 

Proposed two alternative ways 
of generating artificial data for 
testing data mining approaches. 

Self-similarity, classification, and lazy trees Data science 0 to α 

Bifulco and 
Bretschneider 
(2001) 

To compare 
methods for 
assessing school 
performance. 

Artificial 
dataset 

Generated datasets from log-
linear relationships between 
three inputs and two outputs 
and associated parameters. 
Generated datasets without 
bias, with measurement error 
and endogeneity. 

Data envelopment analysis and corrected 
ordinary least squares Education — 

Austin et al. 
(2006) 

To evaluate 
statistical methods 
for predicting 
plant species 
distributions. 

Artificial 
dataset 

Generated data based on two 
plant community theoretical 
models using the computer 
package COMPAS (Minchin 
1987). 

Generalized linear models and generalized 
additive models  Ecological modeling 0 to α 

 
2Council, F., E. Hauer, B. Lan, D. Harwood, and R. Srinivasan. 2017. Use of “Artificial Realistic Data” (ARD) To Assess the Performance of 

Cross-Sectional Analysis Methods in Capturing Causal Relationships Between Individual Roadway Attributes and Safety. Unpublished Report. Washington, DC: 
Federal Highway Administration. 
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Study 
Study 

Objective(s) 

Dataset 
Adopted 
(Study 

Region if 
Known) 

Software/Procedure for RAD 
Generation Conceptual Methods Field No. of Alt. 

Bzdusek and 
Christensen 
(2006) 

To compare a new 
variant of PMF 
with other 
receptor modeling 
methods. 

Artificial 
dataset 

Generated data set using 
literature source profiles and 
postulated source contributions. 

Eigenvalue-based methods and PMF-based 
methods  Environmetrics — 

Whiting, Hack, 
and Varley 
(2008) 

To describe a 
method and 
toolset for 
creating realistic, 
synthetic test data. 

Realistic 
simulated 
dataset 

Generate simulated datasets by 
embedding ground truths. Core 
software and utility software 
were written in JAVA® 
(Arnold, Goslin, and Holmes 
2005). 

Threat stream generator Information analytics — 

Potharst, Ben-
David, and 
Van Wezel 
(2009) 

To generate 
monotone 
ordinal datasets. 

Observed 
and artificial 
dataset 

Used a machine-learning 
algorithm to generate the data. 

Algorithms for generating structured and 
unstructured random monotone datasets Data science — 

Zimmermann 
(2012) 

To generate 
diverse datasets 
reflecting realistic 
data 
characteristics. 

Artificial 
dataset 

Implemented data generator in 
JAVA. Episode mining Data science — 

Devroye, 
Felber, and 
Kohler (2012) 

To estimate a 
density using real 
and artificial data. 

Observed 
and artificial 
dataset 

Implemented data generator in 
R software. Generated artificial 
data from a regression analysis 
of observed data. 

Classical model, finite information model, 
and full information model Data science 0 to α 

Hazwani et 
al.(2016) 

To develop an 
automatic 
artificial data 
generator for 
generating 
artificial datasets 
based on real data. 

Artificial 
and real 
dataset 

Used random permutation 
algorithm to generate different 
sets of artificial data that 
represent realistic data. 

Four-phase framework for data generation 
Information and 
communication 
technologies 

— 

Dahmen and 
Cook (2019) 

To introduce a 
synthetic data 
generation 
method. 

Simulated 
and real 
dataset 

SynSys, a machine 
learning-based synthetic 
data-generation method. 

SynSys, similarity measures, and 
semisupervised learning Medical science — 

Alt. = alternatives; CML = composite marginal likelihood; CMF = crash modification factor; no. = number; EB = empirical Bayes; MACML = maximum 
approximate CML; MDCNEV = multiple discrete-continuous nested extreme value; MDCP = multiple discrete-continuous probit; ML = mixed logit; 
MSL = maximum-simulated likelihood; OP = ordered probit; PMF = Positive matrix factorization. 
*After a concept proposed by Hauer, as presented in Harwood et al. (2003). 

https://onlinelibrary.wiley.com/journal/1099095x
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Researchers made five important observations based on the information seen in table 1. First, 
earlier research explored RAD applications for wide-ranging topics, including 
statistical/econometric model performance and comparison, travel-demand forecasting, route-
choice behavior, and data mining. Second, RAD applications have typically been developed 
using several software packages or platforms, including R, GAUSS, and COMPAS 
(R Foundation 2021; Aptech Systems 2023; Minchin 1987). Third, employing RAD datasets, 
researchers considered the performance of several model structures, including ordered logit 
(OL), multinomial logit (MNL), generalized ordered logit (GOL), mixed multinomial logit 
(MMNL) models, probit models (and their cross-sectional and panel variants), multiple discrete-
continuous (MDC) frameworks with probit and extreme value formulations, and artificial neural 
networks. Fourth—notably—studies within the transportation domain traditionally adopt RAD 
approaches for econometric models. However, non-transportation domain research typically is 
more focused on machine-learning and data-mining approaches. Fifth, the number of alternatives 
in the RAD variables studied is related to the problem context. The number of alternatives for a 
RAD variable could range from a small number to a very large number. If the RAD variable is a 
binary outcome variable, such as crash/no crash, then the number of alternatives will be two. 
However, if the RAD variable is a continuous value (such as vehicle miles traveled by a 
household), then the number of possible alternatives is, theoretically, infinite. 

The literature review clearly highlights the absence of a single or prevalent software framework 
for developing RAD across various application domains. Several computer programming 
languages, matrix programming languages, and statistical software packages have been 
employed for developing RAD-based frameworks. Thus, RAD framework conceptualization can 
be platform-agnostic. This fact is particularly beneficial in the current context because no 
inherent limitations exist in adopting an open-source software platform for RAD implementation. 
Thus, the framework developed can be widely deployed by Federal Highway Administration 
(FHWA) without any constraints. 

The authors of the report noted that the most common experimental set-up for RAD generation 
seen in this review was a statistical or econometric model framework assumed to represent the 
data-generation process of the variable of interest. Within the model framework, independent 
variables (either based on observed data or random realizations) and their impact (defined by 
coefficient values) on the dependent variable are assumed. Using the independent variable 
distribution and coefficient values, a latent propensity (or utility) is computed based on the 
model system. For example, if the dependent variable is a count variable and the model system is 
an NB system, a single propensity is generated with an appropriate overdispersion component. 
However, if the model system represents an unordered discrete outcome model, alternative 
specific utilities are generated. After the model structure is assumed, a random error term is 
added to (or multiplied by) the propensity or utility generated. Subsequently, a choice scenario is 
determined for each record based on the properties of the model. This choice scenario results in 
the formation of the RAD dataset. The process is repeated several times to generate multiple 
copies of the datasets. The choice variable of interest, such as crash occurrence, may possibly be 
a result of several layers of decisions, such as trip, route, and time-of-day decisions. The research 
team’s vision was to use a similar approach to this framework to generate RAD after the 
conceptual framework for the study was finalized. 
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Additionally, researchers observed during their literature review that the embedded RAD 
frameworks were consistently single-level frameworks; in other words, the underlying decision 
process consisted of only one layer of decisions. Earlier research in modeling crash occurrence 
related crash occurrence to roadway geometry and traffic volume under prespecified assumptions 
of what variables would influence crash occurrence (for example, AADT and lane width). This 
study’s research effort was the first to attempt the development of RAD datasets using a 
multilayered decision process; as such, researchers anticipated the effort would be challenging. 
Hence, the research team was cautious in determining the number of decisions—and thus the 
number of layers—that could be modeled to determine the crash dependent variables in this 
study. As the study commenced in full swing, the research team incorporated multilayered 
complexity within the decision processes to enhance the current state of RAD generation across 
multiple transportation domains.
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CHAPTER 3. MACROSCOPIC APPROACH FRAMEWORK 

The macroscopic approach has two steps. The first step is to generate roadway data, such as 
AADT, truck percentage, lane width, and shoulder width. The second step is to generate crash 
counts by crash type and severity, based on roadway-level data and statistical and econometric 
methodologies. 

ROADWAY DATA GENERATION 

The basic philosophy for generating roadway data follows the principle of the Markov chain 
(Gagniuc 2017). Given a sequence of random variables X1, X2, X3, … , Xn (where X represents a 
vector of roadway characteristics), the indices (1, 2, 3, …, n) represent the walking state in time 
(where the indices represent the contiguous sites for roadway network). The Markov chain 
assumes that the roadway characteristics in the next state depends only on the previous state. A 
higher probability may exist that the values for these roadway characteristics on a given site will 
remain the same as those of the previous site, with lower probabilities that the values will change 
to other possible combinations. 

Overall, a transition probability matrix is required by the Markov chain principle. This matrix 
presents the probabilities for possible roadway characteristics on one site, given the roadway 
characteristics on the previous site. Two types of transition probability matrices are included in 
the Markov chain principle: one matrix is for a discrete Markov chain, and the other matrix is for 
a continuous Markov chain. The discrete Markov chain transition probability matrix is applied to 
the categorical variables in this study—such as lane width, shoulder width, and speed limit—and 
is illustrated in figure 1, which uses numbers that are randomly created to provide a visual 
example. 

 

Figure 1. Equation. Transition probability matrix for discrete Markov chain. 

Where: 
I = 1, 2, 3, …. 
n = the ith combination of roadway characteristics, such as 1 = 12-ft lane width, 6-ft shoulder 

width, and 55-mph speed limit while 2 = 11-ft lane width, 4-ft shoulder width, and 45-
mph speed limit. 

Pi = the ith combination of roadway characteristics for the previous site. 
Ci = the ith combination of roadway characteristics for the subject site. 
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A probability under row Pi and column Cn in the transition probability matrix = the 
probability of roadway characteristics to be the nth combination for the subject site, given 
the ith combination of roadway characteristics for the previous site. 

Note that the probabilities in each row and column must sum to unity in figure 1. 

When a variable is continuous, such as AADT or truck percentage, the transition probability 
matrix is usually represented by a distribution, which can be written as shown in figure 2. 

 
Figure 2. Equation. Transition probability matrix with continuous variable. 

That is, the probability distribution of a roadway characteristic for the subject site follows a 
normal distribution, with a mean equal to the roadway characteristic for the previous site and a 
predefined variance σ2. 

To illustrate the theoretical process of roadway data generation using the Markov chain, one 
must first generate an initial probability matrix. This initial probability matrix is used to define 
the first site in the RAD, since this site cannot be defined from the transition probability matrix 
in the Markov chain. Table 2 shows a hypothetical probability distribution lookup table, which is 
used to generate all combinations of roadway characteristics for the first roadway site. For 
example, suppose four combinations of roadway characteristics are generated in the RAD, such 
as different combinations of values for lane width, shoulder width, and speed limit. A random 
number between 0 and 1 can be generated and compared to the cumulative probability in table 2 
to define the roadway characteristics for the first site. For example, if the random number 
generated is equal to 0.8, then the roadway characteristics following under combination C will be 
set for the first site. 

Table 2. Initial probability table. 

Roadway Characteristics Initial Probability Cumulative Probability 
Combination A 0.25 0.25 
Combination B 0.30 0.55 
Combination C 0.35 0.90 
Combination D 0.10 1.00 

The next step is to generate all remaining sites based on the first site and the transition 
probability matrix using the Markov chain principle. First, generate a transition probability 
matrix from the real data, with the transition probabilities listed in a look-up table (table 3). 
Following this first step, the first site has roadway characteristics of combination C. A random 
number between 0 and 1 can now be generated for the second site, and the random number can 
be compared to the cumulative probability in table 3, where the roadway characteristics for the 
previous site follow combination C to determine the roadway characteristics for the subject site. 
For example, if the random number generated is equal to 0.6, the roadway characteristics for the 
subject site will stay the same as they were. If the random number generated is equal to 0.95, 
then the roadway characteristics for the subject site will change to those values under 
combination D. This process will be repeated until the last site is generated. 
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Table 3. Transition probability look-up table. 

Roadway 
Characteristics for 

Previous Site 
Roadway Characteristics 

for Subject Site 
Transition 
Probability 

Cumulative 
Probability 

Combination A 

Combination A 0.70 0.70 
Combination B 0.10 0.80 
Combination C 0.10 0.90 
Combination D 0.10 1.00 

Combination B 

Combination A 0.15 0.15 
Combination B 0.75 0.90 
Combination C 0.05 0.95 
Combination D 0.05 1.00 

Combination C 

Combination A 0.10 0.10 
Combination B 0.15 0.25 
Combination C 0.65 0.90 
Combination D 0.10 1.00 

Combination D 

Combination A 0.05 0.05 
Combination B 0.05 0.10 
Combination C 0.05 0.15 
Combination D 0.85 1.00 

CRASH DATA GENERATION 

After generating the roadway data, crash counts by crash type and severity are generated using 
the known model structures (for example, Poisson and NB models) and “realistic” relationships 
between crash counts and roadway-level characteristics. Details about how to define the 
“realistic” relationships between crashes and roadway variables are discussed in section “Crash 
Data Generation Inputs” below. 

Suppose a crash prediction model or safety performance function (SPF) exists for the sites 
generated in the roadway data-generation process, and this model or SPF contains the 
coefficients for the relationships between crash counts and all roadway characteristics and other 
model-related parameters. This model or SPF can then be used to estimate the parameters of the 
assumed underlying distribution for each site and then simulate the crash count as a random 
variable. For example, using the two commonly used model frameworks, the Poisson and NB 
models, to illustrate the process. The Poisson distribution for the crash counts can be written as 
shown in figure 3. 

 
Figure 3. Equation. Poisson distribution for crash counts. 

Where: 
Prob[yi|μi] = probability of y crashes occurring at site i. 
μi = expected number of crashes at site i. 
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Given the vector of roadway site characteristics Xi and the vector of coefficients β in the crash 
prediction model, the expected crashes μi can be predicted as shown in figure 4. 

 
Figure 4. Equation. Crash prediction model given vector of roadway. 

If the overdispersion is accommodated by the crash prediction model, then the NB model is used 
to estimate the vector of coefficients ββ, and the expected crashes 𝜇𝜇𝑖𝑖 can be predicted as shown 
in figure 5. 

 
Figure 5. Equation. Crash prediction model with overdispersion accommodated. 

where: 
exp(εi) = error term assumed to follow gamma distribution with mean 1 and variance Error! 

Digit expected.1/σ = k. 
k denotes the overdispersion parameter in the NB model. 

Given the expected crashes 𝜇𝜇𝑖𝑖, the distribution of crash counts in the NB model can be calculated 
as shown in figure 6. 

 
Figure 6. Equation. Crash prediction model with expected crash counts. 

Where Γ is the common gamma function. 

Regardless of which statistical and econometric model is used to estimate the expected crash 
counts μi for each site, its probability distribution function can be used to calculate both the 
probabilities and cumulative probabilities of observing 0, 1, 2, and up to yi crashes, respectively, 
for each site. For example, figure 3 and figure 6 illustrate the functions for Poisson and NB, 
respectively. Then, the actual crash counts can be determined for each site using a random 
variable generation procedure similar to the roadway data generation. For example, a random 
number between 0 and 1 can be generated and compared to the cumulative probabilities of 
different crash counts to define the final crash counts. 

DATA COLLECTION 

The research team collected data from multiple sources to support generating the transition 
probability matrix for the Markov chain principle in the macroscopic approach. Specifically, the 
research team collected the data of all seven States in the current Highway Safety Information 
System (HSIS), including California, Illinois, Maine, Minnesota, North Carolina, Washington, 
and Ohio (FHWA n.d.). Additionally, the research team collected extra data from the Ohio, 
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Connecticut, and Florida departments of transportation (DOTs) to supplement the HSIS data 
(Ivan et al. 2021). 

ROADWAY FACILITY TYPES 

In this study, the research team attempted to cover RAD generation for as many types of 
roadway facilities as possible, based on the facility categorizations in the current Highway Safety 
Manual (HSM) (American Association of State Highway and Transportation Officials 
(AASHTO) 2010). However, the team decided (based on experiences in other safety-related 
studies) that freeway ramp and ramp terminal data would be too challenging to attempt to obtain. 
Therefore, the team mainly focused on all the HSM roadway facility types except these two ramp 
types. However, the team also omitted the following facility types from consideration due to 
too-small sample sizes in their data: urban and suburban three-lane arterials with a center 
two-way, left-turn lane; urban and suburban five-lane arterials with a center two-way, left-turn 
lane; and rural eight-lane freeway segments. Specifically, the research team considered the 
following facility types: 

• Rural two-lane, two-way roadways: 
o Two-lane, two-way undivided segments. 
o Three-leg unsignalized intersections with stop control on approaches to minor roads. 
o Four-leg unsignalized intersections with stop control on approaches to minor roads. 
o Four-leg signalized intersections. 

• Rural multilane highways: 
o Four-lane undivided segments. 
o Four-lane divided segments. 
o Three-leg unsignalized intersections with stop control on approaches to minor roads. 
o Four-leg unsignalized intersections with stop control on approaches to minor roads. 
o Four-leg signalized intersections. 

• Urban and suburban arterials: 
o Two-lane undivided arterials. 
o Four-lane undivided arterials. 
o Four-lane divided arterials (i.e., including a raised or depressed median). 
o Three-leg unsignalized intersections with stop control on approaches to minor roads. 
o Three-leg signalized intersections. 
o Four-leg unsignalized intersections with stop control on approaches to minor roads. 
o Four-leg signalized intersections. 

• Freeway segments: 
o Rural four-lane divided freeway segments. 
o Rural six-lane divided freeway segments. 
o Urban four-lane divided freeway segments. 
o Urban six-lane divided freeway segments. 
o Urban eight-lane divided freeway segments. 
o Urban 10-lane divided freeway segments. 
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ROADWAY CHARACTERISTICS 

Roadway characteristics highly depend on data availability because both the initial probability 
and transition probability in the Markov chain for each characteristic must be calculated from the 
existing data. The research team attempted to include as many roadway characteristics as 
possible in RAD generation, as long as existing data supported the analysis. 

Again, the research team defined roadway characteristics for their RAD generation mainly as 
they were defined in the HSM (AASHTO 2010). The following characteristics were included: 

• Segment-related characteristics: 
o AADT. 
o Lane width. 
o Left shoulder width. 
o Right shoulder width. 
o Left shoulder type. 
o Right shoulder type. 
o Median width. 
o Median type. 
o Horizontal curve-related factors. 
o Vertical curve-related factors. 
o Centerline rumble strip. 
o Two-way left-turn lane. 
o Left shoulder rumble strip. 
o Right shoulder rumble strip. 
o Passing lane. 
o Lighting. 
o Roadside characteristics. 
o On-street parking. 

• Intersection-related characteristics: 
o Major road AADT. 
o Minor road AADT. 
o Number of approaches with exclusive left-turn lanes. 
o Number of approaches with exclusive right-turn lanes. 
o Intersection lighting. 
o Skew angle. 
o Speed limit. 
o Left-turn signal phasing. 
o Number of approaches with right-turn-on-red prohibition. 
o Number of lanes to be crossed by a pedestrian. 
o Presence of school(s). 
o Number of alcohol stores. 
o Number of bus stops. 
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CRASH TYPES AND SEVERITIES 

In crash data generation, the research team generated crash counts by different crash types and 
severities, as defined in Model Minimum Uniform Crash Criteria (NHTSA 2017). These crash 
counts include the following: 

• Crash severity: 
o K—Fatal crash. 
o A—Incapacitating crash. 
o B—Non-incapacitating crash. 
o C—Possible crash. 
o PDO—Property damage-only crash. 

• Crash type: 
o Single-vehicle crash. 
o Fixed-object crash. 
o Overturn/rollover crash. 
o Multivehicle crash: 

o Angle crash. 
o Head-on crash. 
o Rear-end crash. 
o Sideswipe—same-direction crash. 
o Sideswipe—Opposite-direction crash. 

Macroscopic Approach Consolidation and Enhancement 

The overall procedure for generating RAD for the consolidated frameworks for both roadway 
and crash data generation using the macroscopic approach is presented in figure 7; RAD were 
generated by facility type. 
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Source: FHWA. 

Figure 7. Flowchart. RAD generation using a macroscopic approach. 

In terms of a roadway segment-related facility, the research team’s first step was to determine the 
data to be used for generating the initial probability matrix and transition probability matrix in 
the Markov chain principle. The second step was to divide the original data into 0.01-mi units 
with the roadway characteristics to be generated in RAD. Researchers performed this second step 
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because 0.01 mi is usually the smallest resolution in most real data, and dividing all sites into the 
same length could help prevent biased results. Next, these two matrices were generated based on 
the 0.01-mi units for all roadway characteristics. After this step, researchers could operate the 
simulation to generate a set of 0.01-mi roadway sites based on the random number criteria 
described in the section “Crash Data Generation.” These contiguous sites could then be 
aggregated into longer roadway segments based on the values of roadway characteristics. These 
steps then culminated with the research team generating the final roadway data in RAD. 

At this point, researchers could then generate crash counts by crash type and severity, based on 
the roadway data. Selecting and defining crash prediction models and coefficients for roadway 
characteristics were critical steps in predicting the expected crashes for each site. Two options 
were primarily considered: The first option was using models and parameters in existing research 
and products, such as the HSM (AASHTO 2010). The second option was using coefficients 
estimated by the research team. Researchers predicted that estimating coefficients would be 
challenging. This challenge was due to data limitations, because none of the existing datasets 
contained all the roadway characteristics to be generated in RAD. Thus, the statistical 
significance of the parameters estimated in the models for all crash types and severities could not 
be guaranteed. Therefore, the team selected the first option, which might result in more 
flexibility and variation in the data. 

This option was mainly applicable to the segment-related facilities. The Markov chain was not 
directly applicable to intersections because intersections are not contiguous. Instead of using the 
transition probabilities in the Markov chain principle, researchers could simulate the roadway 
characteristics at intersections, based on the intersection’s probability distributions, by 
intersection type in real data. The crash data-generation process was the same as the generation 
process for RAD for segments. 

ROADWAY DATA GENERATION INPUTS 

During RAD generation, researchers should seek to generate roadway and crash data that are as 
realistic as possible. In terms of roadway data generation, some roadway characteristics are 
highly correlated, including lane width and shoulder width, roadway type, and speed limit. Thus, 
their correlations should be accounted for by the RAD frameworks, so researchers first 
conducted a correlation test for all available roadway characteristics under each facility type. 
This testing allowed researchers to identify variables that were highly correlated in real data and 
so should have been generated together in RAD. To do this testing, Cramer’s V statistic was 
calculated between each pair of roadway characteristics to determine the strength of their 
correlation (Crewson 2006). This statistic can be expressed as shown in figure 8. 
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Figure 8. Equation. Cramer’s V statistic. 

where: 
χ2 = Chi-square test for correlation. 
N = total number of observations. 
C = number of categories in variable 1. 
R = number of categories in variable 2. 

A Cramer’s V statistic equal to or greater than 0.3 indicated that the two variables were 
moderately or highly correlated and should be generated together. Remaining variables were 
then generated independently. 

Based on the correlation test results, the variables that were generated together in the 
macroscopic approach by facility type were determined to be as follows: 

• Rural two-lane, two-way roadways: 
o Two-lane, two-way undivided segments: AADT, right shoulder width, horizontal 

curve. 
o Three-leg unsignalized intersections with stop control on approaches to minor roads: 

Major road AADT, minor road AADT. 
o Four-leg unsignalized intersections with stop control on approaches to minor roads: 

Major road AADT, minor road AADT. 
o Four-leg signalized intersections: 

o Major road AADT, minor road AADT. 
o Major road AADT, number of approaches with exclusive left-turn lanes. 
o Number of approaches with exclusive left-turn lanes, number of approaches with 

exclusive right-turn lanes. 
o Intersection lighting, skew angle. 

• Rural multilane highways: 
o Four-lane undivided segments: Right shoulder width, right shoulder type, lighting. 
o Four-lane divided segments: Right shoulder width, right shoulder type, speed limit. 
o Three-leg unsignalized intersections with stop control on approaches to minor roads: 

o Major road AADT, minor road AADT. 
o Major road AADT, intersection lighting. 

o Four-leg unsignalized intersections with stop control on approaches to minor roads: 
o Major road AADT, minor road AADT. 
o Major road AADT, intersection lighting. 
o Intersection lighting, skew angle. 

o Four-leg signalized intersections: 
o Major road AADT, minor road AADT. 
o Major road AADT, number of approaches with exclusive left-turn lanes. 
o Major road AADT, intersection lighting. 
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o Number of approaches with exclusive left-turn lanes, number of approaches with 
exclusive right-turn lanes. 

o Intersection lighting, skew angle. 

• Urban and suburban arterials: 
o Two-lane undivided arterials: 

o AADT, lighting. 
o Offset to fixed object, on-street parking type, speed limit. 

o Four-lane undivided arterials: Offset to fixed object, on-street parking type, speed 
limit. 

o Four-lane divided arterials (i.e., including a raised or depressed median): 
o Offset to fixed object, on street-parking type, speed limit. 
o Median width, lighting. 

o Three-leg unsignalized intersections with stop control on approaches to minor roads: 
Major road AADT, minor road AADT. 

o Three-leg signalized intersections: 
o Major road AADT, minor road AADT. 
o Minor road AADT, speed limit. 
o Number of approaches with exclusive left-turn lanes, number of approaches with 

exclusive right-turn lanes. 
o Number of approaches with exclusive left-turn lanes, left-turn signal phasing. 
o Number of approaches with exclusive left-turn lanes, number of lanes to be 

crossed by a pedestrian. 
o Four-leg unsignalized intersections with stop control on approaches to minor roads: 

Major road AADT, minor road AADT. 
o Four-leg signalized intersections: 

o Major road AADT, minor road AADT. 
o Number of approaches with exclusive left-turn lanes, number of lanes to be 

crossed by a pedestrian. 
o Number of approaches with exclusive left-turn lanes, left-turn signal phasing. 

• Freeway segments: 
o Rural four-lane divided freeway segments: 

o Left shoulder width, right shoulder width. 
o AADT, median width. 

o Rural six-lane divided freeway segments: 
o Left shoulder width, right shoulder width. 
o Lane width, median width. 

o Urban four-lane divided freeway segments: 
o Left shoulder width, right shoulder width. 
o Lane width, speed limit. 
o Left shoulder rumble strip, right shoulder rumble strip, horizontal curve. 

o Urban six-lane divided freeway segments: 
o Left shoulder width, right shoulder width. 
o Lane width, median width. 
o Left shoulder rumble strip, right shoulder rumble strip, horizontal curve. 

o Urban eight-lane divided freeway segments: 
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o AADT, median width. 
o Left shoulder rumble strip, right shoulder rumble strip, horizontal curve. 
o Left shoulder width, right shoulder width. 

o Urban 10-lane divided freeway segments: 
o Left shoulder width, right shoulder width. 
o Left shoulder rumble strip, right shoulder rumble strip, horizontal curve. 

Researchers then generated both initial probability matrix and transition probability matrix for 
each group of variables and all remaining single variables by each facility type using the 
collected data. The initial probability matrix and transition probability matrix were used as the 
inputs for generating roadway data in the macroscopic approach. Due to the large data size of 
initial probability matrix and transition probability matrix for all facility types, researchers 
decided presenting the matrix values in this report was not feasible. Instead, the matrix tables 
will be included in the source codes accompanying the RAD software developed through this 
project. 

CRASH DATA GENERATION INPUTS 

The key to generating crash data for RAD is to estimate the mean (μi) of crashes for each site, 
based on the characteristics generated from the roadway data-generation process. As noted in the 
section on Macroscopic Approach Consolidation and Enhancement, this study uses crash 
prediction models to estimate the mean crashes for each site. The framework for crash prediction 
models is similar to that in the HSM, where the crash mean is first predicted using a base 
condition SPF and then adjusted by multiple adjustment factors (AFs), which are expressed as 
figure 9. 

 
Figure 9. Equation. SPF adjusted by AFs. 

where: 
Y = number of years of crashes to be generated. 
SPFBASE = predicted crashes using the base condition SPF, with segment length and AADT 

used as predictors for segment-related facilities and AADT on both major and minor 
approaches used as predictors for intersection-related facilities. 

AFs = adjustment factors related to all roadway characteristics generated from the roadway 
data-generation process. 

Researchers collected the coefficients of base condition SPF and all AFs for each facility type. 
Most of the existing literature the research team looked at estimated SPFs by injury severity 
group instead of by individual severity level, especially for severe injury crashes, such as K and 
A crashes (Wang et. al 2022; Garber and Rivera 2010). Thus, researchers collected both the SPF 
coefficients and AFs by three injury severity groups, namely PDO, B + C, and K + A. Further, to 
account for crash randomness and crash generation variation, researchers generated a uniform 
distribution for each of the SPF coefficients and AFs, based on all the AF values. The collected 
coefficients and AFs and generated distributions are not presented in this report to hide the 
underlying parameters used in generating the data. 
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For each parameter, if multiple sources provided values, researchers could directly determine the 
lower and upper limits of the uniform distribution based on all the values. However, if 
researchers found that only one source included a parameter estimate, they calculated the lower 
limit of the uniform distribution as 10 percent below that parameter estimate. Similarly, they 
calculated the upper limit as 10 percent above that parameter estimate. A random value could 
then be selected for each of the SPF coefficients and AFs from the generated uniform 
distributions for each site, to be used in predicting the mean of crashes by each injury severity 
group. 

Table 4 shows an example of uniform distributions generated for the SPF coefficients and AFs 
for the intersection facility, and table 5 shows an example of uniform distributions generated for 
the SPF coefficients and AFs for the segment facility. The numbers and letters used in these 
tables are fabricated to demonstrate the overall procedure for generating the uniform 
distributions.
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Table 4. Crash generation parameters for rural, two-lane, two-way, three-leg unsignalized intersections. 

Variables 
Example Generated Parameters and AFs  Uniform Distributions for Parameters and AFs 

PDO B+C K+A PDO B+C K+A 
Parameters for Base Condition SPFs 
Major AADT A1, A2 B1, B2, B3 C1, C2, C3 U(A1, A2) U(B1, B3) U(C1, C3) 
Minor AADT D1 E1, E2 F1, F2, F3 U(0.9*D1, 1.1*D1) U(E1, E2) U(F1, F3) 
Parameters for AFs 
Number of 
approaches with 
exclusive left-turn 
lanes: 
1 
2 

G1, G2 
G3, G4 

H1, H2 
H3, H4 

NA 
NA 

U(G1, G2) 
U(G3, G4) 

U(H1, H2) 
U(H3, H4) 

U(1, 1) 
U(1, 1) 

Overdispersion for NB 
k J1, J2 K1, K2 L1, L2 U(J1, J2) U(K1, K2) U(L1, L2) 
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Table 5. Crash generation parameters for rural, two-lane, two-way, undivided highways. 

Variables 
Example Generated Parameters and AFs  Uniform Distributions for Parameters and AFs 

PDO B+C K+A PDO B+C K+A 
Parameters for Base Condition SPFs 
Intercept A1, A2 B1, B2, B3 C1, C2, C3 U(A1, A2) U(B1, B3) U(C1, C3) 
AADT D1 E1, E2 F1, F2, F3 U(0.9*D1, 1.1*D1) U(E1, E2) U(F1, F3) 
Parameters for AFs 
≤9-ft lane width G1, G2 H1, H2 J1, J2 U(G1, G2) U(H1, H2) U(J1, J2) 
10-ft lane width G3, G4 H3, H4 J3, J4 U(G3, G4) U(H3, H4) U(J3, J4) 
11-ft lane width G5, G6 H5, H6 J5, J6 U(G5, G6) U(H5, H6) U(J5, J6) 
≥12-ft lane width G7, G8 H7, H8 J7, J8 U(G7, G8) U(H7, H8) U(J7, J8) 
Right Shoulder Width 
2 ft K1, K2 L1, L2 M1, M2 U(K1, K2) U(L1, L2) U(M1, M2) 

4 ft K3, K4 L3, L4 M3, M4 U(K3, K4) U(L3, L4) 
U(M3, 
M4) — — 

6 ft K5, K6 L5, L6 M5, M6 U(K5, K6) U(L5, L6) 
U(M5, 
M6) — — 

≥8 ft K7, K8 L7, L8 M7, M8 U(K7, K8) U(L7, L8) 
U(M7, 
M8) — — 

Overdispersion for NB: k = β/Length 

β N1 
N2 

O1 
O2 

P1 
P2 
P3 

U(N1, N2) U(O1, O2) U(P1, P3) 

—No data. 
*Variables are insignificant at a 90-percent confidence level.
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The mean crashes by the three injury severity groups were calculated using the uniform 
distributions generated in table 4 and table 5, respectively. Then, the crash counts were further 
simulated using two commonly used crash prediction modeling frameworks: the Poisson and NB 
models (figure 2 and figure 4). Next, a uniform distribution between 0.6 and 0.8 will be used to 
generate a weight for NB crash counts for each site, and the final crash counts for each site will 
be calculated by incorporating the weighted Poisson crash counts. Researchers assigned a greater 
weight to the NB model because it could account for overdispersion, which is a common issue in 
crash data. Mixing the Poisson and NB models in the crash generation process may further help 
account for crash generation variations for the RAD. 

After researchers generated crashes for each of the three severity groups, they further 
disaggregated crash counts for the B+C group into individual B and C crash counts by randomly 
selecting and multiplying a proportion of B crashes over B and C in total from a pooled sample. 
They created a pooled sample using the real crash data for the specific facility type collected in 
this study. They applied the same procedure to K and A crashes and generated crash counts by 
crash type by each crash severity using a similar approach. 

Although crashes could then be generated by both injury severity and crash type for each facility 
type, the generated crash counts still might not be feasible and realistic, because the research 
team collected the parameters for both the base condition SPFs and the AFs used in crash 
generation from multiple sources. The selected parameters are not presented in this report to hide 
the underlying parameters we used in generating the data to preserve the value of the RAD 
generated for testing data analysis approaches. Other literature that was not considered might use 
a different modeling formula, which could suggest a different range of values for the predicted 
mean of crashes. 

For example, if the literature estimates crash prediction models using “Number of Years*365” as 
the offset, the estimated intercept will be relatively small, and the predicted mean of crashes in 
the RAD will be extremely low, leading to a zero crash count in the final crash generation. 
However, if the literature estimates crash prediction models without offset, the estimated 
intercept will be relatively large, and the predicted mean of crashes in the RAD will be extremely 
high, leading to unexpectedly high crash counts in the final crash generation. Therefore, the 
original uniform distributions generated for the intercepts needs to be calibrated to make the 
generated crash counts realistic. To accomplish this, crash counts are first generated by the three 
injury severity groups using the initial parameters for each facility type, then the crash counts by 
the injury severity group are also calculated using the actual crash data collected in this study, 
based on the same data size as the generated crash counts. For example, if the crash counts are 
generated from N intersections or M-mile segments, the crash counts are also calculated from N 
intersections or M-mile segments from the collected crash data. Next, a calibration factor is 
calculated (figure 10) for each of the injury severity groups for each facility type, and the 
calibration factor is added to the original uniform distribution for the intercept to calibrate the 
crash generation framework. 
 

 
Figure 10. Equation. Calibration factor formula for crash count generation. 
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CHAPTER 4. MICROSCOPIC APPROACH FRAMEWORK 

This section will outline the research team’s development of a high-resolution, disaggregate 
realistic artificial data generator (DREDGE). The conceptualization of the disaggregate 
DREDGE framework, the data compiled to build the DREDGE, and the implementation 
procedures are described. In this research, the authors proposed a general framework of RAD 
generation embedded with heterogeneous causal structures that generated crash data by 
considering crash occurrence as a trip-level event impacted by trip-level factors, demographic 
characteristics, roadway facilities, and vehicle attributes. 

The proposed framework was general enough to generate crashes for all roadway facility types, 
including segments and junctions. Additionally, the framework can generate data for different 
combinations of inputs, including modeling methods, model formulation, input specification, and 
unobserved heterogeneity. This chapter presents the motivation for this approach, along with 
conceptual framework details, a description of the data, and implementation details of the 
microscopic DREDGE framework. 

CONCEPTUAL FRAMEWORK 

Safety analysis primarily focuses on identifying and quantifying the influences of factors that 
contribute to traffic collisions and the consequences of these factors. The authors of this report 
proposed and built a high-resolution, disaggregate data-generation process that mimics crash 
occurrences on transportation facilities at the trip level and accommodates the influence of a full 
range of crash-contributing factors. The proposed DREDGE recognizes that crashes result from 
travel decisions made by people. Hence, it is important to examine crash occurrence as a 
trip-level decision to mimic the true crash-generation process. 

Considering such disaggregate treatments will allow the crash process incorporated in the 
DREDGE to resemble the true process more closely. For example, if data are simulated at the 
segment level, driver-related factors can be included either in an aggregate form or not at all. In 
contrast, all contributing factors—including trip-related factors—can be realistically 
incorporated if the data are simulated at the trip level. Researchers will consider trip-level 
attributes for DREDGE framework development that include driver and other occupant 
characteristics, vehicle characteristics, and roadway attributes. 

The first step in the proposed framework was to evaluate the crash risk for each trip by 
employing trip-level travel information. Then, researchers generated detailed crash 
characteristics for trips identified for crash involvement. The DREDGE framework employs a 
suite of models to process trips with crashes, including crash type, crash severity, and crash 
location—as well as driver and vehicle characteristics. 

Researchers developed the DREDGE framework by employing multiple datasets, including 
Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) data and 
Crash Report Sampling System (CRSS) data (Virginia Tech Transportation Institute 2020; 
NHTSA n.d.). The framework is organized around three specific modules: a) disaggregate trip 
information generation, b) crash data generation, and c) crash data aggregation. This report 
presents detailed documentation about each module in the next three sections. 
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Disaggregate Trip Information Generation Module 

The paradigm for regional travel demand modeling has undergone a transformation from an 
aggregate zonal level statistical framework (such as a four-step or trip-based model) to a 
disaggregate individual-level framework (tour level and/or activity-based models) (Kamel et al. 
2019; Pinjari et al. 2008). The disaggregate frameworks accommodating various influences 
provide a representation of any individual’s travel in continuous time and space. These 
influences include sociodemographic characteristics (such as income, age, household structure, 
education, and car ownership), employment characteristics (such as employment industry and 
location), transportation network characteristics (such as access to travel mode and travel time by 
mode), and built environmental measures (such as population density, land-use mix, and public 
transit density). 

From these travel patterns, researchers retrieved high-resolution information for trips were 
retrieved, including trip start and end time, trip start and end location, trip characteristics (such as 
alone or group trip), vehicle used for trip, and precise route considered. In consultation with 
FHWA research staff, the research team recognized that developing a standalone, activity-based 
model system was beyond the scope of this study. Hence, the research team identified 
Polychotomous Choice Agent-Based Risk Model for Integrated Travel Demand and Network 
and Operations Simulation (POLARIS), a travel-demand modeling tool developed by Argonne 
National Laboratory, for use in the study in place of developing a new standalone modeling 
system. POLARIS is a well-established, activity-based travel demand modeling tool. It is high-
performance, open-source, and has an agent-based modeling framework that includes traffic flow 
simulation, activity-based demand simulation, model building, and geographic information 
system (GIS) tools (Auld et al. 2016). 

To use POLARIS data in the study, the research team reached out to Argonne National Lab 
personnel, who agreed to provide calibrated outputs from POLARIS. (For more information on 
POLARIS, please see Auld et al.’s (2016) article titled “POLARIS: Agent-Based Modeling 
Framework Development and Implementation for Integrated Travel Demand and Network and 
Operations Simulations.”) 

Crash Data Generation Module 

The objective of the crash data generation module is to generate crashes on the transportation 
system. The framework utilizes the detailed trip information from the trip information module 
and the disaggregate trip information generation to generate crashes. This process involves 
identifying the vehicles involved in the crash, crash location, injury severity of the occupants 
(such as fatal, incapacitating, non-incapacitating, and no injury), and crash type (such as head-on, 
rear-end, and vehicle-pedestrian). The framework employed for crash generation is described in 
the following paragraphs. 

In the first step of the framework, the research team classified all the trips on the transportation 
system into two categories: No Crash and Crash. In urban regions, trips in a typical day amount 
to several million, and their data are likely to take up large amounts of storage space, with 
high-resolution details on routing characteristics with GIS coordinates. The team’s proposed 
classification process allowed for a reduced number of trips to be used for crash data generation. 

http://polaris.es.anl.gov/
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Given the relatively small proportion of crash-involved trips, this classification approach 
provides an elegant solution to computational and data burdens. The classification problem was 
modeled using a binary logit model. Specifically, the research team estimated the proposed 
binary model using SHRP2 NDS data (Virginia Tech Transportation Institute 2020). This NDS 
data provided the study with a large sample of trips and an associated indicator for trips involved 
in crashes. Further, using the NDS data allowed the research team to incorporate trip-level 
details, including average speed, travel distance, time of day, and vehicle type, into crash 
probability (Virginia Tech Transportation Institute 2020). 

The second step of the framework took place after the research team identified and tagged the 
trips with crashes. During the second step, the team processed crash-tagged trips to determine 
detailed characteristics of the crashes, including crash type, crash location, and injury severity. 
Notably, crash type and crash severity have fixed and well-defined alternatives, but crash 
location alternatives are more complicated. Thus, depending on when crash location is examined, 
alternative structures for crash variable generation become possible. For example, one sequence 
can be as follows: Researchers estimate a trip-level model for the crash-tagged trips to identify 
the crash type, such as head-on, rear-end, or vehicle-pedestrian. Researchers then create a 
subsequent model for crash severity with this crash type and develop a crash location model that 
is conditional on crash type and severity. Notably, more information is available in the latter 
models in the sequence (i.e., additional independent variables can be included in the model 
estimation). For instance, if crash severity follows a crash type model, crash type can be included 
as an independent variable in the model. 

The resulting crash location model can have crash type and crash severity as independent 
variables. A visual representation of the proposed structure for crash variable generation is 
presented in figure 11. 
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Source: FHWA. 
. . . = other options not listed. 

Figure 11. Flowchart. DREDGE sequential approach I: crash risk to crash type to crash 
severity to crash location. 

Alternatively, the sequence of the variables can be altered to crash location, followed by crash 
type and crash severity. In this sequence, crash location model estimation will be based on 
trip-level characteristics, and crash type and crash severity variables will have access to location 
variables in the model. Figure 12 provides a potential model structure. As is evident, the two 
sequences described in figure 11 and figure 12 might result in different behavioral frameworks. 
Safety literature has placed significant emphasis on the role of crash location in modeling 
severity and crash type. 

Hence, the research team chose the sequence listed in figure 12 for this study. The significant 
data processing and modeling efforts involved did not allow for testing the two sequences. 
Finally, the research team also generated driver and vehicle information (including the attributes 
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of other drivers and vehicles for multivehicle crashes) involved in crashes, based on the driver 
and vehicle characteristics of the crash trips. 

 
 

 
Source: FHWA. 
. . .  = other options not listed. 

Figure 12. Flowchart. DREDGE sequential approach Ⅱ: crash risk to crash location to 
crash type to crash severity. 

The final step of the crash data generation framework involved determining the appropriate 
model framework. Given that crash type and crash location were categorical variables, an MNL 
model framework was appropriate. For the severity variable—given the inherent ordered nature 
of the variable—a GOL model structure was employed. 

Crash Aggregation Module 

The crash data generation module outputs are crash data—including crash type, crash severity, 
and crash location—and time and number of vehicle occupants involved in a crash for a typical 
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day of the year. However, for crash datasets, it might be necessary to aggregate data by facility 
type both at temporal resolution (such as crashes on a segment or intersection in a 6-mo period or 
multiple years) and spatial resolution (such as crashes in a zone or county). To generate 
aggregate data, the research team implemented framework to run a typical day multiple times 
with different random seeds to ensure duplication of the same crashes did not occur between 
runs. 

DATA COLLECTION 

The microscopic DREDGE generator was developed employing three different datasets: SHRP2 
NDS data from Virginia Tech Transportation Institute, CRSS data from NHTSA, and Chicago 
trip-level data from Argonne National Laboratory (Virginia Tech Transportation Institute 2020;  
NHTSA n.d.; Auld et al. 2016). 

SHRP2 NDS Data 

To develop models for crash risk and crash location, researchers used SHRP2 NDS data, which 
had been collected during the NDS with cameras and sensors placed in participants’ cars that 
tracked their driving over an extended period (Virginia Tech Transportation Institute 2020). For 
the current study, researchers requested five different data components from the NDS: 
time-series data, a trip summary table, an event table, driver demographics, and roadway 
characteristics data. Time-series data provided trip-related information, (e.g., speed, acceleration, 
deceleration, location, lighting, and airbag deployment information) for every tenth of a second. 

The SHRP2 trip table provided trip details about all 5.4 million trips, including start time, end 
time, day of week, facility locations, facility speeds (mean/maximum speed), mean/maximum 
acceleration, mean/maximum deceleration, and headways versus distance traveled. The SHRP2 
event table provided information on 1,951 crashes, including event severity, crash severity, 
traffic condition, and weather condition. Driver demographics included driver age, gender, 
income, and educational level. Finally, the roadway characteristics data provided information on 
corresponding road segments, including AADT, number of lanes, and roadway classification 
(arterial, major/minor collector, freeway) (Virginia Tech Transportation Institute 2020). These 
variables were included in analyzing crash risk, crash location, crash type, and crash severity 
appropriately for each analysis variables. 

For their model development, the research team selected 1 million trips that did not result in 
crashes and 1,951 trips that resulted in crashes. The 1 million trips were randomly selected from 
a full sample of 5,512,900 trips (Hankey, Perez, and McClafferty 2016). For the 1,951 trips 
during which crashes occurred, 814 crashes were categorized as low-risk tire strikes and 
removed from the list of trips with crashes. This removal left 1,137 trips with crashes for the 
final model development. 

CRSS Data 

The CRSS was used by the research team to develop models for crash type, drivers and vehicles, 
and crash severity. The CRSS database contains a nationally representative, weighted and 
stratified sample of road crashes collected and compiled from about 60 jurisdictions across the 
50 States and District of Columbia. The database includes information from reports compiled by 
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police officers for roadway crashes involving at least one motor vehicle and resulted in property 
damage, injury, or death (NHTSA n.d.). 

The research team obtained these CRSS databases from the U.S. Department of Transportation 
and NHTSA’s National Center for Statistics and Analysis. NHTSA collected the crash data over 
the last 50 years from 1970 to the present. The data included information on a multitude of 
factors regarding crash situation and events, including driver characteristics (e.g., driver age, 
gender), vehicle characteristics (e.g., vehicle type, vehicle age, vehicle model), roadway design 
and operational attributes (e.g., speed limit, number of lanes), environmental factors (e.g., 
weather, lighting condition), and crash characteristics (e.g., hour, day, location, crash type, crash 
severity) (NHTSA n.d.). 

This study focused on the most recent 4 yr of CRSS data to develop crash type, driver, vehicle, 
and crash severity modules. Between 2016 and 2019, the CRSS crash database recorded a record 
204,332 crashes involving 362,596 motor vehicles and 512,312 people (NHTSA n.d.). To 
prepare the final CRSS dataset for module development, the research team removed records with 
missing information on essential attributes. Thus, the final CRSS dataset consisted of about 
113,983 crashes involving 211,311 motor vehicles and 298,382 people. 

Chicago Trip-Level Data 

The research team used the Chicago trip-level data as an input when it implemented DREDGE. 
The team sourced the trip-level data from an activity-travel realization for an urban region, 
generated from the POLARIS model for the Chicago region. The data contained 2,256,502 trips, 
with information on trip data (start time, duration, etc.), driver demographics (age, education, 
household size, number of vehicles, number of workers, etc.), and roadway segments (segment 
length, AADT, number of lanes, and roadway type: major/minor arterial, freeway, collector or 
local, etc.) (Auld et al. 2016). 

MICROSCOPIC RAD MODULE DEVELOPMENT 

The research team’s proposed microscopic DREDGE framework for implementing the 
sequential approach presented in figure 12. This framework has five stages/modules of crash data 
generation, as illustrated in figure 13. Stage 1 (the crash risk module) evaluates a series of trips 
using a binary logit model to classify each trip as crash or no crash. In stage 2 (the crash location 
module), the location of each “crash” trip is determined using an MNL model. Stage 3 (the crash 
type module) is where the type of each crash is determined using an MNL model. In stage 4 (the 
driver and vehicle module), data on the driver(s) and vehicle(s) associated with each crash are 
generated using a probability distribution table. In stage 5 (the crash severity module), the 
severity of the crash is generated for each driver involved using an OL model. Each of these 
stages/modules is implemented sequentially in DREDGE using Python® programming language 
(Van and Drake 1995; Python Software Foundation 2023). In the following five sections, this 
report presents a detailed description of each of the five stages/modules involved in the 
microscopic approach framework. 

ftp://ftp.nhtsa.dot.gov/
ftp://ftp.nhtsa.dot.gov/
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Source: FHWA. 

Figure 13. Flowchart. DREDGE generator development for microscopic approach. 

Crash Risk 

The first stage of the DREDGE generator is the crash risk module. The goal of this module is to 
evaluate each trip and determine stochastically if a crash will occur during the trip. The research 
team used the SHRP2 NDS dataset to develop the crash risk model. The dataset included 
1,137 trips that resulted in crashes and 1 million trips that did not (Virginia Tech Transportation 
Institute 2020). For this model, the research team removed any trips missing relevant trip or 
driver information. These removals resulted in 1,004 trips resulting in a crash and 774,873 trips 
that did not result in a crash. The data were then further filtered because trips with crashes 
accounted for only 0.13 percent of the total trips, making them difficult to model. Therefore, the 
trips not resulting in a crash were under sampled, as researchers randomly selected 10 percent to 
be used for analysis. The final dataset the research team used for model development contained 
78,336 trips; 1,004 resulted in crashes, and 77,332 did not. 

The research team used a binary logit model for modeling crash risk. The development of the 
model was based on removing statistically insignificant variables in a systematic manner. Since 
different datasets were used for modeling and implementation (SHRP2 NDS data were used for 
modeling and Chicago data were used for implementation), only those variables that were 
present in both datasets were considered when developing the model. Four variables were 
common in both datasets, including driver age and income and trip start time and length. Among 
these variables, driver age was found to have a significant impact on the trip crash risk. Drivers 
less than 30 years old (with teenage drivers being the most likely) and greater than 74 years old 
were found to be more likely to be involved in crashes than other drivers. 

Finally, as the model was developed with under-sampled, noncrash trips, the constant in the 
binary logit model will need to be modified for applying the crash risk model for the full 
population. Researchers calibrated the constant to match the true population crash shares. 

Crash Location 

The second stage of the DREDGE framework is the crash location module. The goal of this 
module is to evaluate the sequence of roadway segments traversed during a trip and determine 
stochastically where a crash will occur. The SHRP2 NDS dataset provided 1,004 crash records 
and was used to develop the crash location model (Virginia Tech Transportation Institute 2020). 
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For this module, any crashes that occurred at an intersection or crashes without a defined 
location were removed. However, there was missing information for multiple attributes for these 
857 crashes. As a result, the research team imputed the missing information in alignment with 
existing distributions observed in the data. 

For modeling the crash segments, the research team considered a sampling of alternative 
segment approaches to avoid computational complexity for large trips spanning several 
segments. The sampling process included the crash segment alternative and 29 additional 
segments randomly sampled from the trip segments. The research team’s development of the 
model was based on removing statistically insignificant variables in a systematic manner. The 
results indicated that longer segments tended to have a higher risk of crash occurrence. 
Additionally, for each trip segment with more lanes, roadways with higher AADTs and collector 
roadways tend to have lower risks of crash occurrence. 

Crash Type 

The goal of the third stage of the DREDGE generator, the crash type module, is to generate the 
type of crash that will occur based on trip and roadway variables. The research team used the 
CRSS dataset to develop this crash type module (NHTSA n.d.). In the CRSS dataset, researchers 
randomly selected 25,000 crashes (out of a total of 113,983 crashes) to use for developing the 
crash type module. The alternatives researchers considered for crash type were rear-end crash, 
head-on crash, angular crash, sideswipe crash, crash with fixed objects, crash with nonfixed 
objects, and nonmotorized crash. Since different datasets were used for modeling and 
implementation, the research team considered only variables that were present in both datasets 
when developing the module. 

Rear-end crashes are used as the base alternative for this module, with angular crashes and 
crashes with fixed and nonfixed objects having a higher probability of occurrence, and head-on 
crashes, sideswipe crashes, and nonmotorized crashes having a lower probability of occurrence. 
Also, as the number of lanes increases, the probability of any crash, except for a rear-end crash, 
decreases. Crashes on freeways have a higher likelihood of sideswipe crashes and a lower 
probability of head-on crashes, angular crashes, crashes with nonfixed objects, and nonmotorized 
crashes. On weekdays, the probability of rear-end crashes increases, and the probability of 
head-on crashes and crashes with fixed and nonfixed objects decreases. During the morning peak 
(7 a.m. to 10 a.m.), the probability of crashes with fixed and nonfixed objects and nonmotorized 
crashes decreases. During the evening peak (4 p.m. to 7 p.m.), the probability of any crash other 
than a rear-end crash decreases. 

Drivers and Vehicles 

The goal of the fourth stage of the DREDGE generator, the drivers and vehicles module, is to 
generate data for drivers and vehicles involved in crashes. Illinois crashes from the CRSS dataset 
are used for this module (NHTSA n.d.). From this data, the research team developed a 
probability distribution of different driver demographics (such as age, gender, and seatbelt use) 
and vehicle characteristics (such as type and age). The research team then used this distribution 
to generate driver and vehicle information for the generated crashes. 
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Crash Severity 

The goal of the fifth stage of the DREDGE framework, the crash severity module, is to generate 
the severity of the crash for each driver based on trip data, roadway information, driver 
demographics, vehicle information, and crash type. Of the 25,000 crashes that were used in the 
crash type module, driver information was available for 24,351 crashes, resulting in 
42,039 drivers that researchers used in developing the crash severity module. 

Researchers used an OL model to model crash severity. For the crash severity module the 
alternatives were PDO, minor, major, and severe. Since researchers used different datasets for 
modeling and implementation (CRSS and Chicago trips, respectively), they only considered 
those variables that were present in both datasets when developing the model (NHTSA n.d.; 
Auld et al. 2016). According to this model, drivers under 25 years old are less likely to 
experience a high-severity crash. Crashes that occur on freeways or involve more than a few 
lanes are more likely to result in high severity. Crashes that occur on weekdays or during peak 
hours are likely to be less severe. Using rear-end crashes, crashes with nonfixed objects, and 
nonmotorized crashes as a base, sideswipe crashes are less likely to result in severe crashes; 
meanwhile, head-on crashes, angular crashes, and crashes with fixed objects are more likely to 
result in severe crashes. Using automobiles, motorcycles, and buses as a base, drivers in utility 
vehicles and trucks are less likely to sustain severe injuries. 

MICROSCOPIC RAD MODULE IMPLEMENTATION 

The research team employed Monte Carlo simulation for each DREDGE module’s 
implementation (Spence 1983). Typically, the simulation process involves generating the 
cumulative probability function (CPF) for all alternatives using the module-specific model. 
Then, the chosen alternative is identified by generating a uniform random number between 0 and 
1 and comparing it with the CPF. Across different modules, different CPF formulae are 
employed. The rest of the process remains stable across all modules. The implemented routines 
are validated and checked to ensure the model outcomes follow expected distributions. A 
detailed documentation on the implementation of microscopic DREDGE modules and validation 
checks implemented are presented in the following six sections. 

Crash Risk 

The research team implemented the binary logit model in the DREDGE framework after 
developing the crash risk module. For the first step of the DREDGE framework, the Chicago 
data’s 2,256,502 trips were used to simulate a day of traffic. Each trip was evaluated using the 
binary logit model for crash risk, and the probability of a crash was calculated. A random 
number between 0 and 1 was then generated. If the random number was less than the probability, 
then that trip was classified as resulting in a crash and added to the list of crashes for that day. 
This process repeats 365 times using the same set of trips to simulate a full year of traffic. Since 
a random number is generated for each trip, different trips will result in a crash each day; 
however, those with a higher probability of a crash are more likely to be selected. When using 
DREDGE to generate a full year of data, an average of 563 crashes per day occurred. This 
average equates to approximately 0.025 percent of the trips resulting in a crash. This average is 
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comparable to the NDS data that were used for model development, where 0.021 percent of the 
trips resulted in a crash (Virginia Tech Transportation Institute 2020). 

Crash Location 

After developing the crash location model, the research team processed it in the DREDGE tool to 
determine the likely crash locations. A sequence of roadway segments is provided for each trip 
that occurs in the Chicago dataset. Each segment in this sequence is considered using the MNL 
model developed for crash location. This model calculates the probability of a crash for each 
segment. These probabilities are then combined to create a cumulative probability table. A 
random number is then generated from a uniform distribution from 0 to 1 and used to select the 
roadway segment. The random number is compared to each of the segments in the cumulative 
distribution table, and the segment with a probability greater than the generated number is the 
one where the crash occurred. The roadway information for this segment is then appended to the 
trip data to be returned to the user at the end. 

Crash Type 

The third step of the DREDGE tool determines the type of crash for each trip where a crash is 
determined to have occurred. Trip and roadway information are used to calculate the probability 
of each type of crash using the MNL model. Since the same data are used for each day, a 
weekday variable is not in the original dataset. Instead, this variable is generated based on the 
specific day being evaluated. The generator will determine a random day of the week for the first 
day of generation and then assign each following day accordingly. Similar to the crash location 
module, this model calculates the probability of each crash type. These probabilities are then 
combined to create a cumulative probability table. A random number is then generated from a 
uniform distribution from 0 to 1, which is used to select the crash type. The random number is 
compared to the cumulative distribution table, and a crash type with a probability greater than the 
generated number is assigned. The crash type is then appended to the trip data, to be returned to 
the user at the end. 

Drivers and Vehicles 

The first step in generating driver and vehicle information is determining the number of vehicles 
involved in the crash. This step is partially based on the crash type generated in the crash type 
module. If the crash type was defined as crash with fixed objects, crash with nonfixed objects, or 
nonmotorized crash, then it was considered a single vehicle crash. Otherwise, the number of cars 
was generated as 2 or 3. The probabilities calculated from the Illinois dataset for multivehicle 
crashes were an 88.1-percent likelihood of two vehicles being involved and an 11.9-percent 
likelihood of three vehicles being involved. Researchers generated the number using a 
cumulative probability table. Data was generated for each driver and vehicle involved in a crash 
once the number of vehicles involved was determined. Researchers assigned the first driver to 
have the same age as the age of the primary driver in the trip data; subsequently, all other 
information was generated using probability distributions observed from Illinois CRSS data 
(NHTSA n.d.). 
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Crash Severity 

The final step of the DREDGE generator determines the severity of the crash for each trip where 
a crash occurred. The trip, roadway, and generated crash information are used to calculate the 
probability of each crash severity using the OL model. Using the OL model, the probability for 
each crash severity across each driver is calculated. These probabilities are then combined to 
create a cumulative probability table. A random number is then generated from a uniform 
distribution from 0 to 1, which is used to select the crash severity. The random number is 
compared to all the crash severities in the cumulative distribution table, and the severity with a 
probability greater than the generated number is selected as the assigned crash severity for the 
driver. The crash severity is then appended to the driver data to be returned to the user at the end. 
The highest severity for all the drivers involved in a crash is then appended to the crash data to 
be returned to the user at the end. 

Validation Check 

The research team used the DREDGE generator to generate a full year of data to test its 
accuracy. Data on crash type, driver and vehicle characteristics, and crash severity were 
generated and compared to the CRSS dataset (see also appendix A, which is in the second 
volume of this publication). The RAD was similar to the CRSS dataset. The biggest differences 
were rear-end crashes (a slight underestimation) and crashes with fixed and nonfixed objects (a 
slight overestimation). Additionally, differences were found in the number of vehicles and driver 
age distribution. These differences could be partially attributed to inputs from preceding 
modules. Crash severity results were well-aligned with the input data. 
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CHAPTER 5. RAD GENERATION TOOL 

The team developed an aggregated RAD software.3 This software used Python and incorporated 
both the macroscopic approach and microscopic approach into a single platform (Python 
Software Foundation 2023). The team compiled all scripts and required inputs into a single 
executable file, which could be used directly by the end user to operate the RAD tool, with no 
need to install any software on their local computer. 

MACROSCOPIC RAD DATASETS 

The research team implemented the macroscopic approach to provide the user with capabilities 
to generate RAD for 22 facility types, with 10 intersection facilities and 12 segment facilities. 
For each facility type, the software produced two data files: the roadway file (containing total 
crash counts by severity and roadway geometric characteristics) and the crash file (detailed crash 
severity and crash type information). The two files are cross-linked, and the corresponding ID 
column can be used to join the two files together when needed. 

Researchers can use roadway data generated by the RAD software to compare the crash 
prediction accuracy among different statistical and econometric methodologies by five injury 
severity levels: K, A, B, C, and PDO crashes.4 Additionally, the software can be used to 
investigate the underlying relationships between crash and/or crash severity and traffic and 
roadway characteristics (such as AADT, lane width, shoulder width, speed limit, and curvature). 
The crash data generated by the RAD software can be used to further incorporate crash types into 
the analysis. The crash data includes a total of 10 crash types: angle, front-to-front, front-to-rear, 
sideswipe from the opposite direction, sideswipe from the same direction, other multivehicle, 
fixed object, nonfixed object, overturn/rollover, and other single-vehicle. 

MICROSCOPIC RAD DATASETS 

In terms of the microscopic approach, researchers implemented the disaggregate realistic 
artificial data generator (DREDGE) generator to produce three data files, as follows:  

• Crash file: Contains information on crash details, such as location, type, and severity . 

• Driver file: Contains information on each driver involved in a crash and their individual 
injury severity . 

• Vehicle file: Contains information on each vehicle involved in a crash. 

The three files are cross-linked, and columns from one dataset can be readily merged into the 
other two files as needed. The user can specify the number of years of crash data to be produced 
by the DREDGE generator, as well as the number of instances of data for that number of years. 
For example, a user can specify that they want two sets of 3 yr of crash data. When the 

 
3FHWA. DREDGE (standalone RAD software). 
4FHWA. DREDGE (standalone RAD software). 
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DREDGE generator is run, it will then produce two different crash files, two different driver 
files, and two different vehicle files, each containing three years of data. 

The crash dataset produced by the DREDGE generator can be used in a variety of ways. To 
analyze the crash data produced, it can be aggregated by facility type, such as by crashes on a 
segment in a 6-mo period or multiple years. It can also be aggregated spatially, such as by 
crashes in a zone or county. Additionally, multiple variables can be used for analysis. A selection 
of these variables (and their distributions) are shown in figure 14. A user can analyze the data for 
roadway characteristics, such as for number of lanes, type of roadway, or AADT. A user can also 
analyze the data by crash characteristics, such as time of crash, type of crash, or severity of 
crash. 

 
Source: FHWA. 

Figure 14. Chart. Sample variable distribution. 

The crash databases generated in this study can be employed for future use by transportation 
agencies to compare frequency models, severity models, crash type, and various other 
dimensions by facility type. The DREDGE generator the researchers developed can serve as a 
universal benchmarking system for alternative model frameworks in safety literature.
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CHAPTER 6. CASE STUDY DOCUMENTATION 

RAD GENERATION AND VALIDATION 

Generation and Validation Context 

Crash prediction models are essential tools in improving highway safety because they can 
identify both the expected frequency of crash occurrences and their contributing factors, which 
can subsequently be addressed by safety countermeasures. Using information from vehicle 
crashes, these prediction models predict both the frequency of crash occurrence and the degree of 
crash severity. Although the quantity of crash data has generally expanded over the years, the 
quality of crash data has not necessarily improved in tandem with methodological advancements 
in crash analysis. Prior studies tended to concentrate on the modeling component of the overall 
crash prediction process by developing cutting-edge modeling approaches that offered better fits 
to the observed data, and the acquired data were implicitly assumed to be suitable representations 
of reality (Bonneson and Ivan 2013). In developing DREDGE, the research team hoped to 
mitigate this situation. The purpose of the case studies was to demonstrate the usefulness of the 
macroscopic DREDGE tool’s applications and establish its capability to reliably generate 
realistic data. Researchers completed the following analyses to support this purpose: 

1. Generated a collection of datasets of varying sizes for two different facility types using 
the RAD tool. 

2. Estimated crash prediction models using each dataset and evaluated their predictive 
performance using mean absolute deviation (MAD) and mean-squared prediction error 
(MSPE) to select the best model. 

3. Examined the estimated model parameters for stability from one dataset to another for 
each facility type. 

The research team intended for these analyses to demonstrate how the RAD tool can serve as a 
testbed and help determine if any statistical models developed using the RAD can capture 
underlying relationships between independent variables and resultant crashes. Additionally, the 
team intended for these analyses to help guide and improve the practical application of statistical 
methods that influence highway safety policy, eventually leading to more effective safety 
countermeasures to reduce highway-related injuries and fatalities. The team also sought to 
demonstrate whether the data generated by the tool reliably represented real-world data and 
determine the tool’s consistency from one random generation session to another. 

Data Generation for Case Studies 

The team used datasets produced by the macroscopic RAD tool for two different facility types as 
an illustration to accomplish the purpose of the case studies. The tool was activated to generate 
10 different datasets for each facility, as follows:  

• Two sets of segments with 150, 300, 500, 750, and 1,000 mi each, with varying random 
seed values . 
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• Two sets of signalized intersections with 1,000, 2,000, 3,000, 4,000, and 
5,000 intersections each, with varying random seed values. 

Crash Model Estimation 

A wide variety of methods have been historically applied to address the data and methodological 
issues associated with crash-frequency data. Articles by Lord and Mannering (2010) and 
Abdulhafedh (2017) provide detailed reviews of the key issues associated with crash-frequency 
data and discuss strengths and weaknesses of various methodological approaches that researchers 
have used to address these issues. The research team considered several different statistical 
approaches for estimating models with the RAD, as described in the next few sections. 

Poisson Regression Model 

Using standard ordinary least-squares regression (which assumes a continuous dependent 
variable) is not appropriate for crash prediction because the crash frequency observations are 
non-negative integers (Lord and Mannering 2010). In a Poisson regression model, the probability 
of roadway entity (segment, intersection, etc.) I having yi crashes per some period (where yi is a 
non-negative integer) is given as shown in figure 15. 

 
Figure 15. Equation. Poisson regression model. 

where: 
P(yi) = probability of roadway entity I having yi crashes per period. 
λi = Poisson parameter for roadway entity I, which is equal to roadway entity i’s expected 

number of crashes per period E[yi]. 

Poisson regression models are estimated by specifying the Poisson parameter λi (the expected 
number of crashes per period) as a function of explanatory variables, the most common 
functional form being λi = EXP(βXi), where Xi is a vector of explanatory variables, and β is a 
vector of estimable parameters 

However, researchers have often found that crash data exhibit characteristics that make the 
application of the simple Poisson regression problematic (Washington, Karlaftis, and Mannering 
2010). Poisson models cannot handle overdispersion and underdispersion, and they can be 
adversely affected by low sample means and produce biased results in small samples. These 
models have been applied to crash-frequency data by Jones, Janssen, and Mannering (1991); 
Miaou (1994), Greibe (2003), Al-Jabri (2015), Santamarina and Perez (2021), Khattak et 
al. (2021), and Shahzad et al. (2021). 

NB Regression (Poisson-Gamma) Model 

Some researchers have employed the use of NB as an alternative to Poisson regression 
(Abbas 2004; Amoros, Martin, and Laumon 2003; Hirst, Mountain, and Maher 2004; Lord and 
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Bonneson 2007; Miaou and Lord 2003). The NB (or Poisson-gamma) model is an extension of 
the Poisson model that was developed to overcome possible overdispersion in the data. The 
NB/Poisson-gamma model assumes that the Poisson parameter follows a gamma probability 
distribution governed by an additional parameter that is estimated. The NB distribution offers a 
simple way to accommodate the overdispersion, especially since the optimization function has a 
closed form, and the mathematics to manipulate the relationship between the mean and the 
variance structures is relatively simple. The NB model is derived by rewriting the Poisson 
parameter for each observation I, as shown in figure 16. 

 
Figure 16. Equation. NB model. 

Where EXP(𝜀𝜀i) EXP(ᶓ)is a gamma-distributed error term with a mean of 1 and a variance of α. 

The addition of this term allows the variance to differ from the mean as VAR[yi] = E[yi][1+ 
αE[yi]] = E[yi]+αE[yi] (Lord and Miranda-Moreno 2008; Miaou and Lord 2003). 

The Poisson-gamma/NB model is likely the most frequently used model in crash-frequency 
modeling. However, the model does have its limitations, most notably its inability to handle 
underdispersed data and dispersion-parameter-estimation problems when the data are 
characterized by low sample-mean values and small sample sizes (Washington, Karlaftis, and 
Mannering 2010). 

Random Parameter Model 

The random parameter model can be viewed as an extension of the random effects model. The 
latter is designed to address the correlations in crash data arising from spatial considerations 
(data from the same geographic region may share unobserved effects), temporal considerations 
(such as in panel data, where data collected from the same observational unit over successive 
periods may share unobserved effects), or a combination of the two. To account for such 
correlations, the following models can be considered (Lord and Mannering 2010):  

• Random effects models where common, unobserved effects are assumed to be distributed 
over spatial and/or temporal units according to some distribution, and shared, unobserved 
effects are assumed to be uncorrelated with explanatory variables. 

• Fixed effects models where common, unobserved effects are accounted for by indicator 
variables, and shared unobserved effects are assumed to be correlated with independent 
variables. 

Random parameter models can be viewed as extensions of random effects models; however, 
rather than effectively only influencing the intercept of the model, random parameter models 
allow estimated parameter values to vary across all the observations in the dataset. Random 
parameters attempt to account for unobserved heterogeneity from one roadway site to another 
(Milton, Shankar, and Mannering 2008). Some researchers have applied this approach to crash 
frequency data. For example, Anastasopoulos and Mannering (2009) explored the use of random 
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parameter count models as a methodological alternative for analyzing crash frequencies. Their 
findings showed that ignoring the possibility of random parameters when estimating count data 
models can result in different marginal effects and subsequent inferences relating to the 
magnitude of the effect of factors affecting accident frequencies. This result can also be observed 
in studies from Bhat (2001) and Eluru, Bhat, and Hensher (2008). 

To allow for such random parameters in count data models, estimable parameters can be written 
as , βi = β + φi where φi is a randomly distributed term—for example, a normally distributed term 
with mean zero and variance σ2. With this equation, the Poisson parameter becomes 
λi|φi = EXP(βiXi) in the Poisson model and λi|φi = EXP(βiXi+εi) in the NB/Poisson-gamma, with 
the corresponding probabilities for Poisson or NB now P(yi|φi). Each observation has its own 
parameters; the final model will often provide a statistical fit that is significantly better than a 
model with traditional fixed parameters. However, random parameter models are complex to 
estimate, and they are not guaranteed to improve predictive capability (Washington, Karlaftis, 
and Mannering 2010). 

Poisson Lognormal Models 

Some researchers have proposed using the Poisson-lognormal model as an alternative to the 
NB/Poisson-gamma model for modeling crash data (Aguero-Valverde and Jovanis 2008; Lord 
and Miranda-Moreno 2008). The Poisson-lognormal model is similar to the NB/Poisson-gamma 
model; however, the EXP(εi) term used to compute the Poisson parameter is lognormal rather 
than gamma-distributed. The Poisson-lognormal model addresses limitations of the NB model 
because it is more flexible in handling overdispersion. 

Multivariate Poisson Lognormal Models 

Researchers have found this method necessary when instead of total crash counts, one wishes to 
model mutually exclusive categories of crash counts, such as counts by severity or type of 
collision (Aguero-Valverde and Jovanis 2008; N’Guessan and Langrand 2005; N’Guessan 
2010). Modeling the counts of mutually exclusive crash types, as opposed to total crashes, with 
independent count models can be statistically invalid because the categorical counts are not 
strictly independent of one another. That is, the counts of crashes resulting in fatalities cannot 
increase or decrease without affecting the counts of crashes resulting in injuries and no injuries. 
Bivariate/multivariate models are used to resolve this problem, as they explicitly consider the 
correlations among the severity levels (Lord and Mannering 2010). The multivariate Poisson 
Lognormal approach calculates a covariance matrix that captures additional heterogeneity that 
other models do not. 

Validating Crash Count Predictions 

An objective assessment of the predictive performance of a particular model can be made only 
through the evaluation of several goodness of fit (GOF) criteria. GOF measures used to conduct 
external model validation include MAD and MSPE (Washington, Karlaftis, and Mannering 
2010). The model building effort in this case study used the first dataset at each total distance 
increment for model estimation and the other dataset for cross validation. This process was 
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reversed, and the data used for cross validation were then used for estimation, and the validation 
dataset was also used for estimation. 

The GOF measures are calculated using the equations shown in figure 17 and figure 18. 

 
Figure 17. Equation. MAD. 

 
Figure 18. Equation. MSPE. 

where: 
Ymodel = predicted crash frequency. 
Yobserved = observed crash frequency. 
n = sample size. 

Evaluating Parameter Stability 

The parameter estimates from the model estimation are used to check if the stochasticity 
embedded in the RAD generation process will be consistent for different random seeds used to 
generate data with the tool. To achieve this goal, researchers examined parameter estimates from 
the models for each dataset using revised Wald test statistics created by Hoover, Bhowmik, 
Yasmin, and Eluru (2022), as shown in figure 19. 

 
Figure 19. Equation. Parameter test statistics. 

Where SE denotes the standard error for the corresponding sample. 

If the parameter test statistic computed was higher than the 90 percent t-statistic, the result would 
indicate significant difference across the parameters. The research team employed this test 
statistic (figure 19) to compute revised t-statistics for all the parameters across all samples. 

Application To Rural Two-Lane, Two-Way Undivided Segments 

Generation of Datasets 

Crash prediction models were estimated using each of the alternative approaches, as detailed in 
table 6. 
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Table 6. Summary of developed models. 

ID Facility Datasets Models 
Severity 

Level 
No. of 

Models 
1 Two-lane, 

two-way, 
undivided 
segment 

Two sets each 
of 150, 300, 
500, 750, and 
1,000 mi 

Poisson regression K, A, B, C, 
PDO 

5×2 = 10 

NB regression K, A, B, C, 
PDO 

5×2 = 10 

Poisson regression—
random parameters 

K, A, B, C, 
PDO 

5×2 = 10 

NB—random 
parameters 

K, A, B, C, 
PDO 

5×2 = 10 

Univariate Poisson 
lognormal 

K, A, B, C, 
PDO 

5×2 = 10 

Multivariate Poisson 
lognormal 

K, A, B, C, 
PDO 

5×2 = 10 

The descriptive statistics of the datasets generated by the tool are shown in table 7 and table 8. 
Notably, the same size dataset (i.e., the two sets of 150 mi) resulted in different numbers of 
observations, as the datasets were randomly generated. The data contained horizontal curve data, 
roadway data, and crash data. The list of variables included is summarized in table 7 and table 8. 

Model Estimation 

Researchers estimated crash prediction models using the parameters given in table 6 of this 
report. A total of 60 models were developed for rural two-lane undivided segments for each 
severity level: K, A, B, C, and O. For brevity, only the model parameter estimates and model fit 
statistics for the 1,000-mi dataset models are included in table 9, table 10, table 11, table 12, 
table 13, and table 14. Parameter estimates and model fit statistics for all models are provided in 
appendix B, which is in the second volume of this publication.
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Table 7. Descriptive statistics for continuous variables. 

Continuous 
Variables 

Dataset 1 
(n = 1,351): 

150 mi 

Dataset 2 
(n = 2,742): 

300 mi 

Dataset 3 
(n = 4,690): 

500 mi 

Dataset 4 
(n = 4,140): 

750 mi 

Dataset 5 
(n = 8,667): 

1,000 mi 

Dataset 6 
(n = 1,361): 

150 mi 

Dataset 7 
(n = 2,229): 

300 mi 

Dataset 8 
(n = 4,270): 

500 mi 

Dataset 9 
(n = 3,749): 

750 mi 

Dataset 10 
(n = 7,050): 

1,000 mi 
Crash counts PDO 0.938a, 

1.752b 
0.856, 
1.615 

0.853, 
1.684 

1.231, 
2.52 

0.950, 
1.80 

0.870, 
1.751 

0.988, 
1.997 

0.923, 
1.841 

1.432, 
2.751 

1.087, 
2.13 

Crash counts K 0.005, 
0.094 

0.003, 
0.060 

0.005, 
0.092 

0.007, 
0.150 

0.004, 
0.088 

0.004, 
0.085 

0.008 
0.232 

0.0014, 
0.037 

0.008, 
0.230 

0.0079, 
0.27 

Crash counts A 0.168, 
0.565 

0.137, 
0.477 

0.143, 
0.504 

0.223, 
0.765 

0.168, 
0.583 

0.153, 
0.561 

0.156 
0.536 

0.165, 
0.629 

0.247, 
0.855 

0.167, 
0.63 

Crash counts B 0.041, 
0.247 

0.041, 
0.241 

0.047, 
0.278 

0.060, 
0.374 

0.057, 
0.323 

0.036, 
0.234 

0.052 
0.306 

0.054, 
0.336 

0.073, 
0.386 

0.064, 
0.370 

Crash counts C 0.157, 
0.454 

0.165, 
0.493 

0.158, 
0.486 

0.282, 
0.908 

0.193, 
0.552 

0.196, 
0.527 

0.213 
0.613 

0.186, 
0.618 

0.397, 
0.810 

0.219, 
0.641 

Pavement roughness 104, 
34.04 

104.5, 
34.656 

105.3, 
40.64 

107.6, 
40.30 

105.9, 
39.800 

104.7, 
33.54 

104.9 
34.96 

105.1, 
39.29 

108.5, 
40.83 

106.7, 
40.7 

Pavement condition 40.170, 
3.090 

39.85, 
3.077 

23.0, 
3.714 

39.37, 
3.791 

39.33, 
3.730 

40.28, 
3.173 

39.63 
3.18 

39.59, 
3.76 

39.4, 
3.728 

39.24, 
3.70 

Average 
super-elevation 

0.769, 
2.603 

0.769, 
2.586 

−8.00, 
2.576 

−8.183, 
11.94 

−19.61, 
9.240 

0.802, 
2.60 

0.771 
2.608 

0.737, 
2.59 

−9.14, 
12.14 

−19.07, 
9.74 

Curvature degree 4.320, 
8.435 

5.217, 
10.354 

5.21, 
9.30 

0.00, 
4.750 

5.52, 
10.91 

5.155, 
10.17 

4.624 
8.563 

5.062, 
8.943 

3.122, 
2.970 

5.367, 
10.27 

Arc angle 36.53, 
20.62 

35.16, 
21.904 

10.0, 
22.08 

43.29, 
12.42 

36, 
22.670 

36.06, 
22.72 

40.75 
18.904 

37.79, 
19.92 

45.33, 
5.557 

37.41, 
20.93 

Log (radius) 7.686, 
0.904 

7.189, 
0.943 

7.17, 
0.830 

8.281, 
0.842 

7.153, 
0.920 

7.143, 
0.931 

7.694 
1.094 

7.463, 
1.051 

8.657, 
0.304 

7.397, 
1.034 

Log segment length −2.710, 
1.066 

−2.72, 
1.058 

−2.75, 
1.056 

−2.383, 
1.22 

−2.63, 
1.101 

−2.69, 
1.053 

−2.58 
1.126 

−2.69, 
1.087 

−2.29, 
1.249 

−2.576, 
1.150 

Vertical approach 0.225, 
0.828 

0.293, 
0.910 

0.355, 
0.895 

0.504, 
1.094 

0.440, 
0.960 

0.232, 
0.850 

0.316 
0.950 

0.361, 
0.913 

0.548, 
1.134 

0.459, 
0.990 

Vertical leaving 0.239, 
0.873 

0.213, 
0.822 

0.221, 
0.831 

0.340, 
1.017 

0.26, 
0.930 

0.252, 
0.905 

0.250 
0.874 

0.236, 
0.848 

0.369, 
1.055 

0.277, 
0.936 

Log (AADT) 7.735, 
0.570 

7.394, 
0.845 

7.628, 
0.832 

7.381, 
0.851 

7.56, 
0.804 

7.739, 
0.575 

7.411 
0.858 

7.616, 
0.835 

7.357, 
0.891 

7.542, 
0.820 

Grade 0.353, 
1.075 

0.402, 
1.090 

0.462, 
1.080 

0.671, 
1.30 

0.56, 
1.170 

0.370, 
1.05 

0.446 
1.145 

0.474, 
1.104 

0.728, 
1.35 

0.594, 
1.200 

amean. 
bstandard deviation. 



48 

Table 8. Descriptive statistics for categorical variables (datasets 1–10). 

Variable Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 
Shoulder Width 
0 ft 42 80 280 208 465 16 69 260 194 413 
2 ft 454 845 939 1134 2029 20 697 860 1044 121 
4 ft 186 589 1196 1083 2070 444 467 1081 970 2876 
6 ft 387 462 620 593 1387 171 379 570 532 1824 
8 ft 282 755 1655 1122 2116 705 617 1499 1005 1816 
Speed Limit 
25 mph 95 92 100 78 203 94 109 104 51 157 
30 mph 26 34 75 73 159 19 41 60 57 129 
35 mph 26 35 55 81 220 33 35 54 75 129 
40 mph 54 138 272 229 472 50 101 260 200 393 
45 mph 85 133 311 258 486 86 122 253 224 418 
50 mph 31 96 151 258 486 86 122 253 224 418 
55 mph 1037 2205 3726 3303 6339 1043 1747 3399 3025 5604 
Lane Width 
9 ft 0 3 37 107 247 0 3 37 103 203 
10 ft 50 183 354 311 382 50 180 327 267 347 
11 ft 269 664 11075 919 1829 264 558 912 835 1651 
12 ft 1032 1881 3224 2803 5609 1042 1488 2992 2540 4849 
Lighting 
Present 77 201 353 344 530 72 172 316 328 530 
Not 
present 1274 2530 4337 3796 7537 1284 2057 3954 3417 6520 
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Table 9. Poisson regression estimates for dataset 10 (1,000 mi). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −25.066* 4.175 −7.434 0.678 −4.478 1.004 −3.609 0.560 −2.099 0.250 
Ln (Segment 
Length) 1.292 0.178 0.984 0.032 1.023 0.051 1.000 0.028 1.059 0.013 
Ln (AADT) 1.389 0.303 0.813 0.050 0.533 0.075 0.469 0.040 0.536 0.018 
Shoulder Width 
8 ft Base Level 
<2 ft −0.580* 1.059 0.317 0.140 0.656 0.214 0.324 0.129 0.231 0.062 
≥2 ft < 4 ft −16.357* 1672.361 0.736 0.180 −0.817 0.589 −0.020 0.227 0.349 0.087 
≥4 ft < 6 ft −0.080 0.397 0.260 0.076 0.369 0.126 0.359 0.066 0.340 0.030 
≥6 ft < 8 ft −0.874 0.583 0.174 0.088 0.395 0.140 0.003 0.079 0.263 0.034 
Lane Width 
>12 ft Base Level 
≤9 ft 3.028 0.567 0.279 0.160 0.011 0.249 0.246 0.142 0.145 0.064 
9.5 ft−10.5 ft 0.411 0.593 0.129 0.091 −0.376 0.149 0.179 0.076 0.188 0.034 
11 ft−11.5 ft −12.372* 1520.181 0.478 0.229 −0.341 0.393 0.343 0.194 0.223 0.089 
Speed Limit 
45 mph Base Level 
25 mph 2.826* 1.088 0.791 0.181 1.089 0.323 0.365 0.157 0.483 0.068 
30 mph −15.228* 1864.827 0.387 0.199 1.239 0.303 0.560 0.150 0.081 0.078 
35 mph 0.773* 1.250 0.642 0.184 0.696 0.329 0.038 0.167 −0.359 0.088 
40 mph 1.575* 1.096 −0.676 0.214 −0.479 0.374 −0.677 0.163 −1.044 0.084 
50 mph −14.297* 1595.923 0.321 0.217 −0.256 0.505 −0.356 0.219 −0.151 0.092 
55 mph −0.123 1.072 −0.217 0.136 0.246 0.249 −0.356 0.106 −0.258 0.049 
Roadside Hazard Rating (Zegeer et al. 1988) 
3 Base Level 
4 −1.069 0.547 0.045 0.084 0.030 0.138 0.146 0.072 0.069 0.032 
5 −1.395 0.678 0.115 0.103 0.279 0.164 0.233 0.089 0.180 0.040 
6 0.054 0.689 −0.025 0.134 0.430 0.204 0.161 0.116 0.159 0.052 
7 −0.715 1.066 0.237 0.171 0.558 0.279 0.110 0.159 0.251 0.068 
Pavement 
Condition 0.249 0.068 0.021 0.012 −0.019 0.018 0.008 0.011 −0.002 0.005 

Pavement 
Roughness 0.014 0.008 0.002 0.001 −0.002 0.002 0.001 0.001 0.000 0.001 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Presence of 
Lighting −1.631 1.220 −0.180 0.164 −0.491 0.288 −0.237 0.152 −0.417 0.070 

Presence of 
Horizontal 
Curve 

−14.516* 1042.264 −1.408 0.411 −14.329* 262.136 −1.225 0.336 0.345 0.073 

Vertical Curve 
Approaching 
Slope 

−3.043* 5.011 0.173 0.157 −0.359 0.289 0.158 0.106 −0.053 0.053 

Vertical Curve 
Leaving Slope −2.276* 5.020 −0.104 0.114 0.163 0.324 0.332 0.107 0.077 0.051 

Grade 2.775* 5.118 −0.058 0.175 −0.061 0.374 −0.336 0.140 −0.005 0.065 
Curvature 
Degree −0.007 0.024 0.006 0.003 0.002 0.005 0.000 0.003 0.002 0.001 

Fit Statistics 
AIC 443.88 N/A 5693.6 N/A 3018.8 N/A 6641.1 N/A 15812 N/A 
BIC 635.97 N/A 5885.67 N/A 3210.9 N/A 6833.24 N/A 16004.4 N/A 

—No data.  
*Variables are insignificant at a 90-percent confidence level. 
N/A = not applicable; std. error = standard error.  
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Table 10. NB estimates for dataset 10 (1,000 mi). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −18.145* 6.912 −5.918 0.948 −4.412 1.829 −3.124 0.766 −2.002 0.389 
Ln (Segment 
Length) 0.976 0.339 1.006 0.046 1.200 0.097 1.049 0.039 1.058 0.020 
Ln (AADT) 1.206 0.512 0.847 0.064 0.204 0.108 0.438 0.049 0.452 0.025 
Shoulder Width 
8 ft Base Level 
<2 ft 0.005 1.406 0.322 0.210 −0.515 0.631 0.837 0.164 0.240 0.094 
≥2 ft < 4 ft −1.063 1.226 0.538 0.119 1.019 0.243 0.528 0.103 0.292 0.051 
≥4 ft < 6 ft 1.001 0.828 0.189 0.124 0.558 0.259 0.558 0.104 0.258 0.051 
≥6 ft < 8 ft 0.338 0.910 0.115 0.144 0.482 0.296 0.367 0.122 0.246 0.059 
Lane Width  
>12 ft Base Level 
≤9 ft −49.933* 38132 0.116 0.222 0.514 0.444 0.157 0.183 0.256 0.095 
9.5 ft−10.5 ft 0.920 0.818 0.027 0.123 0.051 0.247 0.126 0.100 0.091 0.052 
11 ft−11.5 ft −46.906* 65065 −0.065* 0.308 0.120 0.675 0.167 0.255 0.505 0.130 
Speed Limit 
45 mph Base Level 
25 mph 3.088* 1.793 0.303 0.313 −0.222 0.660 0.549 0.252 0.041 0.131 
30 mph −0.097* 3.564 0.353 0.300 1.175 0.552 0.817 0.237 0.041 0.136 
35 mph 2.391* 1.939 −0.001 0.332 1.096 0.529 0.717 0.241 −0.295 0.144 
40 mph −46.975* 4453 −0.920 0.275 −0.604 0.498 −0.553 0.230 −1.110 0.120 
50 mph −49.941* 6182.0 −0.552 0.341 −0.248 0.612 0.211 0.258 0.004 0.120 
55 mph 0.634 1.399 −0.396 0.166 −0.546 0.349 −0.101 0.153 −0.330 0.071 
Roadside Hazard Rating (Zegeer et al 1988) 
3 Base Level 
4 1.392 1.159 0.122 0.120 −0.146 0.238 −0.092 0.100 0.015 0.049 
5 0.485 1.391 0.083 0.152 0.073 0.301 0.093 0.125 0.051 0.064 
6 0.867 1.585 0.019 0.191 0.313 0.371 0.205 0.156 0.251 0.080 
7 2.325 1.695 −0.078 0.261 −0.083 0.536 0.348 0.206 0.180 0.110 
Pavement 
Condition 0.081 0.125 −0.014 0.018 0.040 0.038 −0.006 0.015 0.014 0.008 

Pavement 
Roughness −0.002 0.012 0.003 0.002 0.002 0.004 0.001 0.002 0.000 0.001 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Presence of 
Lighting 0.688 1.347 −0.404 0.238 −0.240 0.449 −0.722 0.211 −0.531 0.102 

Presence of 
Horizontal 
Curve 

−42.583* 45853 −2.856 1.032 −1.361 1.065 −1.429 0.462 0.186 0.113 

Vertical Curve 
Approaching 
Slope 

0.163 1.167 0.528 0.244 −0.008 0.528 0.125 0.157 −0.011 0.075 

Vertical Curve 
Leaving Slope 1.851 2.132 0.107 0.151 −0.243 0.409 0.079 0.135 −0.050 0.064 

Grade −1.984 2.366 −0.546 0.274 0.033 0.587 −0.140 0.189 0.060 0.089 
Curvature 
Degree 0.105 0.038 −0.016 0.013 −0.011 0.024 0.002 0.009 0.000 0.005 

Fit Statistics 
AIC 370.24 N/A 6386.8 N/A 3011.2 N/A 7191.9 N/A 17318 N/A 
BIC 439.225 N/A 3843.97 N/A 1686.52 N/A 4457.75 N/A 9481.62 N/A 
Overdispersion 0.0139 — 1.182 — 4.329 — `0.567 — 0.375 — 

—No data. 
*Variables are insignificant at a 90-percent confidence level.  
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Table 11. Random parameters—Poisson regression estimates for dataset 10 (1,000 mi). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −17.604* 10.500 −6.423 0.966 −5.983 2.342 −3.449 0.777 −2.262 0.385 
Ln (Segment 
Length) 0.855 0.617 0.988 0.049 1.111 0.123 1.040 0.040 1.053 0.020 
Ln (AADT) 0.862 1.023 0.830 0.067 0.251 0.144 0.438 0.051 0.468 0.026 
Shoulder Width 
8 ft Base Level 
<2 ft 0.265 2.649 0.204 0.224 −0.460 0.810 0.805 0.168 0.241 0.092 
≥2 ft < 4 ft −1.248 2.812 0.497 0.120 1.234 0.310 0.530 0.105 0.305 0.049 
≥4 ft < 6 ft 0.685 1.488 0.172 0.124 0.522 0.325 0.552 0.105 0.272 0.050 
≥6 ft < 8 ft 0.059 1.608 0.068 0.145 0.066 0.399 0.355 0.124 0.253 0.057 
Lane Width  
>12 ft Base Level 
≤9 ft 0.265 2.649 0.204 0.224 −0.460 0.810 0.805 0.168 0.241 0.092 
9.5 ft−10.5 ft −1.248 2.812 0.497 0.120 1.234 0.310 0.530 0.105 0.305 0.049 
11 ft−11.5 ft 0.685 1.488 0.172 0.124 0.522 0.325 0.552 0.105 0.272 0.050 
Speed Limit 
45 mph Base Level 
25 mph 1.650* 4.138 0.296 0.333 −0.412 0.828 0.541 0.258 0.017 0.128 
30 mph 1.833* 4.425 0.517 0.303 0.646 0.689 0.770 0.244 0.027 0.132 
35 mph 3.153 3.556 −0.071 0.351 −0.180 0.823 0.596 0.251 −0.377 0.142 
40 mph −3.141* 20.861 −0.855 0.280 −1.315 0.629 −0.557 0.234 −1.106 0.117 
50 mph −30.351* 609.50 −0.391 0.332 −1.131 0.838 0.222 0.262 −0.009 0.116 
55 mph −0.242 2.618 −0.342 0.168 −1.005 0.398 −0.123 0.154 −0.339 0.068 
Roadside Hazard Rating (Zegeer et al 1988) 
3 Base Level 
4 2.522* 1.945 0.053 0.122 −0.417 0.307 −0.090 0.101 0.030 0.048 
5 1.539* 2.566 0.062 0.156 −0.401 0.397 0.094 0.128 0.049 0.063 
6 1.953* 2.526 −0.014 0.193 −0.023 0.445 0.211 0.156 0.278 0.077 
7 2.678* 2.636 −0.113 0.267 −0.223 0.647 0.381 0.211 0.206 0.107 
Pavement Condition 0.037 0.165 −0.009 0.018 0.014 0.047 −0.003 0.015 0.016 0.008 
Pavement 
Roughness 0.006 0.021 0.003 0.002 0.005 0.005 0.001 0.002 0.000 0.001 
Presence of Lighting 0.128 2.363 −0.420 0.244 −0.330 0.553 −0.754 0.217 −0.534 0.100 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Presence of 
Horizontal Curve −27.666* 2949.6 −2.918 1.050 −1.583 1.350 −1.479 0.470 0.175 0.111 

Vertical Curve 
Approaching Slope 0.286 2.322 0.505 0.236 −0.165 0.593 0.133 0.159 −0.006 0.075 

Vertical Curve 
Leaving Slope 2.126 5.974 0.145 0.152 −0.340 0.483 0.089 0.138 −0.033 0.064 

Grade −2.241 6.215 −0.547 0.267 0.275 0.665 −0.159 0.193 0.038 0.089 
Curvature Degree −0.007 0.024 0.006 0.003 0.002 0.005 0.000 0.003 0.002 0.001 
SD (Curvature 
Degree) 1.027 0.052 1.097 0.022 1.2011 0.107 0.838 0.152 0.584 0.029 

Fit Statistics 
AIC 443.88 N/A 5693.6 N/A 3018.8 N/A 6641.1 N/A 15812 N/A 
BIC 635.97 N/A 5885.67 N/A 3210.9 N/A 6833.24 N/A 16004.4 N/A 

—No data. 
*Variables are insignificant at a 90-percent confidence level.  
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Table 12. Random parameters—NB regression estimates for dataset 10 (1,000 mi). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −25.066 4.175 2.522 0.678 −3.181 1.004 −2.594 0.560 −1.875 0.250 
Ln (Segment 
Length) 1.323 0.178 1.539 0.032 1.318 0.051 1.000 0.028 1.0946 0.013 

Ln (AADT) 0.367 0.303 1.953 0.050 0.133 0.075 0.469 0.040 0.090 0.018 
Standard Deviation 
(Length) 0.263 0.184 2.678 2.968 0.197 1.560 0.432 0.371 0.520 0.149 

Standard Deviation 
(AADT) 0.012 0.219 0.037 1.149 0.134 0.793 0.021 0.387 0.116 0.324 

Shoulder Width 
8 ft Base Level 
<2 ft −0.580* 1.059 0.317 0.140 0.656 0.214 0.324 0.129 0.231 0.062 
≥2 ft < 4 ft −16.357* 1672.361 −0.364 0.180 −0.817 0.589 −0.020 0.227 0.349 0.087 
≥4 ft < 6 ft −0.080* 0.397 0.260 0.076 0.369 0.126 0.359 0.066 0.340 0.030 
≥6 ft < 8 ft −0.874* 0.583 0.174 0.088 0.395 0.140 0.003 0.079 0.263 0.034 
Lane Width  
>12 ft Base Level 
≤9 ft 3.028 0.567 0.279 0.160 0.011 0.249 0.246 0.142 0.145 0.064 
9.5 ft−10.5 ft 0.411 0.593 0.129 0.091 −0.376 0.149 0.179 0.076 0.188 0.034 
11 ft−11.5 ft −12.372* 1520.181 0.478 0.229 −0.341 0.393 0.343 0.194 0.223 0.089 
Speed Limit 
45 mph Base Level 
25 mph 2.826* 1.088 0.791 0.181 1.089 0.323 0.365 0.157 0.483 0.068 
30 mph −15.228* 1864.827 0.387 0.199 1.239 0.303 0.560 0.150 0.081 0.078 
35 mph 0.773* 1.250 0.642 0.184 0.696 0.329 0.038 0.167 −0.359 0.088 
40 mph 1.575* 1.096 −0.676 0.214 −0.479 0.374 −0.677 0.163 −1.044 0.084 
50 mph −14.297* 1595.923 0.321 0.217 −0.256 0.505 −0.356 0.219 −0.151 0.092 
55 mph −0.123* 1.072 −0.217 0.136 0.246 0.249 −0.356 0.106 −0.258 0.049 
Roadside Hazard Rating (Zegeer et al 1988) 
3 Base Level 
4 −1.690* 0.547 0.045 0.084 0.030 0.138 0.146 0.072 0.069 0.032 
5 −1.395 0.678 0.115 0.103 0.279 0.164 0.233 0.089 0.180 0.040 
6 0.054 0.689 −0.025 0.134 0.430 0.204 0.161 0.116 0.159 0.052 
7 −0.715 1.066 0.237 0.171 0.558 0.279 0.110 0.159 0.251 0.068 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Pavement Condition 0.249 0.068 0.021 0.012 −0.019 0.018 0.008 0.011 −0.002 0.005 
Pavement 
Roughness 0.014 0.208 0.002 0.371 −0.297 0.284 0.387 0.248 0.452 0.732 

Presence of Lighting −1.631 1.220 −0.180 0.164 −0.491 0.288 −0.237 0.152 −0.417 0.070 
Presence of 
Horizontal Curve −14.516* 1042.264 −1.408 0.411 −14.329 262.136 −1.225 0.336 0.345 0.073 

Vertical Curve 
Approaching Slope −3.043 5.011 0.173 0.157 −0.359 0.289 0.158 0.106 −0.053 0.053 

Vertical Curve 
Leaving Slope −2.276 5.020 −0.104 0.114 0.163 0.324 0.332 0.107 0.077 0.051 

Grade 2.775 5.118 −0.058 0.175 −0.061 0.374 −0.336 0.140 −0.005 0.065 
Curvature Degree −0.007 0.024 0.006 0.003 0.002 0.005 0.000 0.003 0.002 0.001 
Fit Statistics 
AIC 443.88 N/A 5693.6 N/A 3018.8 N/A 6641.1 N/A 15812 N/A 
BIC 635.97 N/A 5885.67 N/A 3210.9 N/A 6833.24 N/A 16004.4 N/A 

—No data. 
*Variables are insignificant at a 90-percent confidence level.  
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Table 13. Poisson univariate estimates for dataset 10 (1,000 mi). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −25.066* 4.175 −7.434 0.678 −4.478 1.004 −3.609 0.560 −2.099 0.250 
Ln (Segment Length) 1.292 0.178 0.984 0.032 1.023 0.051 1.000 0.028 1.059 0.013 
Ln (AADT) 1.389 0.303 0.813 0.050 0.533 0.075 0.469 0.040 0.536 0.018 
Shoulder Width 
8 ft Base Level 
<2 ft −0.580* 1.059 0.317 0.140 0.656 0.214 0.324 0.129 0.231 0.062 
≥2 ft < 4 ft −16.357* 1672.361 0.736 0.180 −0.817 0.589 −0.020 0.227 0.349 0.087 
≥4 ft < 6 ft −0.080 0.397 0.260 0.076 0.369 0.126 0.359 0.066 0.340 0.030 
≥6 ft < 8 ft −0.874 0.583 0.174 0.088 0.395 0.140 0.003 0.079 0.263 0.034 
Lane Width  
>12 ft Base Level 
≤9 ft 3.028* 0.567 0.279 0.160 0.011 0.249 0.246 0.142 0.145 0.064 
9.5 ft−10.5 ft 0.411 0.593 0.129 0.091 −0.376 0.149 0.179 0.076 0.188 0.034 
11 ft−11.5 ft −12.372* 1520.181 0.478 0.229 −0.341 0.393 0.343 0.194 0.223 0.089 
Speed Limit 
45 mph Base Level 
25 mph 2.826* 1.088 0.791 0.181 1.089 0.323 0.365 0.157 0.483 0.068 
30 mph −15.228* 1864.827 0.387 0.199 1.239 0.303 0.560 0.150 0.081 0.078 
35 mph 0.773 1.250 0.642 0.184 0.696 0.329 0.038 0.167 −0.359 0.088 
40 mph 1.575 1.096 −0.676 0.214 −0.479 0.374 −0.677 0.163 −1.044 0.084 
50 mph −14.297* 1595.923 0.321 0.217 −0.256 0.505 −0.356 0.219 −0.151 0.092 
55 mph −0.123 1.072 −0.217 0.136 0.246 0.249 −0.356 0.106 −0.258 0.049 
Roadside Hazard Rating (Zegeer et al 1988) 
3 Base Level 
4 −1.069 0.547 0.045 0.084 0.030 0.138 0.146 0.072 0.069 0.032 
5 −1.395 0.678 0.115 0.103 0.279 0.164 0.233 0.089 0.180 0.040 
6 0.054 0.689 −0.025 0.134 0.430 0.204 0.161 0.116 0.159 0.052 
7 −0.715 1.066 0.237 0.171 0.558 0.279 0.110 0.159 0.251 0.068 
Pavement Condition 0.249 0.068 0.021 0.012 −0.019 0.018 0.008 0.011 −0.002 0.005 
Pavement Roughness 0.014 0.008 0.002 0.001 −0.002 0.002 0.001 0.001 0.000 0.001 
Presence of Lighting −1.631 1.220 −0.180 0.164 −0.491 0.288 −0.237 0.152 −0.417 0.070 
Presence of Horizontal 
Curve −14.516* 1042.264 −1.408 0.411 −14.329 262.13

6 −1.225 0.336 0.345 0.073 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Vertical Curve 
Approaching Slope −3.043* 5.011 0.173 0.157 −0.359 0.289 0.158 0.106 −0.053 0.053 

Vertical Curve Leaving 
Slope −2.276* 5.020 −0.104 0.114 0.163 0.324 0.332 0.107 0.077 0.051 

Grade 2.775* 5.118 −0.058 0.175 −0.061 0.374 −0.336 0.140 −0.005 0.065 
Curvature Degree −0.007 0.024 0.006 0.003 0.002 0.005 0.000 0.003 0.002 0.001 
Fit Statistics 
AIC 443.88 N/A 5693.6 N/A 3018.8 N/A 6641.1 N/A 15812 N/A 
BIC 635.97 N/A 5885.67 N/A 3210.9 N/A 6833.24 N/A 16004.4 N/A 

—No data. 
*Variables are insignificant at a 90-percent confidence level.
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Table 14. Multivariate Poisson lognormal estimates for dataset 10 (1,000 mi). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −25.066* 4.175 −7.434 0.678 −4.478 1.004 −3.609 0.560 −2.099 0.250 
Ln (Segment Length) 1.292 0.178 0.984 0.032 1.023 0.051 1.000 0.028 1.059 0.013 
Ln (AADT) 1.389 0.303 0.813 0.050 0.533 0.075 0.469 0.040 0.536 0.018 
Shoulder Width 
8 ft Base Level 
<2 ft −0.580 1.059 0.317 0.140 0.656 0.214 0.324 0.129 0.231 0.062 
≥2 ft < 4 ft −16.357* 1672.361 0.736 0.180 −0.817 0.589 −0.020 0.227 0.349 0.087 
≥4 ft < 6 ft −0.080 0.397 0.260 0.076 0.369 0.126 0.359 0.066 0.340 0.030 
≥6 ft < 8 ft −0.874 0.583 0.174 0.088 0.395 0.140 0.003 0.079 0.263 0.034 
Lane Width 
>12 ft Base Level 
≤9 ft 3.028* 0.567 0.279 0.160 0.011 0.249 0.246 0.142 0.145 0.064 
9.5 ft−10.5 ft 0.411 0.593 0.129 0.091 −0.376 0.149 0.179 0.076 0.188 0.034 
11 ft−11.5 ft −12.372* 1520.181 0.478 0.229 −0.341 0.393 0.343 0.194 0.223 0.089 
Speed Limit 
45 mph Base Level 
25 mph 2.826 1.088 0.791 0.181 1.089 0.323 0.365 0.157 0.483 0.068 
30 mph −15.228* 1864.827 0.387 0.199 1.239 0.303 0.560 0.150 0.081 0.078 
35 mph 0.773 1.250 0.642 0.184 0.696 0.329 0.038 0.167 −0.359 0.088 
40 mph 1.575 1.096 −0.676 0.214 −0.479 0.374 −0.677 0.163 −1.044 0.084 
50 mph −14.297* 1595.923 0.321 0.217 −0.256 0.505 −0.356 0.219 −0.151 0.092 
55 mph −0.123 1.072 −0.217 0.136 0.246 0.249 −0.356 0.106 −0.258 0.049 
Roadside Hazard Rating (Zegeer et al 1988) 
3 Base Level 
4 −1.069 0.547 0.045 0.084 0.030 0.138 0.146 0.072 0.069 0.032 
5 −1.395 0.678 0.115 0.103 0.279 0.164 0.233 0.089 0.180 0.040 
6 0.054 0.689 −0.025 0.134 0.430 0.204 0.161 0.116 0.159 0.052 
7 −0.715 1.066 0.237 0.171 0.558 0.279 0.110 0.159 0.251 0.068 
Pavement Condition 0.249 0.068 0.021 0.012 −0.019 0.018 0.008 0.011 −0.002 0.005 
Pavement Roughness 0.014 0.008 0.002 0.001 −0.002 0.002 0.001 0.001 0.000 0.001 
Presence of Lighting −1.631 1.220 −0.180 0.164 −0.491 0.288 −0.237 0.152 −0.417 0.070 
Presence of Horizontal 
Curve −14.516* 1042.264 −1.408 0.411 −14.329 262.13

6 −1.225 0.336 0.345 0.073 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Vertical Curve 
Approaching Slope −3.043* 5.011 0.173 0.157 −0.359 0.289 0.158 0.106 −0.053 0.053 

Vertical Curve Leaving 
Slope −2.276* 5.020 −0.104 0.114 0.163 0.324 0.332 0.107 0.077 0.051 

Grade 2.775* 5.118 −0.058 0.175 −0.061 0.374 −0.336 0.140 −0.005 0.065 
Curvature Degree −0.007 0.024 0.006 0.003 0.002 0.005 0.000 0.003 0.002 0.001 
Variance-Covariance Matrix 
K 0.218 0.625 0.248 0.138 0.086 
A — 1.011 0.526 0.491 0.516 
B — — 1.600 0.733 0.715 
C — — — 0.501 0.477 
PDO — — — — 0.531 

—No data. 
*Variables are insignificant at a 90-percent confidence level.
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Crash Validation 

The model prediction of dataset 10 used for model estimation is shown in table 15. Dataset 5, 
which had the same mileage, was used for cross-validation. 

Table 15. Model prediction using dataset 10 (1,000 mi) for estimation. 

Models Metric K A B C PDO 
Poisson regression MAD 11.15 2.74 3.71 2.48 1.73 

MSPE 202.4 9.25 15.5 7.49 5.17 
NB regression MAD 14.92 2.74 3.69 2.49 1.73 

MSPE 451.31 9.23 15.36 7.50 5.18 
Poisson regression—random 
parameters 

MAD 36.91 3.26 5.30 2.80 1.78 
MSPE 450.7 12.29 30.74 9.00 7.57 

NB—random parameters MAD 24.5 3.16 6.10 2.61 1.73 
MSPE 331.3 11.5 40.04 8.03 5.20 

Univariate Poisson lognormal MAD 29.1 2.83 4.38 2.53 1.88 
MSPE 135.32 9.81 31.5 8.36 6.28 

Multivariate Poisson lognormal MAD 26.92 3.72 3.98 3.13 1.34 
MSPE 472.31 10.50 15.57 7.90 5.70 

From the results, Poisson regression had a lower MSPE and MAD for K crashes. Poisson 
regression had the lowest MAD and NB had the lowest MSPE for A crashes, which means that it 
performed better. Univariate Poisson lognormal had the lowest MAD for B crashes; meanwhile, 
Poisson regression had the lowest MSPE value. Poisson regression performed better for C 
crashes for MAD while NB did better for MSPE. Finally, Poisson did better for MAD for PDO 
crashes while univariate Poisson lognormal did better for MSPE. 

The cross-validation results are shown in table 16, table 17, and table 18. 
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Table 16. Cross validation with dataset 5 (1,000 mi) with parameters estimated using 
dataset 10. 

Models Metric K A B C PDO 
Poisson regression MAD 11.41 2.74 3.73 2.52 1.85 

MSPE 210.24 9.34 15.82 7.73 6.21 
NB regression MAD 15.20 2.73 3.74 2.53 1.85 

MSPE 466.20 9.29 15.83 7.75 6.24 
Poisson regression—random 
parameters 

MAD 39.01 3.27 5.36 2.83 1.99 
MSPE 593.8 12.70 31.36 9.48 6.86 

NB—random parameters MAD 25.20 3.15 6.21 2.64 1.86 
MSPE 379.1 11.8 41.48 8.36 6.26 

Univariate Poisson lognormal MAD 14.92 2.74 3.69 2.49 1.73 
MSPE 351.31 9.23 15.36 7.50 5.18 

Multivariate Poisson 
lognormal 

MAD 15.92 2.92 4.68 3.51 2.73 
MSPE 462.31 10.25 15.56 7.54 5.27 

Table 17. Model prediction with dataset 5 (1,000 mi) used for estimation. 

Models Metric K A B C PDO 
Poisson regression MAD 9.81 2.83 4.38 2.53 1.88 

MSPE 135.32 9.81 31.5 8.36 6.28 
NB regression MAD 14.03 2.86 5.05 2.51 1.88 

MSPE 533.60 10.04 66.41 7.74 6.30 
Poisson regression—random 
parameters 

MAD 24.01 3.26 5.30 2.79 1.88 
MSPE 233.2 12.29 30.74 8.98 5.182 

NB—random parameters MAD 24.59 3.14 6.11 2.60 1.739 
MSPE 301.3 11.4 40.08 8.02 5.203 

Univariate Poisson lognormal MAD 10.1 2.75 2.52 2.01 1.12 
MSPE 254.7 8.32 12.30 6.90 10.04 

Multivariate Poisson 
lognormal 

MAD 14.38 3.61 2.67 2.91 2.01 
MSPE 441.5 9.19 12.99 6.98 10.24 
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Table 18. Cross validation with dataset 10 (1,000 mi) with parameters estimated using 
dataset 5. 

Models Metric K A B C PDO 
Poisson regression MAD 13.54 2.74 4.64 2.59 1.77 

MSPE 263.07 9.274 33.51 8.14 5.34 
NB regression MAD 25.19 2.80 5.25 2.58 1.78 

MSPE 335.4 9.65 66.39 8.060 5.401 
Poisson regression—random 
parameters 

MAD 27.63 3.41 5.31 2.78 2.01 
MSPE 2671.7 13.12 31.13 8.96 6.28 

NB—random parameters MAD 22.86 3.31 9.05 2.55 1.88 
MSPE 303.1 12.59 310.34 7.84 6.31 

Univariate Poisson lognormal MAD 10.2 2.77 2.98 2.70 1.12 
MSPE 254.7 8.24 13.67 6.79 10.14 

Multivariate Poisson lognormal MAD 15.38 2.36 2.77 2.93 2.31 
MSPE 267.5 9.19 12.89 6.89 10.24 

Cross validation was used to assess the predictive performance of the models and to judge how 
they perform outside the sample to a new dataset also known as test data. Without cross 
validation, there is only information on how each model performs relative to the in-sample data. 
The range of numbers from the cross-validation table shows that the models are robust enough to 
be relied on which suggests that the data from the tool can be trusted to produce convincing 
result each time various models are run on them. 

Empirical Analysis for Evaluating Parameter Stability 

Parameter estimates were examined to determine consistency using the revised Wald statistics. 
The analysis was conducted for all approaches, but only the results for the NB approach with 
PDO crashes are shown here, as an example. Dataset 10 (1,000 mi) was used as the population 
benchmark to evaluate if each parameter in any model is statistically different from the 
corresponding one in that dataset. If the parameter test statistic is greater than the 90 percent 
t-statistic, this result indicates a significant difference between the datasets. 

In contrast, if the parameter test statistics are below the 90-percent t-statistic, no significant 
difference exists between the datasets, and the stochasticity in the RAD tool can be assumed to 
be consistent across different generations with different random seeds. The research team used 
dataset 10 because it had the largest number of observations and was believed to produce the 
most convincing parameter estimates. The combined NB estimates of PDO crashes for the 10 
datasets are displayed in table 19, along with their standard errors for illustrative purposes. The 
updated Wald test statistics for the estimated model parameter values are shown in table 20. For 
example, the test statistics for segment length across the datasets were lower than the 90-percent 
confidence value of 1.65, which could mean that there is no significant difference between the 
estimated parameters in the corresponding dataset and dataset 10. 
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Application To Urban Four-Leg Signalized Intersections 

RAD Generation 

The descriptive statistics of the datasets generated by the tool are shown in table 21. The data in 
table 22 contains traffic, geometric, and intersection feature characteristics. The values for each 
of the continuous variables fall within a reasonable range, which shows that the dataset generated 
from the tool, even though randomly generated, will be within expected ranges. The same 
outcome was noticed for the categorical variables.
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Table 19. NB estimates for PDO crashes. 
Parameter Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 

Intercept −0.62a 

(0.860b 
−3.870, 
(0.685) 

−1.856, 
(0.369) 

−2.001, 
(0.389) 

−1.965, 
0.291 

−1.000*, 
(1.176) 

−3.278, 
(0.671) 

−1.917, 
(0.448) 

−2.438, 
(0.385) 

−2.223, 
(0.321) 

Ln (Segment 
Length) 

0.963, 
(0.036) 

1.054, 
(0.034) 

1.023, 
(0.021) 

1.058, 
(0.019) 

1.049, 
(0.017) 

0.965, 
(0.050) 

1.050, 
(0.031) 

1.074, 
(0.025) 

1.048, 
(0.021) 

1.064, 
(0.017) 

Ln (AADT) 0.392, 
(0.065) 

0.627, 
(0.045) 

0.548, 
(0.027) 

0.452, 
(0.025) 

0.474, 
(0.023) 

0.415, 
(0.089) 

0.533, 
(0.044) 

0.464, 
(0.032) 

0.530, 
(0.043) 

0.546, 
(0.088) 

Shoulder Width 
8-ft Base Level 

<2 ft 0.167, 
(0.329) 

0.610, 
(0.155) 

0.381, 
(0.076) 

0.240, 
(0.093) 

0.349, 
(0.071) 

0.818, 
(0.365) 

0.334, 
(0.159) 

0.266, 
(0.093) 

0.189, 
(0.095) 

0.246, 
(0.076) 

≥2 ft < 4 ft 0.361, 
(0.092) 

0.497, 
(0.077) 

0.360, 
(0.051) 

0.292, 
(0.050) 

0.383, 
(0.043) 

0.781, 
(0.373) 

0.471, 
(0.076) 

0.249, 
(0.061) 

0.341, 
(0.051) 

0.329, 
(0.118) 

≥4 ft < 6 ft 0.144, 
(0.083) 

0.446, 
(0.083) 

0.277, 
(0.048) 

0.257, 
(0.051) 

0.243, 
(0.042) 

0.361, 
(0.095) 

0.410, 
(0.083) 

0.218, 
(0.058) 

0.307, 
(0.051) 

0.351, 
(0.094) 

≥6 ft < 8 ft 0.168, 
(0.096) 

0.479, 
(0.089) 

0.137, 
(0.058) 

0.246, 
(0.059) 

0.217, 
(0.048) 

0.117*, 
(0.136) 

0.332, 
(0.088) 

0.126, 
(0.070) 

0.177, 
(0.060) 

0.287, 
(0.044) 

Lane Width 
12-ft Base Level 

≤9 ft — 0.932, 
(1.071) 

0.326, 
(0.196) 

0.5047, 
(0.129) 

0.415, 
(0.112) — 0.599*, 

(1.088) 
0.566, 
(0.232) 

0.403, 
(0.130) 

0.235, 
(0.117) 

9.5 ft−10.5 ft 0.210*, 
(0.208) 

0.252, 
(0.143) 

0.125, 
(0.089) 

0.256, 
(0.094) 

0.289, 
(0.081) 

−0.151, 
(0.285) 

0.255, 
(0.142) 

0.184, 
(0.111) 

0.268, 
(0.093) 

0.152, 
(0.084) 

11 ft−11.5 ft 0.008* 
(0.101) 

0.116, 
(0.086) 

0.183, 
(0.051) 

0.091, 
(0.052) 

0.141, 
(0.043) 

0.047*, 
(0.142) 

0.374, 
(0.083) 

0.102*, 
(0.064) 

0.152, 
(0.051) 

0.210, 
(0.043) 

Speed Limit 
45-mph Base Level 

25 mph 0.475, 
(0.062) 

0.140, 
(0.188) 

0.439, 
(0.116) 

0.041, 
(0.030) 

0.606, 
(0.102) 

0.291, 
(0.125) 

0.429, 
(0.174) 

0.519*, 
(0.140) 

0.244, 
(0.139) 

0.483, 
(0.098) 

30 mph 0.171*, 
(0.242) 

0.428, 
(0.244) 

0.210, 
(0.136) 

0.041, 
(0.035) 

0.349, 
(0.110) 

0.313, 
(0.173) 

0.385*, 
(0.241) 

−0.05*, 
(0.184) 

0.234, 
(0.139) 

0.035*, 
(0.111) 

35 mph −0.84*, 
(0.271) 

−0.701, 
(0.306) 

−0.271, 
(0.174) 

−0.295, 
(0.143) 

0.069*, 
(0.109) 

0.268*, 
(0.343) 

−0.045*, 
(0.253) 

−0.567, 
0.237 

−0.222, 
(0.150) 

−0.336, 
(0.112) 

40 mph −0.956, 
(0.252) 

−0.824, 
(0.197) 

−0.822, 
(0.114) 

−1.109, 
(0.119) 

−0.655, 
(0.099) 

−0.879, 
(0.319) 

−0.992, 
(0.216) 

−0.91*, 
0.144, 

−0.969, 
(0.123) 

−1.021, 
(0.103) 

50 mph 0.120*, 
(0.233) 

0.095, 
(0.172) 

−0.163, 
(0.122) 

0.003*, 
(0.119) 

−0.087, 
(0.124) 

−0.425, 
(0.367) 

−0.036, 
(0.178) 

0.117*, 
0.139 

−0.057, 
(0.130) 

−0.115, 
(0.116) 
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55 mph −0.28*, 
(0.132) 

−0.332, 
(0.118) 

−0.254, 
(0.072) 

−0.329, 
(0.071) 

−0.011, 
(0.067) 

−0.196, 
(0.180) 

−0.066, 
(0.115) 

−0.226, 
(0.089) 

−0.125, 
(0.074) 

−0.270, 
(0.064) 

Presence of 
Lighting 

−0.341, 
(0.184) 

−0.603, 
(0.151) 

−0.523, 
(0.151) 

−0.531, 
(0.101) 

−0.412, 
(0.085) 

−0.300, 
(0.259) 

−0.334, 
(0.026) 

−0.658, 
(0.122) 

−0.306, 
(0.098) 

−0.431, 
(0.085) 

Presence of 
Horizontal 
Curve 

0.549*, 
(0.239) 

0.294* 
(0.205) 

0.078* 
(0.116) 

0.186 
(0.112) 

0.264 
(0.088) 

0.269* 
(0.244) 

0.407 
(0.036) 

0.652 
(0.111) 

0.168* 
(0.112) 

0.365 
(0.085) 

Overdispersio
n 0.257 0.463 0.344 0.199 0.375 0.725 0.271 0.447 0.216 0.307 

—No data. 
*Variables insignificant at a 90-percent confidence level. 
aParameter estimate. 
bStandard error. 

Table 20. Revised Wald test statistics on NB model parameter estimates (relative to dataset 10). 
Parameter Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 

Ln (Segment Length) 2.536 0.263 1.517 0.235 0.623 1.874 0.395 0.330 0.592 
Ln (AADT) 1.407 0.819 0.022 1.027 0.792 1.046 0.132 0.875 0.163 
Shoulder Width 
0 ft 0.233 2.108 1.256 0.049 0.990 1.534 0.499 0.166 0.468 
2 ft 0.213 1.192 0.241 0.288 0.429 1.155 1.011 0.602 0.093 
4 ft 1.650 0.757 0.701 0.878 1.048 0.074 0.470 1.204 0.411 
6 ft 1.126 1.933 2.060 0.557 1.075 1.189 0.457 1.947 1.478 
Lane Width 
9 ft 2.008 0.646 0.398 1.544 1.111 2.008 0.332 1.273 0.960 
10 ft 0.258 0.602 0.220 0.825 1.174 1.019 0.624 0.229 0.925 
11 ft 0.199 0.977 0.404 1.763 1.134 1.098 1.754 1.400 0.869 
Speed Limit 
25 mph 0.042 1.617 0.289 2.714 0.869 0.782 0.270 0.210 1.405 
30 mph 0.510 1.466 0.996 0.034 2.009 0.123 1.319 0.437 1.118 
35 mph 1.718 1.120 0.314 0.225 2.591 1.673 1.051 0.881 0.608 
40 mph 0.238 0.886 1.295 0.559 2.561 0.423 0.121 0.593 0.324 
50 mph 0.902 1.012 0.285 0.710 0.164 0.805 0.371 1.281 0.332 
55 mph 0.068 0.461 0.166 0.617 3.033 0.387 1.550 0.401 1.482 
Presence of Lighting 0.907 0.992 0.530 0.757 0.158 0.480 1.091 1.526 0.963 
Presence of 
Horizontal Curve 0.725 0.319 1.995 1.273 0.825 0.371 0.455 2.052 1.401 
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Table 21. Descriptive statistics for continuous variables. 
Continuous 
Variables Statistic 

Dataset 
1 

Dataset 
2 

Dataset 
3 

Dataset 
4 

Dataset 
5 

Dataset 
6 

Dataset 
7 

Dataset 
8 

Dataset 
9 

Dataset 
10 

Crash Counts PDO  Mean 52.17a 48.0 48.43 47.94 48.03 49.03 47.51 48.94 40.070 50.76 

Crash Counts PDO . Std. Dev. 69.974b 62.397 59.587 62.614 65.780 63.277 63.49 69.625 64.699 68.167 

Crash Counts K Mean 0.066 0.074 0.06 0.071 0.0742 0.072 0.073 0.083 0.070 0.072 

Crash Counts K Std. Dev. 0.437 0.446 0.427 0.451 0.503 0.463 0.440 0.576 0.448 0.503 

Crash Counts A Mean 1.138 1.048 1.057 1.078 1.108 1.09 1.085 1.1 1.122 1.112 

Crash Counts A Std. Dev. 2.129 1.769 1.698 1.72 1.926 1.887 1.979 1.945 1.965 1.933 

Crash Counts B. Mean 4.098 4.142 4.249 4.432 4.354 4.038 4.062 4.216 4.178 4.34 

Crash Counts B. Std. Dev. 8.345 8.561 9.578 11.732 10.366 7.153 8.462 8.537 8.450 9.621 

Crash Counts C Mean 10.9 11.41 11.42 11.79 11.31 10.94 11.08 11.22 11.66 11.26 

Crash Counts C Std. Dev. 15.755 20.053 17.871 20.982 18.151 18.19 16.94 18.00 20.36 17.479 

Ln (AADT Major) Mean 9.565 9.547 9.55 9.557 9.557 9.563 9.54 9.541 9.570 9.566 

Ln (AADT Major) Std. Dev. 0.565 0.551 0.554 0.5620 0.5612 0.551 0.557 0.584 0.572 0.569 

Ln (AADT Minor) Mean 8.458 8.43 8.435 8.443 8.441 8.470 8.431 8.428 8.443 8.451 

Ln (AADT Minor) Std. Dev. 0.812 40.798 0.812 0.815 0.818 0.815 0.79 0.817 0.821 0.819 
aParameter estimate. 
bStandard error
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Table 22. Descriptive statistics for categorical variables (datasets 1–10). 

Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 
LTLs 
1 370 729 1147 1479 1871 411 733 1145 1445 1805 
2 232 505 727 998 1225 238 488 740 998 1250 
3 127 256 379 520 622 121 273 407 531 667 
4 271 510 747 1003 1282 230 506 708 1026 1278 
RTLs 
1 874 1730 2575 3450 4313 859 1721 2649 3436 4334 
2 95 180 303 380 487 106 182 246 396 462 
3 22 64 84 105 118 22 65 64 108 138 
4 9 26 38 65 82 13 32 41 60 66 
Speed Limit (mph) 
25 175 319 507 660 826 167 322 517 656 882 
30 216 431 627 790 1016 180 414 549 810 965 
35 281 600 841 1167 1399 287 586 867 1157 1395 
40 199 406 656 869 1139 230 433 696 897 1111 
45 100 205 300 430 495 107 204 309 397 530 
50 20 32 50 72 99 21 33 51 69 96 
55 7 4 14 6 19 6 3 8 10 13 
65 2 3 5 6 7 2 5 3 4 8 
LTLs Permitted 
1 715 1432 2212 2936 3595 760 1424 2221 2883 3617 
2 180 373 535 715 920 152 388 508 752 928 
3 43 86 116 172 258 51 91 146 182 221 
4 62 109 137 177 227 37 97 126 183 234 
LTLs Protected 
1 934 1818 2744 3691 4644 919 1833 2765 3662 4628 
2 47 134 182 234 253 64 126 179 243 282 
3 5 19 25 34 41 6 17 26 44 40 
4 14 29 49 41 62 11 24 30 51 50 
LTLs Mix 
1 716 1475 2175 2832 3604 743 1465 2174 2868 3510 
2 145 261 445 618 738 133 272 433 604 805 
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Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 
3 50 112 143 187 257 49 92 154 181 271 
4 89 152 237 363 401 75 171 239 347 414 
RTOR 
1 909 1799 2711 3601 4475 892 1780 2680 3553 4628 
2 31 79 101 158 183 42 82 94 165 282 
3 35 67 119 148 219 43 93 140 168 40 
4 25 55 69 93 123 23 45 86 114 50 
Lighting 
No 145 245 382 526 617 144 267 408 551 637 
Yes 855 1755 2618 3474 4383 856 1733 2592 3449 4363 
Presence of School Within 1,000 ft of Intersection 
No 874 1745 2965 3503 4393 893 1751 2610 3538 4384 
Yes 126 255 35 487 607 107 249 390 462 616 
Number of Bus Stops Within 1,000 ft of Intersection 
0 823 1696 2543 3356 4246 845 1697 2540 3392 4226 
1–2 45 83 108 147 165 38 71 103 129 185 
≥3 132 221 349 497 589 117 232 357 479 539 
Number of Alcohol Sale Establishments Within 1,000 ft of Intersection 
0 930 1846 2750 3673 4625 917 1857 2772 3684 4634 
1–8 70 154 250 327 375 83 143 228 316 366 
≥9 — — — — — 0 — — — — 
Maximum Crossing Lanes 
1 1 1 3 1 2 0 1 3 3 3 
2 189 369 626 798 1006 230 396 594 793 973 
3 179 314 441 644 864 158 306 463 652 812 
4 234 490 714 958 1179 246 478 712 955 1169 
5 252 572 823 1060 1297 229 547 806 1026 1341 
6 115 198 291 410 489 107 210 330 433 540 
7 30 56 102 129 163 28 62 92 138 162 

LTL = left-turn lane; RTL = right-turn lane; RTOR = right turn on red. 
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Crash Prediction Model Estimation 

Researchers estimated crash prediction models as described in table 23 section of this report. A 
total of 60 models were developed and validated for each severity level: K, A, B, C, and O. 
Table 23 summarizes the crash prediction model created using the dataset from the RAD tool. 
Estimated model parameters and fit statistics are provided here for only the 1,000-intersection 
model for brevity. The results for all the models are provided in appendix C through appendix M, 
which are in the second volume of this publication. 

Table 23. Summary of developed models. 

ID Facility Datasets Models 
Severity 

Level 
No. of 

Models 
1 Urban four-

leg signalized 
intersections 

Two sets each of 
1,000, 2,000, 
3,000, 4,000, 
and 5,000 
intersections 

Poisson regression K, A, B, C, 
PDO 

5×2 = 10 

NB regression K, A, B, C, 
PDO 

5×2 = 10 

Poisson regression—random 
parameters 

K, A, B, C, 
PDO 

5×2 = 10 

NB—random parameters K, A, B, C, 
PDO 

5×2 = 10 

Univariate Poisson 
lognormal 

K, A, B, C, 
PDO 

5×2 = 10 

Multivariate Poisson 
lognormal 

K, A, B, C, 
PDO 

5×2 = 10 

The statistical software R: A Language and Environment for Statistical Computing  
(version 12.0) was used to estimate the model parameters (R Foundation 2021). Table 24, table 
25, table 26, and table 27 summarize the model parameter estimates and their associated statistics 
under the Poisson, NB, random parameter, and univariate and multivariate Poisson lognormal 
models, respectively. An examination of the tables indicates that the model parameter estimates 
are significant at the 95-percent confidence level; however, the estimates that are followed by 
asterisks in these tables were not significant at a 95-percent confidence level. 
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Table 24. Poisson regression model estimation (1,000 intersections). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −29.068* 9426.618 −13.673 1.189 −6.419 0.376 −6.788 0.294 −9.225 0.184 
Ln (AADT 
Major) 0.778 0.296 0.956 0.072 0.673 0.035 0.748 0.022 0.919 0.011 
Ln (AADT 
Minor) 0.282 0.176 0.518 0.047 0.361 0.023 0.323 0.014 0.484 0.007 
Left-Turn Lane 
1 Base Level 
2 −1.164 0.645 −0.540 0.141 −0.495 0.069 −0.403 0.042 −0.345 0.019 
3 −2.139 1.272 −0.579 0.209 −0.543 0.112 −0.562 0.066 −0.134 0.030 
4 0.232 1.355 −1.037 0.283 −0.641 0.142 −0.356 0.084 −0.368 0.040 
Right-Turn Lane  
1 Base Level 
2 −0.708 0.529 −0.167 0.108 −0.328 0.061 −0.279 0.037 −0.100 0.016 
3 0.009 0.744 0.050 0.174 −0.721 0.136 −0.524 0.078 0.203 0.025 
4 0.878 0.757 −0.490 0.340 −0.642 0.189 0.572 0.074 −0.661 0.057 
Speed Limit 
35 mph Base Level 
25 −0.208 0.610 −0.230 0.098 0.311 0.048 0.273 0.029 0.099 0.014 
30 0.974* 0.415 −0.165 0.093 0.105 0.049 −0.010 0.029 0.007 0.013 
40 1.206* 0.404 0.197 0.084 0.263 0.047 0.001 0.029 0.063 0.013 
45 1.458* 0.450 −0.027 0.115 −0.191 0.070 0.037 0.037 0.216 0.016 
50 0.332* 1.070 0.410 0.165 0.767 0.086 0.011 0.071 −0.633 0.039 
55 −13.996* 3185.047 0.063 0.463 0.735 0.175 −0.059 0.148 −0.321 0.076 
65 −16.579* 6618.226 1.455 0.264 0.658 0.191 −0.102 0.177 −0.361 0.081 
Lighting 
Not Present Base Level 
Present −0.364 0.315 −0.228 0.082 −0.115 0.044 −0.347 0.025 −0.330 0.012 
RTOR 
1 Base Level 
2 −15.958* 1347.927 0.190 0.174 0.164 0.089 0.023 0.059 −0.054 0.029 
3 −0.738 1.019 −0.207 0.194 0.245 0.086 0.180 0.050 0.053 0.024 
4 −16.383* 1505.027 −0.227 0.231 −0.262 0.114 −0.213 0.071 −0.222 0.033 
Maximum No. Crossing Lanes 
1 Base Level 
2 15.660* 9426.618 0.407 1.004 −1.345 0.205 −0.427 0.220 0.494 0.159 
3 16.853* 9426.618 0.384 1.007 −1.336 0.209 −0.324 0.221 0.540 0.159 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

4 16.052* 9426.618 0.328 1.004 −1.623 0.206 −0.271 0.220 0.641 0.159 
5 16.731* 9426.618 0.191 1.007 −1.416 0.209 −0.164 0.221 0.472 0.159 
6 16.526* 9426.618 0.330 1.010 −1.419 0.213 −0.298 0.223 0.453 0.160 
7 15.758* 9426.618 0.163 1.026 −2.054 0.248 −0.325 0.228 0.339 0.161 
LTLs Permitted 
1 Base Level 
2 0.284 0.745 0.730 0.147 −0.110 0.079 0.276 0.045 0.002 0.021 
3 −15.817* 1146.280 0.337 0.256 0.349 0.129 0.041 0.082 −0.380 0.038 
4 −0.408 1.377 0.623 0.312 0.159 0.155 −0.096 0.091 −0.012 0.043 
LTLs Mix 
1 Base Level 
2 0.000 0.745 0.060 0.162 −0.077 0.081 −0.214 0.049 −0.152 0.022 
3 −1.393 1.623 0.224 0.267 −0.153 0.139 −0.174 0.084 −0.173 0.037 
4 −0.355 1.351 0.812 0.287 0.061 0.147 −0.507 0.090 −0.194 0.041 
LTLs Protected 
1 Base Level 
2 −1.923 1.295 0.048 0.236 −0.123 0.125 −0.114 0.070 −0.251 0.033 
3 −16.255* 3477.698 0.720 0.621 −0.364 0.395 −0.409 0.225 −0.575 0.110 
4 −16.865* 2270.057 0.852 0.377 −0.466 0.236 −0.454 0.129 −0.722 0.066 
Bus 
0 Base Level 
1–2 −0.285 0.547 0.052 0.137 0.032 0.073 0.142 0.041 −0.092 0.020 
≥3 0.493 0.330 0.058 0.089 −0.236 0.052 −0.054 0.029 0.006 0.013 
Alcohol 
0 Base Level 
1–8 −0.210 0.609 0.246 0.116 −0.477 0.078 −0.170 0.042 −0.017 0.019 
School 
Not Present Base Level 
Present −0.153 0.412 −0.093 0.095 −0.119 0.050 −0.349 0.034 −0.055 0.014 
Fit Statistics 
AIC 527.48 N/A 2879.3 N/A 9162.4 N/A 13433 N/A 29547 N/A 
BIC 718.879 N/A 3070.68 N/A 9353.81 N/A 13624.59 N/A 29738.76 N/A 

—No data. 
*Variables insignificant at a 90-percent confidence level.  
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Table 25. NB model estimation (1,000 intersections). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −52.286* 6710.0 −13.408 1.523 −6.687 1.722 −6.839 1.125 −9.720 0.759 
Ln (AADT 
Major) 0.999 0.427 0.963 0.093 0.659 0.100 0.723 0.064 0.991 0.042 
Ln (AADT 
Minor) 0.178 0.267 0.473 0.061 0.443 0.069 0.362 0.044 0.460 0.029 
Left-Turn Lane 
1 Base Level 
2 −1.177 0.940 −0.519 0.190 −0.364 0.214 −0.445 0.138 −0.371 0.091 
3 −1.997 1.569 −0.497 0.287 −0.580 0.326 −0.676 0.208 −0.171 0.136 
4 0.646 1.954 −0.866 0.373 −0.491 0.412 −0.571 0.264 −0.471 0.173 
Right-Turn 
Lane 

 

1 Base Level 
2 −0.610 0.750 −0.167 0.149 −0.302 0.174 −0.314 0.111 −0.142 0.072 
3 0.422 1.120 0.030 0.266 −0.442 0.353 −0.326 0.222 0.357 0.143 
4 1.263 1.686 −0.545 0.475 −0.611 0.547 0.316 0.333 −0.440 0.226 
Speed Limit (mph) 
35 Base Level 
25 −0.422* 0.743 −0.162 0.131 0.321 0.152 0.154 0.097 0.084 0.064 
30 0.800 0.584 −0.117 0.124 0.077 0.144 −0.068 0.092 0.037 0.060 
40 1.041 0.559 0.136 0.119 0.340 0.145 0.007 0.094 0.055 0.062 
45 0.832 0.752 0.025 0.157 −0.302 0.191 −0.085 0.120 0.136 0.078 
50 0.587 1.373 0.448 0.271 0.345 0.359 −0.109 0.235 −0.188 0.154 
55 −43.061* 2565.3 0.173 0.545 0.633 0.594 −0.119 0.397 −0.385 0.261 
65 −58.519* 47453.2 1.430 0.614 0.612 1.046 −0.191 0.689 −0.152 0.458 
Lighting 
Not Present Base Level 
Present 0.145 0.537 −0.181 0.117 −0.401 0.140 −0.376 0.090 −0.346 0.060 
RTOR 
1 Base Level 
2 −54.061* 12077.2 0.151 0.242 0.121 0.288 0.087 0.185 −0.074 0.122 
3 −0.588 1.331 −0.118 0.244 0.224 0.272 0.153 0.173 0.041 0.115 
4 −54.394* 1357.1 −0.185 0.296 −0.077 0.327 −0.055 0.210 0.041 0.136 
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Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Maximum No. Crossing Lanes 
1 Base Level 
2 37.701* 671000 0.499 1.264 −1.535 1.456 −0.406 0.959 0.510 0.652 
3 38.491* 671000 0.388 1.268 −1.547 1.461 −0.315 0.962 0.449 0.654 
4 38.019* 664.000 0.269 1.264 −1.681 1.456 −0.234 0.959 0.600 0.652 
5 38.271* 671000 0.213 1.268 −1.490 1.460 −0.151 0.962 0.448 0.654 
6 38.020* 67000 0.317 1.272 −1.386 1.465 −0.283 0.965 0.440 0.656 
7 37.828* 67000 0.016 1.295 −1.578 1.485 −0.380 0.978 0.588 0.663 
LTLs Permitted 
1 Base Level 
2 0.367 1.012 0.663 0.196 −0.181 0.222 0.284 0.141 0.020 0.093 
3 −54.576* 1024.8 0.239 0.343 0.416 0.387 0.098 0.250 −0.226 0.163 
4 −0.640 2.006 0.494 0.402 −0.201 0.441 0.073 0.282 0.023 0.185 
LTLs Mix 
1 Base Level 
2 −0.094 1.038 −0.015 0.211 −0.102 0.230 −0.182 0.148 −0.026 0.097 
3 −1.172 2.167 0.216 0.346 −0.169 0.389 −0.157 0.250 −0.013 0.162 
4 −1.191 1.948 0.586 0.380 −0.079 0.423 −0.260 0.272 −0.014 0.178 
LTLs Protected 
1 Base Level 
2 −2.032 1.684 −0.017 0.304 −0.195 0.332 0.053 0.211 −0.133 0.139 
3 −57.193* 3001.9 0.521 0.750 −0.500 0.842 −0.293 0.521 −0.497 0.334 
4 −58.888* 17935.6 0.696 0.506 −0.005 0.581 0.225 0.368 −0.567 0.247 
Bus 
0 Base Level 
1–2 −0.309 0.990 0.104 0.193 −0.051 0.240 0.256 0.152 0.189 0.101 
≥3 0.260 0.611 0.092 0.122 −0.108 0.150 0.031 0.095 −0.031 0.063 
Alcohol 
0 Base Level 
1–8 0.307 0.803 0.252 0.161 −0.431 0.202 −0.106 0.126 −0.028 0.083 
School 
Not Present Base Level 
Present 0.065 0.615 −0.117 0.132 −0.046 0.153 −0.226 0.099 −0.021 0.064 
Fit Statistics 
AIC 446.93 N/A 2666.8 N/A 4579.6 N/A 6536.7 N/A 9018.6 N/A 
BIC 643.23 N/A 2863.10 N/A 4775.91 N/A 6732.98 N/A 9214.88 N/A 
Overdispersio
n 

0.0769 — 1.718 — 0.486 — 1.157 — 2.52 — 

—No data. 
*Variables insignificant at a 90-percent confidence level. 
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Table 26. Random parameter Poisson regression (1,000 intersections). 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Intercept −42.122* 6.385 −7.907 1.048 −2.428 1.570 −3.551 0.860 −1.760 0.449 
Ln (AADT 
Major) 1.071 0.323 1.007 0.055 1.134 0.101 1.008 0.049 1.022 0.026 

Ln (AADT 
Minor) 0.762 0.470 0.879 0.079 0.260 0.117 0.452 0.063 0.531 0.033 

Left-Turn Lane 
1 Base Level 
2 0.585 0.550 0.449 0.110 0.456 0.189 0.466 0.107 0.274 0.046 
3 0.253 0.547 0.103 0.111 0.438 0.185 0.328 0.104 0.292 0.043 
4 −0.741 0.781 −0.004 0.130 −0.015 0.232 0.187 0.122 0.151 0.051 
Right-Turn Lane 
1 Base Level 
2 0.026 0.092 0.002 0.015 0.041 0.030 −0.012 0.013 0.012 0.006 
3 0.002 0.009 0.003 0.023 0.589 0.298 0.369 0.759 0.379 0.349 
4 0.281 1.065 −0.234 0.197 −0.299 0.371 −0.686 0.191 −0.507 0.088 
Speed Limit 
35 mph Base Level 
25 −0.422* 0.743 −0.162 0.131 0.321 0.152 0.154 0.097 0.084 0.064 
30 0.800* 0.584 −0.117 0.124 0.077 0.144 −0.068 0.092 0.037 0.060 
40 1.041* 0.559 0.136 0.119 0.340 0.145 0.007 0.094 0.055 0.062 
45 0.832* 0.752 0.025 0.157 −0.302 0.191 −0.085 0.120 0.136 0.078 
50 0.587* 1.373 0.448 0.271 0.345 0.359 −0.109 0.235 −0.188 0.154 
55 −43.061* 2565.3 0.173 0.545 0.633 0.594 −0.119 0.397 −0.385 0.261 
65 −58.519* 47453.2 1.430 0.614 0.612 1.046 −0.191 0.689 −0.152 0.458 
Lighting 
Not Present Base Level 
Present 0.288 0.537 −0.317 0.107 −0.210 0.131 −0.268 0.080 −0.185 0.051 
RTOR 
1 Base Level 
2 0.037 0.165 −0.009 0.018 0.014 0.047 −0.003 0.015 0.016 0.008 
3 0.006 0.021 0.003 0.002 0.005 0.005 0.001 0.002 0.000 0.001 
4 0.128 2.363 −0.420 0.244 −0.330 0.553 −0.754 0.217 −0.534 0.100 
Maximum No. Crossing Lanes 
1 Base Level 
2 20.453 1.037 0.243 0.126 0.400 0.234 −0.164 0.112 0.164 0.051 
3 22.119 2.250 0.223 0.163 0.253 0.305 0.155 0.133 0.203 0.066 
4 20.509 2.606 0.597 0.200 0.239 0.417 −0.056 0.186 0.464 0.084 



76 

Variables 

K A B C PDO 
Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

5 20.073 0.158 −0.016 0.015 −0.013 0.028 −0.009 0.014 0.009 0.006 
6 20.017 0.017 −0.001 0.002 0.000 0.003 0.004 0.001 −0.001 0.001 
7 22.600 1.683 −0.526 0.219 −0.351 0.377 −0.288 0.171 −0.287 0.084 
LTLs Permitted 
1 Base Level 
2 0.892 1.323 0.093 0.178 0.341 0.299 −0.204 0.162 0.242 0.071 
3 0.684 0.582 0.182 0.095 0.237 0.175 0.094 0.086 0.141 0.040 
4 0.259 1.662 0.279 0.220 0.186 0.440 −0.128 0.213 0.343 0.095 
LTLs Mix 
1 Base Level 
2 0.376 0.682 0.267 0.094 0.122 0.166 0.232 0.089 0.207 0.040 
3 1.849 0.720 0.275 0.122 0.609 0.197 0.151 0.117 0.309 0.050 
4 1.050 1.230 0.245 0.169 0.405 0.282 0.638 0.142 0.377 0.067 
LTLs Protected  
1 Base Level 
2 0.130 0.202 0.015 0.017 −0.012 0.028 −0.019 0.014 0.005 0.007 
3 0.005 0.016 0.002 0.002 −0.006 0.003 0.002 0.002 0.002 0.001 
4 2.760 1.848 0.071 0.204 −0.022 0.352 −0.139 0.191 −0.642 0.098 
Bus 
0 Base Level 
1–2 −0.679 1.421 0.067 0.202 0.213 0.238 0.120 0.147 0.073 0.093 
≥3 −1.488 0.919 0.084 0.132 0.061 0.146 0.140 0.089 −0.061 0.056 
Alcohol 
0 Base Level 
1–8 2.419 0.550 0.884 0.122 −0.031 0.169 −0.054 0.104 −0.074 0.066 
School 
Not Present Base Level 
Present 1.093 0.574 0.432 0.118 −0.073 0.151 0.083 0.092 −0.097 0.058 
Fit Statistics 
AIC 446.97 N/A 2589.9 N/A 4680.3 N/A 6346.2 N/A 8563.1 N/A 
BIC 638.375 N/A 2781.29 N/A 4871.75 N/A 6537.60 N/A 8,754.53 N/A 

—No data. 
*Variables insignificant at a 90-percent confidence level.  
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Table 27. Random parameter—NB regression (1,000 intersections). 

Variables 

K A B C PDO 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Intercept 45.292* 7.476 −4.946 2.538 −4.689 4.723 −1.963 1.874 −1.003 1.176 
Ln AADT 
Major 1.196 0.677 0.856 0.601 1.523 0.232 1.030 0.084 0.966 0.050 

Ln AADT 
Minor 0.329 1.325 0.683 0.199 0.421 0.360 0.419 0.147 0.415 0.090 

Left-Turn Lane 
1 Base Level 
2 0.537 0.693 0.122 0.129 0.373 0.221 0.320 0.114 0.288 0.059 
3 −0.491 0.957 −0.020 0.155 −0.096 0.279 0.197 0.134 0.167 0.071 
4 0.911 0.707 0.475 0.130 0.475 0.226 0.500 0.117 0.298 0.063 
Right-Turn Lane   
1 Base Level 
2 1.392 1.159 0.122 0.120 −0.146 0.238 −0.092 0.100 0.015 0.049 
3 0.485 1.391 0.083 0.152 0.073 0.301 0.093 0.125 0.051 0.064 
4 0.867 1.585 0.019 0.191 0.313 0.371 0.205 0.156 0.251 0.080 
Speed Limit 
35 mph Base Level 
25 3.088* 1.793 0.303 0.313 −0.222 0.660 0.549 0.252 0.041 0.131 
30 −0.097* 3.564 0.353 0.300 1.175 0.552 0.817 0.237 0.041 0.136 
40 2.391* 1.939 −0.001 0.332 1.096 0.529 0.717 0.241 −0.295 0.144 
45 −2.975* 445322 −0.920 0.275 −0.604 0.498 −0.553 0.230 −1.110 0.120 
50 −2.941* 618229 −0.552 0.341 −0.248 0.612 0.211 0.258 0.004 0.120 
55 0.634* 1.399 −0.396 0.166 −0.546 0.349 −0.101 0.153 −0.330 0.071 
65 0.288* 0.537 −0.317 0.107 −0.210 0.131 −0.268 0.080 −0.185 0.051 
Lighting 
Not Present Base Level 
Present −1.923 1.295 0.048 0.236 −0.123 0.125 −0.114 0.070 −0.251 0.033 
RTOR 
1 Base Level 
2 7.258* 17237 1.068 0.589 0.747 1.238 0.896 0.480 −0.013 0.374 
3 −0.928 14010 −0.386 0.869 0.807 1.332 −0.061 0.656 0.268 0.343 
4 6.742* 12284 −1.169 0.730 0.730 1.051 −1.625 0.774 −0.879 0.319 
Maximum No. Crossing Lanes 
1 Base Level 
2 22.158* 1098.5 1.219 1.723 −0.001 0.840 0.130 0.568 0.487 0.435 
3 21.745* 1098.5 1.143 1.426 0.068 0.841 0.166 0.569 0.722 0.352 
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Variables 

K A B C PDO 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

Std. 
Error 

Parameter 
Estimate 

4 22.356* 1088.5 1.216 1.625 −0.069 0.840 0.047 0.568 1.146 0.598 
5 22.316* 1088.5 1.181 1.129 −0.086 0.841 0.124 0.569 1.403 0.360 
6 22.162* 1088.5 1.115 1.128 0.083 0.843 0.034 0.570 1.774 0.369 
7 22.422* 1088.5 1.123 1.132 −0.087 0.848 −0.078 0.573 1.935 0.334 
LTLs Permitted 
1 Base Level 
2 −1.164 0.645 −0.540 0.141 −0.495 0.069 −0.403 0.042 −0.345 0.019 
3 −2.139 1.272 −0.579 0.209 −0.543 0.112 −0.562 0.066 −0.134 0.030 
4 0.232 1.355 −1.037 0.283 −0.641 0.142 −0.356 0.084 −0.368 0.040 
LTLs Mix 
1 Base Level 
2 0.000 0.745 0.060 0.162 −0.077 0.081 −0.214 0.049 −0.152 0.022 
3 −1.393 1.623 0.224 0.267 −0.153 0.139 −0.174 0.084 −0.173 0.037 
4 −0.355 1.351 0.812 0.287 0.061 0.147 −0.507 0.090 −0.194 0.041 
LTLs Protected  
1 Base Level 
2 −0.337 8413.9 −0.794 0.383 0.038 0.784 −1.140 0.372 −1.039 0.180 
3 −1.311 84015 −0.874 0.342 −0.347 0.747 −0.463 0.281 −0.194 0.133 
4 −0.279 8926.8 −0.055 0.347 0.058 0.863 −0.460 0.326 −0.141 0.151 
Bus 
0 Base Level 
1–2 0.957 0.406 1.146 0.068 1.200 0.127 1.011 0.060 1.006 0.026 
≥3 0.490 0.546 0.636 0.085 0.414 0.150 0.519 0.076 0.612 0.034 
Alcohol 
0 Base Level 
1−8 0.425 0.294 0.506 0.056 −0.016 0.075 0.013 0.049 −0.085 0.028 
School 
Not Present Base Level 
Present 0.511 0.257 0.482 0.050 0.018 0.064 0.096 0.043 0.029 0.024 
Fit Statistics 
AIC 2018.3 N/A 12901 N/A 23319 N/A 32515 N/A 42322 N/A 
BIC 2279.01 N/A 13161.73 N/A 23579.51 N/A 32776.17 N/A 42583.07 N/A 
Overdispersion 0.0557 — 2.026 — 0.5428 — 1.1794 — 3.907 — 

—No data. 
*Variables insignificant at a 90-percent confidence level. 
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Validation of Crash Count Prediction 

The model prediction of dataset 10 used for model estimation is shown in table 28; meanwhile, 
dataset 5, which had the same number of intersections, was used for cross validation. 

Table 28. Model prediction with dataset 10 (5,000 intersections) used for estimation. 

Models Metric K A B C PDO 
Poisson Regression MAD 3.24 1.38 3.16 9.13 44.56 

MSPE 11.94 4.68 113.18 402.25 6236.01 
NB Regression MAD 3.25 1.37 3.14 9.23 44.58 

MSPE 13.59 6.67 113.30 402.24 6236.42 
Poisson regression—random 
parameters 

MAD 3.35 2.37 4.14 9.34 43.88 
MSPE 14.59 4.80 131.30 522.74 5036.42 

NB—random parameters MAD 3.32 1.73 3.15 9.23 44.68 
MSPE 15.60 4.76 113.27 420.24 5236.42 

Univariate Poisson 
lognormal 

MAD 3.20 1.38 3.12 9.21 44.56 
MSPE 12.84 4.80 112.18 402.25 5106.01 

Multivariate Poisson 
lognormal 

MAD 4.25 1.67 3.24 9.32 45.58 
MSPE 15.59 5.67 123.30 502.24 5236.42 

In this case, univariate Poisson lognormal performed better in the prediction of MSPE for K 
crashes while Poisson regression did better for MAD for K crashes. NB had the lowest MAD and 
MSPE for A crashes, which shows that it performed better. Univariate Poisson lognormal had the 
lowest MAD for B crashes while Poisson regression had the lowest for MSPE. Poisson 
regression performed better for C crashes for MAD while NB did better for MSPE. Finally, 
Poisson did better for MAD for PDO crashes while univariate Poisson lognormal did better for 
MSPE. The cross-validation results are shown in table 29, table 30, and table 31. Cross 
validation was used to assess the predictive performance of the models and judge how they 
performed outside the sample in a new dataset, also known as test data. The cross-validation 
values for the different models fall within the same range, which could mean the models are 
robust enough to be relied on. 
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Table 29. Cross validation with dataset 5 (5,000 intersections) using dataset 10 model. 

Models Metric K A B C PDO 
Poisson regression MAD 3.25 1.39 3.15 9.08 47.28 

MSPE 12.15 4.74 98.66 378.05 6800.66 
NB regression MAD 3.27 1.38 3.23 7.13 47.27 

MSPE 14.21 4.72 98.68 98.69 6800.94 
Poisson regression—random 
parameters 

MAD 3.35 2.73 3.14 7.23 63.87 
MSPE 15.90 5.60 131.30 522.74 5036.42 

NB—random parameters MAD 3.19 1.40 3.20 3.32 48.27 
MSPE 13.21 3.72 97.86 99.79 6832.49 

Univariate Poisson 
lognormal 

MAD 4.20 2.83 2.42 9.32 45.56 
MSPE 10.84 3.79 102.82 502.25 5216.12 

Multivariate Poisson 
lognormal 

MAD 3.30 1.38 3.13 3.13 46.27 
MSPE 15.21 5.72 99.70 377.69 5800.94 

Table 30. Model prediction with dataset 5 (5,000 intersections) used for estimation. 

Models Metric K A B C PDO 
Poisson regression MAD 3.31 1.37 3.13 9.07 53.99 

MSPE 12.58 4.66 98.43 377.75 7489.81 
NB regression MAD 3.33 1.37 3.12 9.07 47.24 

MSPE 14.91 4.67 98.49 377.67 6796.74 
Poisson regression—random 
parameters 

MAD 3.25 3.01 2.01 10.98 49.6 
MSPE 15.79 5.89 96.91 383.82 7116.87 

NB—random parameters MAD 4.14 1.45 2.51 10.95 48.85 
MSPE 16.01 4.75 98.31 393.32 6920.38 

Univariate Poisson lognormal MAD 3.1 2.14 2.91 10.23 51.99 
MSPE 13.92 4.58 95.83 370.86 6873.26 

Multivariate Poisson lognormal MAD 5.05 2.41 2.85 9.5 54.54 
MSPE 15.47 4.93 97.2 376.7 7092.44 
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Table 31. Cross validation with dataset 10 (5,000 intersections) using dataset 5 model. 

Models Metric K A B C PDO 
Poisson regression MAD 3.3 1.38 1.38 9.07 53.98 

MSPE 12.68 36.22 54.09 103.12 7000.66 
NB regression MAD 3.33 1.38 3.12 9.07 47.26 

MSPE 14.49 6.19 103 388.34 6879.1 
Poisson regression—random 
parameters 

MAD 4.78 2.79 2.59 9.95 53.4 
MSPE 12.4 7.71 99.22 159.65 6608.34 

NB—random parameters MAD 3.32 1.88 1.51 8.43 48.51 
MSPE 12.59 10 99.41 120.17 6634.81 

Univariate Poisson lognormal MAD 4.75 1.56 1.16 8.97 50.16 
MSPE 12.8 9.93 99.29 232.12 6759.22 

Multivariate Poisson 
lognormal 

MAD 3.36 2.68 1.87 8.78 51.07 
MSPE 13.92 8.67 65.5 169.32 6772.57 

Empirical Analysis for Evaluating Parameter Stability 

Dataset 10 (5,000 intersections) was used as the population benchmark to evaluate if each 
parameter in any model is statistically different from the corresponding one in that dataset. The 
combined NB estimates of PDO crashes for the 10 datasets are displayed in table 32 with their 
standard errors for illustrative purposes. Table 33 shows the updated Wald test statistics for the 
estimated model parameter values (Hoover, Bhowmik, Yasmin, and Eluru 2022).
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Table 32. NB estimates for PDO crashes. 
Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 

Intercept −9.719a, 
0.758b 

−10.514,0.
648 

−9.438, 
0.364 

−9.829, 
0.550 

−9.945, 
0.442 

−9.107, 
0.339 

−10.705, 
0.733 

−9.367, 
0.486 

−9.918, 
0.364 

−9.858, 
0.361 

Ln (AADT 
Major) 

0.991, 
0.042 

0.854, 
0.025 

0.881, 
0.020 

0.867, 
0.016 

0.834, 
0.016 

0.847, 
0.036 

0.888, 
0.024 

0.813, 
0.026 

0.868, 
0.017 

0.855, 
0.015 

Ln (AADT 
Minor) 

0.459, 
0.028 

0.576, 
0.017 

0.543, 
0.013 

0.575, 
0.011 

0.561, 
0.011 

0.545, 
0.024 

0.539, 
0.017 

0.602, 
0.018 

0.563, 
0.012 

0.575, 
0.011 

LTLs 
1 Base Level 
2 −0.370, 

0.091 
−0.603, 
0.053 

−0.564, 
0.044 

−0.582, 
0.037 

−0.700, 
0.035 

−0.652, 
0.076 

−0.741, 
0.056 

−0.569, 
0.062 

−0.679, 
0.039 

−0.686, 
0.034 

3 −0.171, 
0.136 

−0.669, 
0.077 

−0.495, 
0.061 

−0.553, 
0.053 

−0.652, 
0.050 

−0.590, 
0.109 

−0.763, 
0.076 

−0.645, 
0.085 

−0.732, 
0.055 

−0.690, 
0.049 

4 −0.471, 
0.173 

−0.748, 
0.097 

−0.739, 
0.081 

−0.632, 
0.070 

−0.808, 
0.064 

−0.697, 
0.140 

−0.952, 
0.100 

−0.798, 
0.111 

−0.832, 
0.072 

−0.844, 
0.063 

RTLs 
1 Base Level 
2 −0.142, 

0.072 
−0.083, 
0.042 

−0.102, 
0.033 

−0.108, 
0.029 

−0.039, 
0.026 

−0.120, 
0.059 

−0.032, 
0.042 

−0.012, 
0.050 

−0.084, 
0.029 

−0.103, 
0.027 

3 0.356, 
0.143 

−0.102, 
0.069 

−0.126, 
0.060 

−0.186, 
0.054 

−0.123, 
0.052 

−0.287, 
0.128 

−0.037, 
0.067 

−0.080, 
0.095 

−0.107, 
0.054 

−0.186, 
0.047 

4 −0.440, 
0.226 

−0.423, 
0.107 

−0.146, 
0.088 

−0.280, 
0.067 

−0.257, 
0.063 

−0.286, 
0.161 

−0.196, 
0.098 

−0.285, 
0.118 

−0.242, 
0.073 

−0.269, 
0.070 

Speed Limit (mph) 
35 Base Level 
25 0.083, 

0.064 
0.117, 
0.037 

0.038, 
0.030 

0.0107, 
0.0260 

0.011, 
0.024 

−0.077, 
0.055 

−0.005, 
0.037 

−0.018, 
0.041 

0.005, 
0.027 

−0.020, 
0.023 

30 0.036, 
0.060 

0.052, 
0.034 

0.079, 
0.028 

−0.027, 
0.024 

0.043, 
0.023 

0.032, 
0.054 

0.010, 
0.035 

−0.027, 
0.041 

−0.022, 
0.025 

−0.013, 
0.023 

40 0.055, 
0.062 

0.048, 
0.035 

0.045, 
0.028 

0.006, 
0.023 

−0.002, 
0.022 

0.010, 
0.050 

0.046, 
0.034 

−0.027, 
0.038 

−0.029, 
0.025 

−0.027, 
0.022 

45 0.136, 
0.078 

0.004, 
0.044 

−0.013, 
0.036 

−0.021, 
0.030 

−0.017, 
0.029 

−0.065, 
0.064 

−0.069, 
0.044 

0.058, 
0.049 

0.009, 
0.032 

−0.033, 
0.028 

50 −0.187, 
0.154 

0.042, 
0.098 

0.019, 
0.078 

0.128, 
0.064 

0.029, 
0.057 

−0.199, 
0.131 

−0.080, 
0.098 

0.082, 
0.106 

−0.065, 
0.068 

0.064, 
0.058 

55 −0.384, 
0.261 

−0.270, 
0.280 

−0.004, 
0.146 

−0.212, 
0.216 

0.012, 
0.124 

0.125, 
0.246 

−0.283, 
0.363 

−0.292, 
0.272 

−0.314, 
0.177 

−0.261, 
0.151 
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Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 
65 −0.151, 

0.458 
−0.368, 
0.320 

−0.113, 
0.249 

−0.409, 
0.222 

0.215, 
0.202 

0.033, 
0.406 

0.111, 
0.241 

−0.510, 
0.451 

0.419, 
0.265 

−0.024, 
0.192 

LTLs Permitted 
1 Base Level 
2 0.019, 

0.093 
0.144, 
0.053 

0.047, 
0.044 

0.078, 
0.038 

0.161, 
0.035 

0.080, 
0.079 

0.206, 
0.055 

0.065, 
0.062 

0.089, 
0.039 

0.109, 
0.034 

3 −0.225, 
0.163 

0.137, 
0.096 

0.042, 
0.078 

0.032, 
0.067 

0.093, 
0.060 

0.131, 
0.134 

0.309, 
0.094 

0.181, 
0.105 

0.153, 
0.068 

0.146, 
0.061 

4 0.023, 
0.185 

0.116, 
0.106 

−0.004, 
0.090 

0.023, 
0.078 

0.037, 
0.071 

−0.009, 
0.163 

0.262, 
0.110 

0.094, 
0.125 

0.077, 
0.080 

0.153, 
0.070 

LTLs Protected 
1 Base Level 
2 −0.133, 

0.139 
−0.324, 
0.073 

−0.316, 
0.059 

−0.302, 
0.052 

−0.179, 
0.050 

−0.215, 
0.107 

−0.221, 
0.076 

−0.337, 
0.084 

−0.264, 
0.054 

−0.256, 
0.048 

3 −0.496, 
0.334 

−0.398, 
0.154 

−0.352, 
0.128 

−0.443, 
0.112 

−0.328, 
0.104 

−0.302, 
0.260 

−0.481, 
0.164 

−0.195, 
0.175 

−0.350, 
0.105 

−0.453, 
0.104 

4 −0.567, 
0.247 

−0.535, 
0.144 

−0.409, 
0.111 

−0.583, 
0.109 

−0.502, 
0.095 

−0.310, 
0.216 

−0.226, 
0.149 

−0.963, 
0.178 

−0.505, 
0.105 

−0.402, 
0.101 

LTLs Mix 
1 Base Level 
2 −0.026, 

0.097 
−0.107, 
0.058 

−0.131, 
0.047 

−0.158, 
0.040 

−0.091, 
0.037 

−0.103, 
0.081 

−0.003, 
0.059 

−0.052, 
0.064 

−0.099, 
0.041 

−0.060, 
0.037 

3 −0.013, 
0.162 

−0.115, 
0.092 

−0.227, 
0.078 

−0.246, 
0.067 

−0.119, 
0.062 

−0.157, 
0.136 

0.050, 
0.096 

−0.225, 
0.106 

−0.081, 
0.069 

−0.116, 
0.060 

4 −0.014, 
0.178 

−0.138, 
0.103 

−0.202, 
0.085 

−0.298, 
0.073 

−0.135, 
0.067 

−0.253, 
0.149 

0.017, 
0.105 

−0.147, 
0.116 

−0.169, 
0.075 

−0.170, 
0.067 

RTOR 
1 Base Level 
2 −0.073, 

0.122 
−0.180, 
0.063 

−0.137, 
0.055 

0.071, 
0.043 

−0.016, 
0.041 

−0.109, 
0.089 

−0.141, 
0.061 

−0.162, 
0.078 

−0.057, 
0.044 

−0.113, 
0.038 

3 0.040, 
0.115 

−0.117, 
0.068 

−0.085, 
0.051 

−0.069, 
0.045 

−0.051, 
0.038 

−0.190, 
0.089 

−0.056, 
0.057 

−0.079, 
0.064 

−0.041, 
0.044 

−0.063, 
0.041 

4 0.041, 
0.136 

−0.222, 
0.075 

−0.145, 
0.066 

0.013, 
0.056 

−0.026, 
0.051 

−0.203, 
0.119 

−0.035, 
0.080 

−0.013, 
0.082 

−0.068, 
0.052 

−0.150, 
0.052 

Lighting 
No Base Level 
Yes −0.346, 

0.060 
−0.213, 
0.036 

−0.211, 
0.029 

−0.267, 
0.024 

−0.297, 
0.023 

−0.185, 
0.051 

−0.216, 
0.035 

−0.247, 
0.039 

−0.280, 
0.025 

−0.278, 
0.023 
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Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 
Presence of School Within 1,000 ft of Intersection 
No Base Level 
Yes −0.021, 

0.064 
0.028, 
0.036 

0.057, 
0.090 

0.022, 
0.025 

0.017, 
0.024 

−0.097, 
0.058 

0.017, 
0.037 

0.005, 
0.040 

−0.085, 
0.028 

0.029, 
0.024 

Number of Bus Stops Within 1,000 ft of Intersection 
0 Base Level 
1–2 0.189, 

0.101 
−0.096, 
0.061 

−0.010, 
0.053 

−0.080, 
0.044 

0.030, 
0.043 

0.073, 
0.093 

−0.040, 
0.065 

0.035, 
0.074 

−0.028, 
0.050 

0.006, 
0.041 

≥3 −0.031, 
0.063 

−0.040, 
0.039 

0.036, 
0.030 

−0.027, 
0.025 

0.003, 
0.024 

−0.061, 
0.056 

0.015, 
0.038 

0.019, 
0.042 

0.001, 
0.027 

−0.015, 
0.024 

Number of Alcohol Sale Establishments Within 1,000 ft of Intersection 
0 Base Level 
1–8 −0.027, 

0.064 
−0.024, 
0.046 

−0.092, 
0.036 

−0.005, 
0.030 

−0.006, 
0.029 

−0.074, 
0.066 

−0.025, 
0.047 

−0.053, 
0.051 

0.007, 
0.032 

−0.010, 
0.030 

Maximum Crossing Lanes 
1 Base Level 
2 0.510, 

0.652 
1.068, 
0.609 

−0.042, 
0.323 

0.268, 
0.527 

0.840, 
0.419 

0.291, 
0.067 

1.272, 
0.704 

0.082, 
0.418 

0.540, 
0.331 

0.487, 
0.332 

3 0.448, 
0.654 

1.209, 
0.610 

0.208, 
0.324 

0.479, 
0.527 

1.062, 
0.420 

0.575, 
0.053 

1.435, 
0.704 

0.368, 
0.420 

0.782, 
0.332 

0.722, 
0.332 

4 0.600, 
0.652 

1.621, 
0.609 

0.619, 
0.323 

0.889, 
0.527 

1.497, 
0.419 

0.875, 
0.065 

1.862, 
0.703 

0.730, 
0.418 

1.188, 
0.331 

1.146, 
0.332 

5 0.447, 
0.654 

1.878, 
0.610 

0.839, 
0.324 

1.126, 
0.527 

1.742, 
0.420 

1.241, 
0.077 

2.054, 
0.704 

1.005, 
0.419 

1.473, 
0.331 

1.403, 
0.332 

6 0.439, 
0.656 

2.240, 
0.610 

1.288, 
0.325 

1.523, 
0.528 

2.101, 
0.420 

1.354, 
0.116 

2.527, 
0.705 

1.375, 
0.421 

1.815, 
0.332 

1.774, 
0.332 

7 0.587, 
0.663 

2.349, 
0.613 

1.306, 
0.327 

1.624, 
0.529 

2.261, 
0.421 

0.291, 
0.067 

2.596, 
0.707 

1.548, 
0.425 

2.011, 
0.334 

1.935, 
0.334 

*Variables insignificant at a 90-percent confidence level. 
aParameter estimate. 
bStandard error.
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Table 33. Revised Wald test statistics on NB model parameter estimates (relative to dataset 10). 
Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 

Ln (AADT 
Major) 0.165 0.029 1.030 0.043 0.940 0.195 1.143 1.388 0.555 

Ln (AADT 
Minor) 3.051 0.065 1.910 0.561 0.962 1.117 1.853 1.274 0.787 

LTLs 
1 Base Level 
2 3.251 1.303 2.170 2.011 0.290 0.400 0.840 1.644 0.134 
3 3.602 0.231 2.500 1.910 0.546 0.841 0.811 0.466 0.567 
4 2.018 0.829 1.018 2.232 0.395 0.955 0.915 0.358 0.126 
RTLs 
1 Base Level 
2 0.501 0.415 0.041 0.137 1.709 0.250 1.432 1.611 0.494 
3 3.594 0.994 0.779 0.012 0.903 0.746 1.801 1.002 1.100 
4 0.721 1.205 1.108 0.113 0.128 0.097 0.614 0.110 0.273 
Speed Limit 
35 mph Base Level 
25 mph 1.521 3.127 1.527 0.878 0.922 0.958 0.351 0.033 0.704 
30 mph 0.772 1.590 2.525 0.421 1.743 0.767 0.561 0.301 0.258 
40 mph 1.252 1.827 2.027 1.024 0.792 0.670 1.780 0.003 0.075 
45 mph 2.041 0.718 0.446 0.288 0.409 0.460 0.688 1.610 0.997 
50 mph 1.525 0.189 0.462 0.753 0.430 1.830 1.272 0.150 1.438 
55 mph 0.411 0.029 1.217 0.184 1.389 1.334 0.058 0.100 0.227 
65 mph 0.258 0.921 0.282 1.312 0.856 0.126 0.436 0.992 1.353 
LTLs Permitted 
1 Base Level 
2 0.899 0.557 1.107 0.600 1.058 0.162 1.488 0.629 0.393 
3 2.131 0.077 1.046 1.250 0.619 0.888 1.449 0.286 0.073 
4 0.658 0.288 1.378 1.230 1.159 2.389 0.830 0.410 0.711 
LTLs Protected 
1 Base Level 
2 0.835 0.787 0.787 0.659 1.112 0.175 0.383 0.844 0.115 
3 0.124 0.300 0.613 0.063 0.853 0.597 0.141 1.268 0.702 
4 0.617 0.755 0.047 1.215 0.722 3.466 0.980 2.734 0.700 
LTLs Mix 
1 Base Level 
2 0.323 0.682 1.206 1.808 0.589 0.690 0.829 0.109 0.705 
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Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 
3 0.595 0.002 1.135 1.446 0.038 0.853 1.466 0.902 0.381 
4 0.819 0.264 0.298 1.300 0.377 0.358 1.506 0.170 0.014 
RTOR 
1 Base Level 
2 0.309 0.905 0.359 3.205 1.725 0.044 0.383 0.560 0.957 
3 0.845 0.686 0.338 0.111 0.201 1.306 0.091 0.218 0.354 
4 1.312 0.787 0.068 2.147 1.722 0.403 1.209 1.423 1.117 
Lighting 
No Base Level 
Yes 1.067 1.495 1.803 0.295 0.595 1.671 1.479 0.664 0.055 
Presence of School Within 1,000 ft of Intersection 
No Base Level 
Yes 0.731 0.015 0.305 0.172 0.354 1.231 0.267 0.516 3.142 
Number of Bus Stops Within 1,000 ft of Intersection 
0 Base Level 
1–2 1.687 1.389 0.234 1.428 0.409 0.964 0.602 0.346 0.520 
≥3 0.242 0.549 1.328 0.343 0.528 0.848 0.666 0.699 0.447 
Number of Alcohol Sale Establishments Within 1,000 ft of Intersection 
0 Base Level 
1–8 0.205 0.264 1.778 0.108 0.102 1.329 0.720 0.727 0.385 
Maximum Crossing Lanes 
1 Base Level 
2 0.032 0.837 1.142 0.351 0.660 0.580 1.009 0.758 0.114 
3 0.372 0.702 1.108 0.389 0.635 0.438 0.916 0.661 0.128 
4 0.746 0.684 1.139 0.413 0.657 0.802 0.920 0.781 0.088 
5 1.303 0.684 1.218 0.443 0.633 0.477 0.836 0.745 0.149 
6 1.815 0.671 1.047 0.401 0.611 1.192 0.966 0.743 0.088 
7 1.814 0.593 1.344 0.495 0.606 5.402 0.845 0.714 0.161 
Overall Percent  71.4 92.8 71.42 78.57 92.85 71.4 100 92.85 92.85 
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From table 33, the parameter for major and minor AADT presents a t-statistic lower than the 
90-percent confidence value of 1.65 for all instances except for dataset 1 for the minor AADT, 
perhaps because the parameter was barely significant in the prediction model itself. A lower 
confidence value of 1.65 for the AADTs indicates no significant differences between the AADTs 
across the datasets. The parameter for “left-turn lane” presents a range higher than the 90-percent 
confidence value of 1.65, which is also not surprising, given the variable was only marginally 
significant. The parameter for “right-turn lane” for all models has a range lower than the 
confidence value of 1.65. The speed limit parameter, with levels from 25 to 65 mph, had a range 
lower than the confidence value of 1.65, except for 45 mph in dataset 1. Overall, out of the 14 
variables included in the models, 71.4 percent of the variable values in the dataset 1 fell into the 
range for the tested confidence value. For dataset 2, 92.8 percent of the variables fell within the 
range of significant value. The exception was “25-mph speed limit,” which presented a value 
higher than the 90-percent confidence value of 1.65. This conjecture applies to the other datasets 
used for this case study. 

Overall, most variables had test statistics lower than the confidence value of 1.65, which 
indicated there were no significant differences between this dataset and the corresponding dataset 
(10) that was used for testing the stability of this study’s data. 

Discussion of Findings 

Segments 

The case study generated various crash model predictions, using 10 different datasets for rural, 
two-lane, undivided segment roads. The significant variables are intuitive relative to other 
studies. Less variables were significant when the sample size was small. Poisson Regression had 
a lower MSPE and MAD for K crashes. Poisson regression had the lowest MAD and NB had the 
lowest MSPE for A crashes, which meant that NB performed better. Univariate Poisson 
lognormal had the lowest MAD for B crashes while Poisson regression had the lowest for MSPE. 
Poisson regression performed better for C crashes for MAD while NB did better for MSPE. 
Finally, Poisson did better for MAD for PDO crashes while univariate Poisson lognormal did 
better for MSPE. 

The research team used cross validation to assess the predictive performance of the models and 
judge how they performed outside the sample to a new dataset also known as test data. Without 
cross validation, there is only information on how the model performs relative to in-sample data. 
Ideally, it is desirable to see the model prediction accuracy on new data. The results from the 
cross-validation exercise showed that the dataset was robust enough to be relied on. Finally, the 
t-statistic estimates showed that the differences among the parameter value across the dataset are 
within a statistically acceptable level. The test statistics across the datasets for the AADT 
parameter were also lower than the 90-percent confidence value of 1.65 indicating that the 
variation across the different datasets is within a statistically acceptable level. 

Intersections 

The case study presents the crash prediction models for urban four-leg signalized intersections. 
Univariate Poisson lognormal performed better in the prediction of MSPE for K crashes while 
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Poisson regression did better for MAD for K crashes. NB had the lowest MAD and MSPE for A 
crashes which meant that it performed better. Univariate Poisson lognormal had the lowest MAD 
for B crashes while Poisson regression had the lowest for MSPE. Poisson regression performed 
better for C crashes for MAD while NB did better for MSPE. Finally, Poisson did better for 
MAD for PDO crashes while univariate Poisson lognormal did better for MSPE. 

The results from the cross-validation exercise show that the dataset was robust enough to be 
considered reliable. Finally, the t-statistic estimates show that the differences among the 
parameter values across the dataset are within a statistically acceptable level. 

Summary and Conclusions 

The purpose of this case study was to demonstrate the usefulness of the RAD tool, how to apply 
it, and establish that it could be relied upon to generate realistic data. Hence, the team developed 
various prediction models for different severity levels. Revised Wald Test Statistics were 
conducted to check if the variation across the different datasets is within a statistically acceptable 
level using dataset 10 as the benchmark. The result clearly highlights the stability in various 
parameter estimates across the datasets. The resulting stability found across the datasets indicates 
that the parameter estimates using RAD will be consistent, regardless of the miles of segment-
related data generated using the tool. With this knowledge, the dataset from the RAD tool can be 
used for other possible purposes, such as estimating other possible prediction models, comparing 
the performance of varied safety analysis methods, and helping to determine an adequate sample 
size to get convincing results, especially for low realizations of fatal crashes. RAD can also be 
helpful in generating large datasets with consistent conditions in cases where it is not possible to 
go back many years due to changes in roadway characteristics or drivers. This makes it easier to 
estimate models for unusual and rare events, such as minor crashes. 

The results from this case study may have significant implications on highway safety research in 
the development of information that can be used to make roads safer and crashes less severe. 
Since the data-generation process in the RAD tool is completely known, its use will allow 
objective evaluation and validation of various safety analysis methods used to verify various 
assumptions related to safety performance. In turn, these capabilities may help transportation 
agencies produce effective countermeasures to prevent and address crashes. 

DRIVING SIMULATION CASE STUDY 

Introduction 

One of the most significant socioeconomic issues facing the world today is the frequency of 
traffic crashes. According to a recent report by NHTSA, 38,824 people in the United States died 
in car crashes in 2020 (National Center for Statistics and Analysis 2021). Rear-end collisions 
accounted for almost one-third of these crashes. Driver inattention was a major causal factor in 
about 91 percent of rear-end crashes. This inattention may prevent a driver from detecting an 
object ahead and can be caused by distraction, fatigue, or atmospheric conditions (such as fog or 
sun glare). Several strategies exist to aid drivers in avoiding collisions (National Transportation 
Safety Board 2002). These strategies differ in terms of degree of intervention—from alerts that 
suggest subtle speed adjustments to automatic emergency braking. 
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With the emergence of these strategies in the future, vehicles with these various safety systems 
installed are likely to have fewer total crashes. One such strategy is the FCW system. This 
system is designed to help drivers reduce the severity of collisions or avoid them, especially rear-
end crashes, with visual, auditory, or tactile warnings of possibly impending collisions (Kusano 
and Gabler 2012). Additionally, a 2002 Daimler-Chrysler study found that 60 percent of rear-end 
collisions could likely be avoided if drivers had 0.5 additional seconds of warning, and 
90 percent of rear-end collisions could likely be avoided if drivers had an extra second of 
warning (NHTSA 2002). This research places FCW high on the list of solutions that can 
contribute significantly to reducing crash numbers and severity. 

The objective of this case study was to quantify the observed number of serious conflicts for 
drivers in vehicles equipped with an FCW system versus those in vehicles without these systems 
using driving simulator experiments. For this case study, driving simulation scenarios were 
generated that exposed participating drivers to road and traffic conditions deliberately designed 
to test their responses to unexpected forward obstacles with and without warnings from an FCW 
system. This case study differs from a previous study by Lee et al. (2002), which focused on the 
value of an FCW system in a scenario where the driver was intentionally distracted as part of the 
experiment and the hazard was a stopped lead vehicle. This case study explores the value of the 
FCW system for drivers who may or may not be distracted; the hazard may be a vehicle that 
stops or crosses the travel path suddenly or a nonmotorized user crossing the street unexpectedly. 

Literature Review 

Studies on FCW Systems 

FCW systems have been estimated to potentially reduce front to rear-end crash rates by 
27 percent and front to rear injury crash rates by 20 percent (Cicchino 2017). Although these 
systems do not prevent every crash, they have been proven to significantly mitigate the 
likelihood of a crash. Lee et al. (2002) presented users of a driving simulator with a scenario 
involving a stopped lead vehicle in which the driver was intentionally distracted and found that 
the FCW system reduced the number of collisions for that scenario by 80.7 percent. Teoh (2021) 
estimated the effectiveness of FCW systems using detailed data from exposure measures 
extracted from video footage and concluded that FCW systems were associated with a 
statistically significant 22-percent reduction in the rate of police-reportable crashes per vehicle 
miles traveled. 

A common human factor discussion surrounding FCW concerns the criteria that determine the 
guidance on warning timing. McLaughlin, Hankey, and Dingus (2008) noted that early warning 
has great potential to prevent crashes. Abe and Richardson (2006) found that early alarm timing 
may improve driver’s trust compared with late alarm timing. In addition, other studies 
investigated how various driving situations and hazard warning experience can influence driver 
responses to warning and hazardous situations. Incorrect warnings and failures of the system to 
produce warnings that drivers find useful and understandable may diminish drivers’ reliance on 
and compliance with warnings (Glassco and Cohen 2001; Lee and Lee 2007; Najim and Smith 
2004; Reinmueller and Steinhauser 2019). 
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A considerable amount of literature describes the possible safety benefits of these advanced 
technologies. Most of the literature the research team reviewed focused on the market 
penetration rate (MPR) of these systems. For example, Xiao et al. (2021) carried out a 
meta-analysis evaluating crash reduction by penetration rate. The results indicated that the 
number of conflicts is exponentially reduced as MPR goes up; safety is enhanced by 4 percent 
with an MPR of 10 percent and by 43 percent with 90 percent MPR. Furthermore, Papadoulis, 
Quddus, and Imprialou (2019) evaluated the safety impact of connected vehicles (CVs) using 
traffic simulation. The results showed that CVs bring about compelling benefits to road safety, as 
traffic conflicts significantly reduce even at relatively low market penetration rates. Specifically, 
estimated traffic conflicts were reduced from 12 to 47 percent, 50 to 80 percent, 82 to 92 percent, 
and 90 to 94 percent for 25-percent, 50-percent, 75-percent, and 100-percent CV penetration 
rates, respectively. 

Based on 37 precrash scenarios developed by Najm et al. (2010), Jermakian (2011) estimated the 
maximum potential for U.S. crash reductions for four crash avoidance technologies: side view 
assistance, FCW, lane departure warning, and adaptive headlights. Jermakian (2011) estimated 
that FCW holds the greatest potential for preventing crashes of any severity, up to 1.2 million 
crashes per year in the United States, or 20 percent of the annual 5.8 million police-reported 
crashes. Kusano and Gabler (2012) examined the safety benefits of FCW systems in rear-end 
collisions simulating scenarios from real world rear-end crash data extracted from the National 
Automotive Sampling System/Crashworthiness Data System. Their study indicated a dramatic 
reduction in serious and fatal injuries when using these safety features. 

Studies on Crashes and Serious Conflicts 

Surrogate safety assessment is an alternative method of assessing safety that relies on the 
analysis of safety-critical events known as traffic conflicts. Definitions of traffic conflict vary; 
the first mention of the term was by Klebelsberg (1964), as cited by Tarko (2018), who defined 
traffic conflicts as dangerous traffic interactions. Laureshyn and Varhelyi (2020) define a traffic 
conflict as “an observable situation in which two or more road users approach each other in 
space and time to such an extent that there is a risk of collision if their movements remain 
unchanged.” The proximity of road users to each other can be physically measured in temporal 
and/or spatial dimensions, and thresholds can be used to identify conflicts. Perkins and Harris 
(1968) used traffic conflicts to define situations necessitating evasive actions, such as braking. 
According to this definition, conflicts and crashes are of a similar nature but for the presence and 
success of an evasive action (Zheng, Ismail, and Meng 2014). 

Various conflict indicators have been developed to measure the severity of an interaction by 
quantifying the spatial and temporal proximity of two or more road users. A comprehensive 
summary of the different indicators is provided in Brown (1994) and Tarko (2009). Typical 
measures of conflict severity include conflicting speed and severity index (Autey, Sayed, and 
Zaki 2012; Essa and Sayed 2020). The time-to-collision indicator used in this study has been 
widely used to measure the severity of traffic conflicts. Time to collision is defined as “…the 
time that remains until a collision between two vehicles would have occurred if the collision 
course and speed difference are maintained” (Laureshyn and Varhelyi 2020). The main 
advantage of conflict indicators is their ability to capture the severity of an interaction in an 
objective and quantitative way. Various studies have used traffic conflicts together with crashes 
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for safety analysis and have shown that conflicts can adequately serve as a proxy for crashes 
(Laureshyn and Varhelyi (2020) ; Charly and Mathew 2019; Peesapati, Hunter, and Rodgers 
2013; Xie et al. 2016). 

Although previous studies have contributed to examining the effectiveness of FCW systems, 
none of these studies focused on estimating the relationship between crashes and serious conflict 
with the aim of providing information for crash modification factors for the FCW systems. In 
this case study, near crashes, also known as serious conflicts, were used as surrogates for crashes 
to represent quantitative safety. This substitution was made because researchers expected crashes 
to be extremely rare, given the number of drivers to be observed in the experiment, and because 
identifying crashes in the driving simulation environment would be challenging. 

Methodology 

This section outlines the general description of methods used for the entire experiment and 
describes the participants used for the experiment, followed by the description of the Connecticut 
Transportation Safety Research Center driving simulator used for the main experiments. The 
driving scenarios used for the experiment are also described in detail. Finally, there is a 
discussion regarding the traffic conflict technique the research team used to evaluate traffic 
conflicts. 

Participants 

A total of 142 participants—64 females, 77 males, and 1 person who declined to identify as 
either male or female—were recruited for the study. Simulator sickness prevented nine people 
from completing the experiment. Of the 133 participants who completed the experiment, 58 
(41 percent) were between the ages of 18 and 29, 55 (41 percent) were between the ages of 30 
and 64, and 20 (15 percent) were 65 or older. Each participant had a valid driver’s license and 
was in good physical health. They were recruited via flyers distributed on college bulletin 
boards, in accordance with Institutional Review Board regulations. The college bulletin boards 
they were posted to belonged to University of Connecticut (UConn). Flyers were also distributed 
at senior and community centers to increase the participation of senior drivers and area residents 
not associated with UConn. 

Equipment 

The experiment made use of a driving simulator, made by Technology Company A, which had a 
full cab and a segmented screen. Additional equipment included a series of cameras, four 
projectors (rear, front, right-side, and left-side projections), and various screens to provide a 
high-fidelity virtual environment. All the equipment was owned and maintained by the 
Connecticut Transportation Safety Research Center located at UConn. Some features of the 
driving simulator include the Internet Scene Assembler ®, which is used in the modification of 
the virtual environment, and the SimObserver®, which is integrated with the virtual environment 
and used for data and video synchronization, video capture, and after-action review (Realtime 
Technologies 2023). Figure 20 shows the UConn driving simulator. 
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Source: FHWA. 

Figure 20. Photo. UConn driving simulator vehicle. 

In figure 21, the computer on the left side was used to run the simulator and edit the model. The 
computer on the right side was used to extract data and video clips of the main driving 
experiment. 
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Source: FHWA. 

Figure 21. Photo. UConn driving simulator control center. 

The software programs used in the driving simulator were SimCreator®, SimObserver®, 
SimCreator DX®, and Data Distillery® (Realtime Technologies 2023). Additionally, audio 
software and hardware were used to simulate engine sounds, tire sounds, and vehicle noises for 
the participants. 

SimCreator® is used for graphical simulation and as a modeling system. Different components 
are connected with each other to make a model. Each component can either be a group of 
different components or a C/C++ code component. Once a model has been developed, it can be 
simulated, and the result plotted (Realtime Technologies 2023). 

SimObserver® is a data collection system designed to capture data for after-action review that is 
controlled by the SimObserver computer. It procures the following output files (Realtime 
Technologies 2023): 

• Video file (MPEG-2 format): The format of the file is “.mpg file.” It contains a video of 
the entire experiment. The video is used to determine the length of road over which 
various tasks are performed. 

• Log file: The format of this file is “.log file.” It includes system messages, errors, and 
warnings. 
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• Event file: The format of this file is “.vt file.” It contains start and stop times and labels 
all events logged during video capture. 

• DAT file: The format of this file is “.dat file” (in the form of a video on DVD). It is the 
main data file used to measure driving performance. Data are categorized into different 
columns. Some of the variables in the DAT file are longitudinal acceleration, lateral 
acceleration, throttle, and headway distance. 

SimCreatorDX® is the graphical user interface used to create, monitor, and control scenarios. It 
allows the researcher to observe the current state of the SimCreator simulation through graphical 
displays and detailed data view and is intended to be the primary tool used for development, 
tuning, and creation of experimental scenarios. After launching SimCreatorDX, the user has the 
option of either developer or experimental mode. In developer mode, the purpose is to design 
scenarios to fit the purpose of the study. Experimental mode allows for a quick interface to run 
multiple participants for any studies (Realtime Technologies 2023). 

Data Distillery® is a data review and reduction software package with a main purpose of 
improving the efficiency of data reduction. This tool is also used for compiling the captured 
video and data from SimObserver. Data Distillery provides fine details of the collected data to 
understand the nature of the behavior or system being observed. The log file, video file, and data 
file are all displayed on the same screen. It also can be utilized to find the position of the vehicle 
(Realtime Technologies 2023). 

Procedure and Experimental Design 

Each participant was given an informed consent document to read and sign upon arrival on the 
day of the study. This consent included permission to record video. Each participant then 
completed a questionnaire that included demographic questions, such as their sex, age, 
race/ethnicity, and years of driving experience. Researchers then asked participants to complete 
an approximately 5-min driving simulator training sequence to acclimatize them to driving in the 
simulator. If participants requested more time, an additional 5-min training was provided. 

After the training sequence, each participant was placed into one of two groups based on the 
answers to the questionnaire. This allowed researchers to balance the distribution of age, sex, and 
years of driving experience within each group. The race/ethnicity distribution of each group was 
also monitored to keep those factors as balanced as possible. Both groups completed a defined 
driving scenario that included a mix of city and highway driving. The scenario took about 15 min 
to complete. Participants were asked to drive the course as if they were driving a real car on a 
real road. They were told that the purpose of the experiment was to observe their reactions to the 
scenario they drove. At some point during the scenario, a stimulus was introduced that required 
the driver to execute a sudden, unexpected braking maneuver. For example, a parked vehicle 
would suddenly pull in front of the vehicle without warning, or another vehicle, animal, or 
pedestrian would cross the vehicle path. 

Half the participants drove the course with a FCW system programmed into the simulation, 
giving the participant an audible and visual warning on the dashboard about the imminent 
collision. The other half did not have the FCW system and received no warning. Before the 
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driving began, participants with the FCW system were informed that the vehicle they were 
driving provided an audible sound and/or flashing pedestrian on the dashboard to warn of 
imminent forward collision. 

After they completed their turns in the driving simulator, participants were debriefed by a 
researcher and given a copy of the UCONN debriefing form for the case study, titled “Estimating 
a Crash Modification Factor for Forward Collision Warning Systems in the Vehicle Fleet.” The 
debriefing form included contact info for the principal investigator and student researcher and 
listed the study sponsor as FHWA. Additionally, it included the following statement about the 
study: 

The purpose of this study is to find out how much of a reduction in accidents is possible 
when vehicles are equipped with an automatic FCW system. Participants were placed in 
one of two groups: one that included the automatic forward collision avoidance system 
and one that did not. At one point during the experiment, you were faced with a sudden, 
unexpected obstacle that required you to stop. We noted the vehicle speed and the 
distance from the obstacle when you took evasive action and will use them to calculate 
the severity of the resulting conflict. Once we are finished running experiments, we will 
compare the conflict severities of the drivers who had the FCW system with those who 
did not to estimate the safety value of having this system installed. 

Additionally, the researcher gave a verbal description of the study and its aims. As the 
experiment did not involve deception, this debriefing was only informational. 

Driving Scenarios 

Driving scenarios were created for both urban and rural settings. Researchers programmed 
pedestrians walking along sidewalks into each scenario to help the scenes be as realistic as 
possible. Participants were asked to drive as they normally would on their way to work or 
college but to always stay in the right lane. These instructions allowed for the unexpected event 
to occur in the right lane. (Although it would be most ideal to run this experiment with no 
same-way lane restrictions on drivers, programming the driving simulator to accommodate this 
change was not possible due to constraints in the technology available. Due to its uniqueness, 
this case study is still extremely valuable for the insights it can provide.) 

The urban setting consisted of an undivided roadway section with two lanes of traffic in both 
directions. The roadway included all the typical features of an urban road, such as speed limit 
signs and traffic signals, and had paved curbs on both sides of the road. The roadside features 
included restaurants and gas stations placed along the route with high-rise buildings. Most 
sections of the road were straight, but there were a few right-angled turns, as shown in figure 22. 
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Source: FHWA. 

Figure 22. Photo. Section of urban roadway used in experiment. 

The rural scenario consisted of a two-lane undivided roadway section with traffic simulated into 
the experiment to make it feel like real-world driving. The rural setting was a mix of countryside 
and residential areas, as shown in figure 23. Most sections of the road were straight, with a few 
horizontal curves. 
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Source: FHWA. 

Figure 23. Photo. Section of rural roadway used in experiment. 

During the experiment, participants were asked to follow the designated route as a recorded 
message that was broadcast through speakers in the car provided directions. Four scenarios were 
modeled, as follows: 

• Scenario 1: Urban setting plus entering car. A parked car suddenly pulls over into the 
path of the driver. 

• Scenario 2: Urban setting plus pedestrian. A person suddenly crosses the road into the 
path of the driver. 

• Scenario 3: Rural setting plus animal. A deer crosses into the path of the driver. 

• Scenario 4: Rural setting plus pedestrian. A small child crosses the road unexpectedly. 

The demographics of participants in each scenario are demonstrated in table 34. Care was taken 
to ensure a balance for the age categories by scenario. 
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Table 34. Driving simulator participant statistics by scenario. 

Scenario 
Male 
18−29 

Male 
30–64 

Male 
65+ 

Female 
18−29 

Female 
30−64 

Female 
65+ Total 

Urban plus entering car 4a, 4b 4, 5 1, 1 
 

2, 3 
 

3, 1 
 

1, 1 15,15 

Urban plus pedestrian 4 ,4 4, 3 0, 1 4, 3 5, 5 2, 3 19, 19 

Rural plus animal 2, 2 2, 3 3, 2 4, 5 4, 3 2, 2 17, 17 

Rural plus pedestrian 4, 4 3, 3 1, 0 4, 4 2, 3 1, 1 15, 15 

Total 14, 14 13, 14 5, 4 14, 15 14, 12 6, 7 66, 66 

aWith FCW. 
bWithout FCW. 

Traffic Conflict Methodology 

To consistently use conflict techniques, many countries have formed their own standards and 
published manuals or handbooks to guide field observations. Some examples include Swedish 
Traffic Conflict Technique (STCT), U.S. Traffic Conflict Technique (USTCT), Dutch Traffic 
Conflict Technique (DOCTOR), and the German Traffic Conflict Technique. Both the STCT and 
USTCT use the time to accident (TA) and conflicting speed (CS) values as a conflict severity 
indicator; meanwhile, DOCTOR is more concerned with driver error and incorporates it into a 
safety continuum (Zheng, Ismail, and Meng 2014). 

The STCT is used in this effort to evaluate traffic conflicts. Traffic conflicts are typically 
categorized based on two indicators: the TA value and the CS. The TA is the time between when 
a particular road user successfully performs an evasive action and when the collision would have 
occurred. The CS is the speed of the roadway user at the point of taking the evasive action. The 
TA and CS values are used to define the conflict severity. The CS affects the outcome of the 
collision (the resulting pedestrian injury depends on the speed), and a higher speed requires 
longer stopping time and distance. Thus, a higher CS indicates a more severe conflict for the 
same TA (Laureshyn and Varhelyi 2020). Directly estimating the TA in live traffic can be 
challenging, so TA can instead be estimated from the vehicle speed and the distance to the 
collision point using table 35. The conflict severity is then determined from the TA and the CS, 
according to the graph in figure 24.
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Table 35. Chart. TA values estimated from vehicle speed and distance to collision point (Laureshyn and Varhelyi 2020). 
Speed Distance, m 

km/h m/s 0.5 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 
5 1.4 0.4 0.7 1.4 2.2 2.9 3.6 4.3 5.0 5.8 6.5 7.2 — — — — — — — — — 
10 2,8 0.2 0.4 0.7 1.1 1.4 1.8 2.2 2.5 2.9 3.2 3.6 5.4 7.2 9.0 — — — — — — 
15 4.2 0.1 0.2 0.5 0.7 1.0 1.2 1.4 1.7 1.9 2.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 — — — 
20 5.6 0.1 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.4 1.6 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9.0 9.9 
25 6.9 0.1 0.1 0.3 0.4 0.6 0.7 0.9 1.0 1.2 1.3 1.4 2.2 2.9 3.6 4.3 5.0 5.8 6.5 7.2 7.9 
30 8.3 0.1 0.1 0.2 0.4 0.5 0.6 0.7 0.8 1.0 1.1 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 6.6 
35 9.7 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.7 
40 11.1 0.0 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9 1.4 1.8 2.3 2.7 3.2 3.6 4.1 4.5 5.0 
45 12.5 — 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 
50 13.9 — 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 1.1 1.4 1.8 2.2 2.5 2.9 3.2 3.6 4.0 
55 15.3 — 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.7 1.0 1.3 1.6 2.0 2.3 2.6 2.9 3.3 3.6 
60 16.7 — 0.1 0.1 0.2 0.2 0.3 0.4 0.4 0.5 05 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 
65 18.1 — 0.1 0.1 0,2 0.2 0.3 0.3 0.4 0.4 0.5 0.6 0.8 1.1 1.4 1.7 1.9 2.2 2.5 2.8 3.0 
70 19.4 — 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.8 1.0 1.3 1.5 1.8 2.1 2.3 2.6 2.8 
75 20.8 — 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.7 1.0 1.2 1.4 1.7 1.9 2.2 2.4 2.6 
80 22.2 — 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.7 0.9 1.1 1.4 1.6 1.8 2.0 2.3 2.5 
85 23.6 — 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.6 0.8 1.1 1.3 1.5 1.7 1.9 2.1 2.3 
90 25.0 — 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 
95 26.4 — 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7 1.9 2.1 
100 27.8 — 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.5 0.7 0.9 1.1 1.3 1.4 1.6 1.8 2.0 

© 2018 Lund University. 
—No data. 
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© 2018 Lund University. 

Figure 24. Graph. Conflict severity diagram (Laureshyn and Varhelyi 2020). 

Conflicts with a severity level above 26 are ranked as serious. For instance, a vehicle 
approaching at 30 mph (48.3 km/hr) with a TA of 2.8 sec would pass the potential conflict point 
with too much time remaining for the interaction to be classified as a serious conflict. However, 
a 45 mph (72.4 km/hr.) approach speed would just exceed that level. These severity levels can be 
used to understand serious conflicts to estimate the crash modification factor (CMF) for FCW 
systems. A CMF is the ratio of the number of crashes expected with a countermeasure to the 
number of crashes expected without it. In other words, when implementing a countermeasure, 
multiplying the existing expected number of crashes by the CMF gives an estimate of the 
expected number of crashes after implementation of the countermeasure. CMFs with a value less 
than one indicate an expected decrease in crashes; meanwhile, a value greater than one indicates 
an expected increase. The FCW system can be said to be a countermeasure installed in vehicles 
to help mitigate the occurrence of crashes in vehicles that have it installed. A CMF for this 
“countermeasure” would have to also account for the penetration rate of the FCW system in the 
vehicle fleet. Estimating a CMF value for FCW systems would be helpful for adjusting the 
expected number of crashes in future conditions, as the proportion of vehicles with such systems 
increases. 

The steps to estimate the CMF are as follows: 

• Estimate a ratio to account for the safety effect of having a FCW system (RFCW): 

 RFCW = nFCW∕ no, where nFCW is the number of serious conflicts in vehicles with the FCW, and no 

is the number of serious conflicts in vehicles without the FCW. 
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• Define the proportion of the vehicle fleet with the FCW system (PFCW): Five different 
proportions of the vehicle fleet from 10 to 50 percent in increments of 10 percent were 
investigated. 

• Calculate the estimated CMF for the FCW system: CMFFCW = 1+ PFCW(RFCW – 1) Error! 
Digit expected.. 

Data Collection and Analysis 

TA and CS are the two variables required to calculate conflict severity. Velocity is the output of 
the speed in the simulator and reflects the speed with which a participant drove. Lane position 
can be defined as the position of the vehicle measured from the center of the road, in meters and 
was used to represent the lateral control of the vehicle. A positive number indicates a vehicle on 
the right side of the center line. A negative number indicates a vehicle on the left. . Data 
collected on these two dependent variables were at a frequency of 60 Hz through the 
SimObserver® proprietary software of the driving simulator (Realtime Technologies 2023). 

The lateral position where the event occurred was collected for both the scenarios with and 
without the FCW system. Table 36 shows an example of the resulting extracted data from the 
simulator. The X and Y axes indicate the lateral position of each participant at the time the event 
was introduced into the experiment. The speed is the speed the participant was driving before 
carrying out the evasive action of either hitting the brakes or swerving. 
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Table 36. Example of extracted spreadsheet data. 

 Participants X Y Speed (m/s) 
1 (without FCW) 
 

FHWA01 3995.18 -6895.13 17.56 
FHWA03 2681.54 -6895.13 17.56 
FHWA 20 2694.1 -6895.31 18.89 
FHWA 28 2673.54 -6896.02 17.61 
FHWA 30 2672.73 -6895.13 15.95 
FHWA 40 2711.58 -6895.38 28.23 
FHWA 42 2674.42 -6895.55 14.129 
FHWA45 2667.56 -6897.24 17.57 
FHWA 51 2677.33 -6895.81 15.192 
FHWA 52 2686.56 -6897.07 16.96 
FHWA 95 2665.24 -6895.48 18.04 
FHWA125 2681.99 -6895.33 28.23 
FHWA126 2705.15 -6895.73 14.129 
FHWA127 2669.16 -6895.67 15.129 
FHWA128 2672.73 -6895.13 15.5 

1 (with FCW) FHWA 09 2680.06 -6895.81 13.95 
FHWA 10 2678.98 -6895.1 13.75 
FHWA 15 2668.53 -6895.37 15.07 
FHWA 29 2676.24 -6895.5 15.63 
FHWA 31 2671.76 -6895.96 13.44 
FHWA 34 2687 -6895.84 15.12 
FHWA 68 2681.99 -6895.33 15.38 
FHWA 71 2669.16 -6895.67 10.6 
FHWA 74 2665.45 -6895.66 12.01 
FHWA 105 2667.92 -6895.83 16.61 
FHWA 112 2705.15 -6895.73 13.29 
FHWA 122 2660.42 -6897.24 12.47 
FHWA 123 2667.45 -6896.09 15.07 
FHWA 124 3995.18 -6895.13 15.63 
FHWA129 2711.58 -6895.38 15.63 

Thirty participants were in scenario 1, 38 in scenario 2, 34 in scenario 3, and 30 in scenario 4. 
The numbers of participants in each scenario was balanced, as noted in table 34. Figure 25 shows 
the speed of the participants with and without the FCW. When scenario 1 (a parked car suddenly 
drives into the path of the participant) occurred, the speed was lower with participants with the 
FCW—possibly because the warning sound made drivers immediately aware of the upcoming 
event. 
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Source: FHWA. 

Figure 25. Graph. Speed of participants in scenario 1. 

Figure 26 shows the speed of the participants with and without FCW when scenario 2 (a 
pedestrian crossing into the path of the participant) occurred. It shows that the speed was lower 
for participants with FCW. This outcome may be explained by the fact that the warning sound 
made drivers immediately aware of the upcoming event. 

 
Source: FHWA. 

Figure 26. Graph. Speed of participants in scenario 2. 

Figure 27 and figure 28 show a similar trend, as the speed remains greater for participants 
without the FCW. 



104 

 
Source: FHWA. 

Figure 27. Graph. Speed of participants in scenario 3. 

  
Source: FHWA. 

Figure 28. Graph. Speed of participants in scenario 4. 

Calculation of the Effectiveness of FCW 

The safety effect of having FCW was calculated by the ratio of serious conflict (nFCW) in the 
experiment with FCW to the ratio of serious conflict without FCW, as discussed in the traffic 
conflict methodology section. Table 37 shows the raw factor for the different scenarios 
conducted in the experiment. The raw factor was also calculated for all cases with and without 
FCW to see if there were substantial differences between individual scenarios and overall cases. 
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Table 37. FCW ratios by scenario. 

Scenario nFCW nO RFCW 
All cases 24 42 0.57 
Urban plus entering 
car  

6 9 0.67 

Urban plus pedestrian 6 13 0.46 
Rural plus animal 7 10 0.70 
Rural plus pedestrian 5 10 0.50 

The CMF was calculated based on the various penetration rates of the system and is shown in 
table 38. 

Table 38. CMF values by FCW fleet penetration rate. 

Scenario PFCW= 0.1 PFCW= 0.2 PFCW= 0.3 PFCW= 0.4 PFCW= 0.5   
All cases 0.95 0.91 0.87 0.82 0.78 
Urban plus entering 
car  

0.96 0.93 0.89 0.86 0.83 

Urban plus pedestrian 0.94 0.89 0.83 0.78 0.73 
Rural plus animal 0.97 0.94 0.91 0.88 0.85 
Rural plus pedestrian 0.95 0.90 0.85 0.80 0.75 

Considering all simulation scenarios, when the penetration rate is 10 percent, the CMF is 0.95, 
which translates to a 5-percent reduction in crashes. The CMF increases to 22 percent for a 
penetration rate of 50 percent. For scenario 1, when the FCW penetration rate is 10 percent, a 
4-percent reduction in crashes is expected with a 17-percent reduction at a 50-percent penetration 
rate. In the case of scenario 2, a CMF of 0.94 for a 10-percent penetration rate means a 6-percent 
reduction in crashes, with a 27-percent reduction expected when the penetration rate of FCW is 
at 50-percent. Scenario 3 had a CMF of 0.97, which translates to a 3-percent reduction in crashes 
when the penetration rate is at 10 percent and 0.85, a 15-percent reduction when the penetration 
rate is at 50 percent. Scenario 4 had a CMF of 0.95, a 5-percent reduction in crashes when the 
penetration rate is at 10 percent and a CMF of 0.75 and a 25-percent reduction in crashes when 
the penetration is at 50 percent. Notably, as the overall penetration rate increases, the number of 
crashes decreases. 

Driving Simulator Case Study Findings 

The team examined the effectiveness of FCW to provide information for crash modification 
factors for the FCW systems for five different FCW system market penetration rates for the 
vehicle fleet from 10 to 50 percent in increments of 10 percent. Four scenarios were modeled in 
urban and rural settings in which participants were exposed to conditions deliberately designed 
to test their responses to unexpected events when they got warnings from FCW systems or when 
there was no system. To achieve this, two variables, lane position and speed, were used to 
measure conflict severity. This X was used as a proxy for crashes because researchers expected 
crashes to be extremely rare, given the relatively small number of drivers observed in the 
experiment. The conflict severity was determined from the TA and CS values of the road users. 
A total of 133 participants completed the experiment. 
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The results suggest that FCW systems have the potential to reduce incidences of crashes in 
vehicles that have them installed, and reduction in incidences of crashes will occur as market 
penetration rate goes up. The overall CMF values for all the scenarios conducted in the 
experiment ranged from 0.78 to 0.95, which is approximately a 10 to 22 percent reduction in 
crashes, with an R value of 0.57. The CMF values for scenario 1 and 2 ranged from 0.83 to 0.96 
and 0.73 to 0.94, which is approximately a 4 to 17 percent and 6 to 27 percent reduction in 
crashes, respectively. R values were 0.67 and 0.46. In the rural scenario, the CMF values for 
scenario 3 and 4 were from 0.85 to 0.97 and 0.75 to 0.95, with R values of 0.70 and 0.50, 
respectively. These data indicate that incidences of crashes were reduced by 3 to 15 percent for 
rural plus animal and 5 to 10 percent for rural plus pedestrian. The data also reveals that FCW 
enhances driver responses over a range of velocities, strongly suggesting that FCW can enhance 
driver responses in scenarios that may lead to collisions. 

This study shows that FCW systems have enormous benefits, even though some unanswered 
questions remain. Specifically, although the warning enhanced driver’s awareness of potential 
conflict in the simulator, warnings might be perceived as a nuisance in an actual driving situation 
when they are too sensitive or too early. Further data collection might be required to assess 
drivers’ responses to nuisance alarms generated by early warning or if dynamic adjustment of the 
warning is feasible. Also, a longer-term follow-up study might be helpful in understanding 
changes in driver attitudes and validating benefits observed in this study. The use of naturalistic 
studies may provide more insight into driver behavior during routine trips. Data from such 
potential studies can help validate the benefits of FCW and assist researchers in more completely 
understanding driver attitudes toward FCW systems.
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

This study created a system for generating RAD that can be used for safety analysis. 

First, the team developed two independent RAD frameworks that can be adopted by other safety 
researchers interested in generating RAD for crashes of interest. 

The macroscopic framework randomly generates a dataset of segments or intersections for a 
specified facility type (e.g., urban or rural two-lane, four-lane segment, or three-leg or four-leg 
signal or stop-controlled intersection), length of roadway or number of intersections, and number 
of years of crashes. The data are generated in two parts. First, physical and traffic characteristics 
of the segment or intersection are randomly generated according to distributions and sequential 
patterns (in the case of segments) observed in real datasets. Second, crashes are generated 
randomly using SPFs synthesized from distributions of parameter and CMF values found in a 
literature search of crash prediction models. Randomness is added to the resulting crash counts 
using a random mixture of several probability distributions to avoid producing a dataset with an 
easily discoverable common probability distribution. 

The microscopic framework takes an alternative approach, generating vehicle trips for a 
specified region, each with an origin, destination, travel route, purpose, and time of day, and then 
the likelihood of each trip resulting in a crash, along with where on the route the crash occurs, is 
used to generate crashes. A rich trip dataset available from Argonne National Lab and the 
SHRP2 NDS was used to develop the model for predicting the likelihood of any trip resulting in 
a crash (Auld et al. 2016; Virginia Tech Transportation Institute 2020). The result is a database 
of crashes generated in a manner that attempts to replicate how crashes occur. 

Second, the team developed an open-source software application that can be used to generate 
RAD for different combinations of inputs, including facility type, period of time, and geographic 
extent. A user desiring to generate a dataset can choose to use either the macroscopic or the 
microscopic approach. For the macroscopic approach, a user-friendly interface permits 
specification of facility type, miles of roadway segments or number of intersections, number of 
years of crashes, and a random number seed. The tool then generates a roadway file containing 
the roadway characteristics for each segment or intersection and total crash counts by injury 
severity and a crash file containing detailed crash severity and crash type information. For the 
microscopic approach, the interface has fewer parameters, requesting only the number of years 
of crashes. This tool generates annual crash data for the study region, providing crash, person, 
and vehicle files. 

Third, the team conducted two case studies to demonstrate the feasibility and applicability of the 
software. They generated multiple datasets of various sizes using the resulting RAD tool for rural 
two-lane highways and urban four-leg signalized intersections. SPFs were estimated using 
statistical estimation software and then used to predict crashes on a different one of the RAD 
datasets. A variety of distributional assumptions and modeling approaches were considered for 
estimating the SPFs. The SPFs included a full complement of predictor variables. All variables 
used for generating the RAD were considered in each SPF. Statistical tests were used to compare 
the estimated parameter values from one model to another to evaluate dataset consistency. 
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Researchers found that, in general, the parameter values do not vary significantly from one 
dataset to another, even from the smallest to the largest datasets or among the modeling 
approaches. The resulting SPFs also demonstrated predictive transferability from one dataset to 
another. 

Using driving simulator studies, the team explored the potential safety benefits of FCW systems. 
Participants were recruited to drive in one of four simulated scenarios in urban and rural areas. 
During the scenarios, an unexpected emergency stop was required due to either a pedestrian, 
animal, or other vehicle suddenly entering the vehicle’s path. Half the drivers in each scenario 
were given an FCW system, which gave them an audible and/or visible warning about the 
hazard. Participants with the FCW system had a much higher TA than those without, and thus a 
much-reduced rate of serious conflicts and collisions with the hazard. The resulting reduced risk 
of conflict was used to estimate CMFs overall and for each scenario for a range of possible 
market penetration rates for vehicles with FCW systems. 

In conclusion, the resulting RAD generation tool was proven to be reliable for generating 
datasets for testing new crash prediction approaches. The tool provides flexibility for generating 
datasets of any size desired, including many road facility types and crashes of different types and 
severity. The microscopic tool includes variables describing demographic and vehicle 
characteristics that can be used to investigate approaches for crash severity modeling. The 
macroscopic tool can also be used to generate crashes over an extended period of time, which is 
typically not possible with real crash data, in that road characteristics cannot be assumed to be 
constant. Having this tool available will permit further investigation of approaches for predicting 
crashes in scenarios where crashes are much too scarce to estimate models.
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