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Exit ramps play an essential role in diverting traffic from a non-interrupted traffic 

flow facility to another non-interrupted or interrupted traffic flow facility. To access 

exit ramps, motorists need to perform maneuvers such as lane change, lane merge, 

and/or lane diverge at lower speeds. The extent and frequency of these maneuvers 

vary by ramp configuration, traffic composition, horizontal alignment, crossroad ramp terminal 

control, and the design speed differential of the two connecting facilities.1 Therefore, traversing 

through a ramp presents a driver with complex 

conditions and multiple decision points. Besides, 

these maneuvers create a speed differential as 

diverging traffic moves at a relatively slower speed 

than the mainline traffic. This situation may increase 

the probability of crash occurrence and even 

exacerbate crash injury severity.2, 3
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A substantial proportion of total freeway crashes occur on and 
near ramps.4 For instance, about a fifth of all interstate crashes 
occur at interchanges, although such locations constitute less than 
5 percent of total freeway mileage.3,4 McCartt et al.3 suggested 
that about half of all ramp-related crashes occurred when at-fault 
drivers were in the process of exiting interstates. Compared to 
entrance ramps, exit ramps were found to experience more severe 
crashes.3, 5 Therefore, crashes on exit ramps have been a significant 
freeway safety issue.2

Several studies analyzed the likelihood, types, and severity of 
crashes near exit ramps.3-10 Qu et al.7 found frequent lane-chang-
ing maneuvers and merging activities as the main reason for the 
differences in crash risk across the different lane types near exit 
ramps. Among the crashes that occur at freeway diverge areas, 
rear-end and angle crashes were more likely to result in severe 
outcomes than sideswipe crashes.10 Lee and Abdel-Aty4 suggested 
using advisory speed signs as a countermeasure to potentially 
reduce the likelihood of crashes on exit ramps.

Most of the existing studies evaluated the safety of freeway 
exit ramps by considering crash frequency, crash type, and crash 
severity. However, these studies did not consider the effect of 
heterogeneity in crashes while identifying factors influencing the 
severity of crashes near exit ramps. Moreover, previous studies 
on the severity of crashes near exit ramps assumed that the effect 
of factors on different severity levels does not vary. This study, 
therefore, evaluated the severity of crashes near freeway exits 
using latent class clustering analysis (LCCA) and partial propor-
tional odds (PPO) model in an effort to account for the limitations 
of previous studies on the severity of crashes near exit ramps.

Study Area and Data
This study focused on crashes that occurred near freeway exit 
ramps in North Carolina from 2013 to 2017. The crash data were 
requested from the Highway Safety Information System (HSIS). 
One piece of information essential for this study was the crash 
location in relation to the exit ramps categorized as the entry of 
the exit ramps, the ramp terminal with the crossroad, and the 
ramp proper. This study focused on crashes that occurred at the 
entry of exit ramps only. About 4,157 crashes that occurred at 
the entry of exit ramps were retrieved and processed for analysis. 
After removing crashes with missing information in the target 
variables, 3,541 crashes were available for analysis. In summary, 
out of 3,541 crashes, about 1 percent resulted in fatalities (K 
crashes) and incapacitating injuries (A crashes). About 5 percent 
of the crashes led to non-incapacitating injuries (B crashes), 
nearly 20 percent of crashes caused possible injuries (C crashes), 
and approximately 75 percent of the crashes were property 
damage only (PDO).

Data Variables
The variables included in the analysis were selected based on existing 
literature.1-12 Table 1 shows the variables included in this study 
and their corresponding categories. All categories of the variables 
are self-explanatory except for crash severity, alcohol use, older 
drivers, crash type, and time of day. Although crash severity had 
five levels, the study recategorized crash severity into three groups: 
KAB crashes (i.e., fatal, incapacitating, and non-incapacitating 
crashes), C crashes (possible injury crashes), and PDO. Older drivers 
included those aged 65 years and above. The alcohol use variable was 
categorized into a group that at least one driver involved in a crash 
had the blood alcohol concentration (BAC) > 0 percent (i.e., Yes) and 
a group that no driver in the crash had the BAC > 0 percent (i.e., No). 
The crash type variable included single-vehicle, rear-end, sideswipe, 
and angle crashes. Head-on crashes were removed from the analysis 
since their crash mechanisms are significantly different from other 
crash types. The time of day was categorized into morning peak 
hours (6 a.m.–10 a.m.), evening peak hours (3 p.m.–7 p.m.), and 
off-peak hours (10 a.m.–3 p.m. and 7 p.m.–6 a.m.).

Descriptive Statistics
Table 1 shows the frequency distribution of crashes according to 
the severity of crashes and explanatory variables. The distribution 
shows that more KAB and C crashes involved intoxicated drivers. 
The percentage of KAB crashes was higher when older drivers were 
involved. Crashes involving trucks had a higher percentage of KAB 
and C crashes. Single-vehicle crashes involved more KAB crashes 
than all other crash types. Conversely, angle crashes had the highest 
percentage of C crashes than other crash types.

Nighttime was associated with more KAB and C crashes 
than daylight. More KAB crashes occurred during adverse 
weather conditions. Morning peak hours had a lower percentage 
of C crashes than off-peak and evening peak hours. Weekends 
experienced more C and KAB crashes than weekdays. The 
proportion of KAB and C crashes in urban areas was higher than in 
rural areas. Mountainous terrain had a higher percentage of KAB 
and C crashes than rolling and flat terrain. Freeway segments with 
AADT< 50,000 vehicles per day (vpd) had a higher proportion of C 
crashes than segments with AADT ≥ 50,000 vpd.

Methodology
A two-step approach was used to evaluate factors that influence the 
severity of crashes near exit ramps. First, crashes were grouped into 
clusters using LCCA to reduce heterogeneity in the data. Therefore, 
crash clusters were defined as groups of crashes with similar charac-
teristics. Second, the PPO model was fit to each cluster. The PPO 
model accounts for the natural ranking between severity categories: 
KAB, C, and PDO. Also, the PPO model relaxes the proportional odds 
(PO) assumption that the effect of variables is the same across severity 
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Table 1. Descriptive Statistics of the Crashes Near Exit Ramps

    PDO crashes C crashes KAB crashes

Total  Variable  Levels Count % Count % Count %
Alcohol No 2,469 72 642 19 342 10 3,453

Yes 61 69 20 23 7 8 88

Older driver involved No 1,480 72 387 19 176 9 2,043

Yes 1,050 70 275 18 173 12 1,498

Teen driver involved No 1,974 71 529 19 258 9 2,761

Yes 556 71 133 17 91 12 780

Truck involved No 2,360 72 611 19 319 10 3,290

Yes 170 68 51 20 30 12 251

Crash type
 
 
 

Single-vehicle 704 68 203 20 127 12 1,034

Angle 144 66 54 25 20 9 218

Rear-end 1,189 70 343 20 173 10 1,705

Sideswipe 493 84 62 11 29 5 584

Light condition
 

Daylight 1,975 73 493 18 248 9 2,716

Nighttime 555 67 169 20 101 12 825

Weather
 

Clear 2,137 71 570 19 285 10 2,992

Adverse 393 72 92 17 64 12 549

Time of day
 
 

Off-peak hours 1,721 72 473 20 197 8 2,391

Morning peak hours 341 73 69 15 59 13 469

Evening peak hours 468 69 120 18 93 14 681

Day 
 

Weekday 1,978 72 512 19 262 10 2,752

Weekend 552 70 150 19 87 11 789

Area type
 

Rural 110 77 21 15 12 8 143

Urban 2,420 71 641 19 337 10 3,398

Horizontal alignment Straight 1,887 72 470 18 271 10 2,628

Curve 643 70 192 21 78 9 913

Terrain
 
 

Flat 181 74 48 20 16 7 245

Rolling 2,220 72 569 18 308 10 3,097

Mountainous 129 65 45 23 25 13 199

Speed limit (mph) < 55 1,091 70 315 20 156 10 1,562

≥ 55 1,439 73 347 18 193 10 1,979

Shoulder width (ft)
 

< 4 376 70 115 22 43 8 534

4 – 10 1,332 72 339 18 191 10 1,862

>10 822 72 208 18 115 10 1,145

AADT (vpd)
 

< 50,000 949 72 255 19 118 9 1,322

≥ 50,000 1,581 71 407 18 231 10 2,219
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levels.13 The PPO model assumes that only a subset of variables in the 
model violates the PO assumption. Given the imbalanced distribution 
of KAB, C, and PDO crashes within the dataset, the PPO model was 
fit using the bootstrap resampling method.

Latent Class Clustering Analysis
LCCA assumes that data originates from a model of mixed 
probability distributions, and there is a latent variable separating 
the data into homogeneous and mutually exclusive subgroups.14 In 
general, LCCA estimates an observation’s probability to be allocated 
to a homogeneous group.15 The Bayes rule was applied to calculate 
the probability of crash belonging to latent class k (posterior 
membership probability):

                Рxk Рyl |xkР xk|yl = ————— (1)                    Рyl

where
Yl is one of the L (1≤ l ≤ L) observed variables,
X is a latent variable, 
k (k =1,2,…..K) is a latent class,
Рyl is the probability of obtaining response variable Yl,

 Рxk is the prior probability of being in cluster k,
 Рyl |xk is the conditional probability that a crash has response 
pattern Yl (y1,…..yl), given it is in the k class of latent variable X.
The optimum number of clusters in LCCA was selected using 

measures indicating the accuracy improvements in the model for 
assigning crashes to clusters.16 The accuracy measures used include 
Bayesian Information Criteria (BIC), Akaike Information Criterion 
(AIC), Consistent Akaike Information Criterion (CAIC), and 
entropy-based measures. The number of clusters associated with 
low AIC, BIC, CAIC, and the entropy criterion value greater than 
0.9 was considered to have the most relevant results.17

Partial Proportional Odds Model
The PPO model was derived by defining an unobserved latent 
variable U as a linear function for each crash such that:

U = βX + ε (2)

where X is a vector of independent variables determining 
a discrete ordering for each crash, β is a vector of estimable 
parameters, and ε is the random disturbance term. Using Equation 
3, the observed severity level y for each observation was defined as:

450 CRASHES450 CRASHES
OCCUR EVERY DAY AS A RESULT OFOCCUR EVERY DAY AS A RESULT OF

RED-LIGHT RUNNERS

Join the growing number of agencies 

fighting to bring this number down to zero.

Visit iteris.com/RLR to learn more
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y1 = 1 (PDO) if U ≤ μ1 

y2 = 2 (C) if μ1 < U ≤ μ2 

y3 = 3 (KAB) if μ2 < U (3)

where μ1, μ2, and μ3 are estimable thresholds that define y1, y2, and 
y3. The probability of a crash severity level in the PPO model was 
calculated as: 

                       exp(Xpiβp + Xqiβq – μj)Р (y1> j) = —————————————       j =1,.. J–1 (4)
                    1 + exp(Xpiβp + Xqiβq – μj)

where
βp is a vector of parameter estimates that do not violate the PO 
assumption,
βq is a vector of parameter estimates that violate the PO 
assumption,
 Xpi and Xqi are vectors of independent variables that violate 
and do not violate the PO assumption, respectively. Other 
variables were defined in Equation 2 for the ith crash with 
severity j from J severity levels.
A graphical test proposed by Harrel was used to identify 

variables violating proportional assumption (if any).18 Results 
of the PPO model were interpreted using the odds ratio (OR), 
calculated as the exponential of the estimated mean β. An OR 
of 1.0 indicates that the variable has no effect on crash severity. 
An OR > 1.0 and OR < 1.0 indicates a 100(OR – 1) percent 
increase and a 100(OR – 1) percent decrease in the odds of severe 
outcomes, respectively.

Bootstrap Resampling
The bootstrap resampling method was applied to resolve the 
imbalance problem caused by a higher percentage of PDO crashes 
than C and KAB crashes. The bootstrap method estimates the 
coefficients and standard errors by repeatedly and randomly 
sampling subsets of data from the original dataset to reduce bias 
that can be caused by imbalanced data in parameter and standard 
errors of the model’s estimates.19 Although the conventional 
bootstrapping approach involves drawing a sample randomly and 
evenly with replacement, this study divided the sample into three 
datasets (KAB, C, and PDO crashes) and applied the method 
on each subset. Then, n samples (where n is the number of PDO 
crashes) were randomly drawn from all groups in each bootstrap 
replication. The samples were then joined into a single dataset 
with a balanced number of crash severity levels. The procedure of 
drawing samples of n was repeated 1000 times, and the estimates 
of variables in each repetition were recorded. The number of 
repetitions (i.e., 1,000) was arbitrarily selected as the optimum 
number to enable measuring of the model performance while 
balancing the computation time.

Results

Crash Clusters
Crashes near exit ramps were clustered using variables listed in 
Table 1. The maximum number of possible clusters investigated 
was seven, assuming that the sample size (3,541 crashes) was not 
expected to have more than seven clusters. As shown in Figure 1, 
the performance measures (BIC, AIC, and CAIC) were slightly 
decreasing from three clusters to seven clusters indicating the 
insignificant change in the information criteria when more than 
two clusters were considered. The entropy was highest (0.94) when 
data were subdivided into two clusters. Therefore, crashes near exit 
ramps were divided into two clusters.

Figure 1. Determination of the Optimum Number of Crash Clusters 

Figure 2 illustrates the distribution of variables in the two clusters. 
Cluster A was defined as “single-vehicle crashes or crashes involving 
older drivers” because approximately 95 percent and 99 percent of 
the crashes in this cluster involved a single vehicle and older drivers, 
respectively. Cluster B was defined as “multi-vehicle crashes” as about 
99 percent of the crashes in this cluster involved at least two vehicles. 

Figure 2. Distribution of the Variables in All Crashes and Cluster A and B
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Factors Associated with Severity of Crashes
Table 2 presents the results of the PPO model fitted to all crashes, 
Clusters A and B. The table shows the estimates of the PPO model 
variables when comparing C crashes with PDO crashes (Threshold 
1) and when comparing KAB crashes with C crashes (Threshold 
2). The estimates of variables that violated the PO assumption were 
different for Threshold 1 and Threshold 2. This indicated that a 
variable had a different effect on the risk of crash severity levels. 
Variables that followed the PO assumption had the same effect 
between different levels of crash severity. Figure 3 shows the ORs of 
significant variables of the PPO models.

All Crashes
The following variables were significant at the 95 percent CI in 
the model fitted to all crashes: truck involvement, light condition, 
weather condition, time of day, day of the week, area type, 
horizontal alignment, terrain, shoulder width, and AADT. Crashes 
involving trucks had a 37 percent higher risk of C crashes than 
crashes not involving trucks. Adverse weather was associated 
with a 59 percent and 125 percent increased risk of C crashes and 
KAB crashes, respectively. Urban areas had a 54 percent and 26 
percent higher risk of C crashes and KAB crashes, respectively. 
Mountainous terrain had a 39 percent higher risk of C and KAB 

Table 2. Results of the PPO models 

 Var.  Levels

All crashes Cluster A Cluster B
Threshold 1 Est. Threshold 2 Est. Threshold1 Est. Threshold 2 Est. Threshold 1 Est. Threshold 2 Est.

Mn
95% CI

Mn
95% CI

Mn
95% CI

Mn
95% CI

Mn
95% CI

Mn
95% CI

2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5

Alcoholb No*                    

Yes 0.21 -0.15 0.57 0.21 -0.15 0.57 0.52 0.10 0.95 0.73 0.27 1.18 1.32 0.63 2.01 1.32 0.63 2.01

Teen driver 
inv.b

No*                                  

Yes 0.04 -0.11 0.20 0.04 -0.11 0.20 0.00 -0.19 0.19 0.00 -0.19 0.19 -0.12 -0.31 0.07 -0.12 -0.31 0.07

Truck inv.c No*                                    

Yes 0.31 0.06 0.57 0.31 0.06 0.57 -0.18 -0.59 0.24 -0.18 -0.59 0.24 -0.73 -0.97 -0.49 -1.11 -1.42 -0.80

Light 
cond.a

Daylight*                                    

Nighttime -0.34 -0.51 -0.18 -0.65 -0.85 -0.45 0.41 0.23 0.60 0.41 0.23 0.60 -0.06 -0.31 0.18 -0.06 -0.31 0.18

Weath.a,b Clear*                                    

Adverse 0.46 0.24 0.69 0.81 0.49 1.13 0.70 0.48 0.93 1.23 0.94 1.53 0.27 -0.02 0.55 0.75 0.21 1.29

Time  
of day

Off-PH*                                    

Morn. PH 0.54 0.35 0.72 0.54 0.35 0.72 0.28 -0.04 0.60 -0.32 -0.68 0.03 0.38 0.17 0.59 0.38 0.17 0.59

Even. PH 0.45 0.27 0.62 0.45 0.27 0.62 0.11 -0.20 0.42 0.01 -0.31 0.33 0.55 0.38 0.72 0.55 0.38 0.72

Day of  
the week

Weekday*                                    

Weekend 0.17 0.02 0.32 0.17 0.02 0.32 -0.05 -0.24 0.14 -0.05 -0.24 0.14 -0.03 -0.24 0.18 -0.03 -0.24 0.18

Area typea Rural*                                    

Urban 0.43 0.13 0.73 0.23 -0.09 0.56 0.44 0.12 0.76 0.44 0.12 0.76 0.32 -0.17 0.81 0.32 -0.17 0.81

HZ align.
Straight*                                    

Curve 0.31 0.16 0.46 0.31 0.16 0.46 -0.16 -0.34 0.01 -0.16 -0.34 0.01 0.12 -0.07 0.31 0.12 -0.07 0.31

Terrainb

Rolling*                                    

Flat -0.19 -0.47 0.08 -0.19 -0.47 0.08 0.44 0.11 0.77 0.62 0.24 1.01 -0.08 -0.46 0.31 -0.28 -0.71 0.16

Mount. 0.33 0.07 0.59 0.33 0.07 0.59 -0.08 -0.53 0.36 -0.52 -0.91 -0.13 -0.15 -0.48 0.18 0.41 -0.17 0.99

Speed 
limit (mph)

< 55*                                    

≥ 55 0.08 -0.07 0.23 0.08 -0.07 0.23 -0.03 -0.21 0.15 -0.03 -0.21 0.15 -0.09 -0.27 0.10 -0.09 -0.27 0.10

Shoulder 
width (ft)

4 – 10*                                    

< 4 -0.33 -0.54 -0.11 -0.33 -0.54 -0.11 0.05 -0.28 0.39 0.42 0.09 0.75 0.02 -0.20 0.25 0.02 -0.20 0.25

> 10 -0.13 -0.29 0.02 -0.13 -0.29 0.02 0.00 -0.22 0.21 0.16 -0.06 0.38 -0.08 -0.27 0.11 -0.08 -0.27 0.11

AADT
< 50,000*                                    

≥ 50,000 -0.37 -0.54 -0.21 -0.37 -0.54 -0.21 -0.14 -0.33 0.05 -0.14 -0.33 0.05 -0.05 -0.24 0.14 0.38 0.11 0.64

Constant   0.27 -0.07 0.60 1.47 1.13 1.81 -0.58 -0.95 -0.21 0.77 0.40 1.14 1.06 0.54 1.58 2.29 1.77 2.82

Note: a,b,c variables that violated proportional odds assumption in all crashes, cluster A, cluster B, respectively; * base category, Mn  means mean, CI means confidence interval, inv. means 
involved, HZ means horizontal, PH means peak hours, cond. means condition, align. means alignment, Morn. means morning, Even. means  evening, weath. means weather, Bold numbers 
show significant values at the 95% CI.
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crashes than rolling terrain. The results could be related to Wang 
et al.2 findings that up- and down-grades increase the risk of 
severe crashes near diverge areas. Results indicated that nighttime, 
shoulder width < 4 ft, and AADT ≥ 50,000 vpd were associated with 
the decreased risk of C and KAB crashes. Nighttime was associated 
with the decreased risk of C crashes and KAB crashes by 29 percent 
and 48 percent, respectively. Mainline segments near exit ramps 
with AADT ≥ 50,000 had a 31 percent lower risk of C and KAB 
crashes than segments with AADT< 50,000 vpd.

Cluster A: Crashes Involving Single Vehicles or Older Drivers 
Variables significant at the 95 percent CI in the model fitted to 
Cluster A include alcohol use, light condition, weather conditions, 
area type, terrain, and shoulder width. The effect of alcohol on the 
crash severity varied across severity levels. The risk of C and KAB 
crashes was 69 percent and 107 percent higher when an intoxicated 
driver was involved, respectively. Nighttime was associated with a 51 
percent higher risk of C and KAB crashes than daylight. The risk of 
C crashes was 102 percent higher during adverse weather conditions 
than during clear weather conditions. Similarly, the risk of KAB 
crashes was 243 percent higher during adverse weather conditions.

Urban areas were associated with a 55 percent higher risk of 
C and KAB crashes than rural areas. Compared to crashes that 
occurred on a rolling terrain, crashes on flat terrain had a 55 
percent and 86 percent higher likelihood of being C and KAB 
crashes, respectively. Mountainous terrain showed a 41 percent 
lower risk of KAB crashes than rolling terrain. The high risk 
of C and KAB crashes on flat terrain could be associated with 
higher driving speeds on flat terrains. Since the roadway grade in 
mountainous terrain is steeper than that of rolling terrain, reduced 
vehicle speed could serve as a reason for the lower risk of KAB 
crashes on mountainous terrain. Segments with shoulder width less 
than 4 ft had a 52 percent higher likelihood of KAB crashes than 
segments with 4-10-foot shoulders.

Cluster B: Multi-vehicle Crashes
Variables significant at the 95 percent CI in the model fitted 
to Cluster B include alcohol use, truck involvement, weather 
condition, time of day, and AADT. Results indicated that the risk of 
C and KAB crashes was 274 percent higher when the crash involved 
an intoxicated driver. The effect of truck involvement varied across 
the severity levels. The risk of C and KAB crashes was 52 percent 
and 67 percent lower when a truck was involved in a crash. Similar 
counterintuitive results were observed in the study on crash severity 
near diverge areas in Florida.2 The risk of KAB crashes was 111 
percent higher during adverse weather. Morning peak hours had a 
46 percent higher risk of C crashes than off-peak hours. Similarly, 
evening peak hours had a 73 percent higher risk of C crashes 
than off-peak hours. Segments with AADT ≥ 50,000 vpd had a 
46 percent higher risk of KAB crashes than segments with AADT 
< 50,000 vpd.

Comparison of Results Across All Crashes, Clusters A and B
The following significant variables had different coefficient signs 
across the three crash datasets: truck involvement, lighting 
condition, terrain, shoulder width, and AADT. The risk of C and 
KAB crashes when a truck was involved was higher for all crashes 
and lower for Cluster B. Overall, crashes involving trucks are 
expected to be severe, considering their size. The reason for crashes 
in Cluster B involving trucks to be less severe is not apparent and 
seeks an in-depth investigation.

When considering all crashes, nighttime was associated with 
a lower likelihood of C and KAB crashes. Conversely, nighttime 
crashes in Cluster A were more likely to be C or KAB crashes. 
The lower severity of nighttime crashes in all crashes dataset may 
be due to drivers’ cautiousness during nighttime. However, as 
expected, nighttime crashes in Cluster A were severe, possibly due 
to diminished vision of older drivers. The provision of lighting near 
exit ramps may improve safety, particularly for older drivers. 

Figure 3: Odds Ratios of the Significant Variables in (a) Threshold 1 and (b) Threshold 2 of the PPO models

w w w . i t e . o r g      S e p t e m b e r  2 0 2 1     47



Compared to rolling terrain, mountainous terrain significantly 
influenced the likelihood of C and KAB crashes in all crashes and 
PDO crashes in Cluster A crashes. Compared to mountainous 
terrain, rolling terrain provides a good preview of the roadway to 
make last-minute maneuvers, if necessary, and avoid imminent 
collisions. Nevertheless, crashes in Cluster A occurring in 
mountainous terrain may be less likely to be severe considering the 
defensive nature of older drivers.

Narrow shoulders were associated with a lower likelihood of C 
and KAB crashes in the all crash dataset and a higher likelihood 
of KAB crashes in the Cluster A crashes. Wider shoulders provide 
more clearance for drivers to take corrective actions after making 
an errant maneuver and avoid running off the roadway and 
encountering a harmful roadside object or embankment. Thus, it 
is expected that crashes in Cluster A at locations with narrower 
shoulders to be severe. The opposite observation made in all crashes 
indicates that crashes in Cluster B might neutralize the effect 
of shoulder width on crashes in Cluster A when analyzing the 
entire dataset. While higher AADT was associated with a reduced 
likelihood of C and KAB crashes in all crashes, it was associated 
with an increased risk of KAB crashes in Cluster B. The aggressive 
driving behavior of other (not older) drivers may explain the high 
severity of crashes at locations with high traffic volumes.

For all the three datasets used in the study, crashes under 
inclement weather conditions were more likely to be severe. The 
impact of inclement weather was at the highest in Cluster A. Adverse 
weather conditions are associated with reduced sight distance and 
friction between the tire and the roadway surface. Considering 
this situation and older drivers having a longer reaction time, the 
likelihood of severe crashes in Cluster A may increase. A majority 
of significant variables influenced crash severity in the all crashes 
and either of the clusters except for alcohol involvement. Results 
indicated that the risk of C and KAB crashes was 274 percent higher 
when the crash involved an intoxicated driver.

Conclusions
Freeway exit ramps have been long considered crash-prone locations. 
The objective of this study was to investigate factors influencing 
the severity of crashes near exit ramps. Also, the study aimed to 
show factors that affect specific crash categories near exit ramps 
that cannot be identified by analyzing all crashes in one model. 

The analysis was based on crashes that occurred near exit ramps in 
North Carolina from 2013 to 2017. The crash analysis was performed 
using LCCA and PPO model. The LCCA divided crashes into 
homogeneous subgroups, and the PPO model identified variables 
with significant influence on crash severity. Also, a bootstrap 
resampling approach was used when fitting the PPO model to 
account for the imbalance of data in different crash severity levels.

The study identified two crash clusters: single-vehicle crashes or 
those involving older drivers (Cluster A) and multi-vehicle crashes 
(Cluster B). The variables with significant influence on all crashes 
near exit ramps include: truck involvement, light condition, weather 
condition, time of day, day of the week, area type, horizontal 
alignment, terrain, shoulder width, and AADT. The variables that 
significantly affected the severity of crashes in Cluster A include 
alcohol use, light condition, weather conditions, area type, terrain, 
and shoulder width. The variables that significantly influenced the 
severity of crashes in Cluster B include alcohol, truck involvement, 
weather condition, time of day, and AADT.

In addition to identifying factors influencing the severity of 
crashes near exit ramps, the results showed that categorizing the 
crashes near exit ramps into homogenous groups helps identify 
patterns that would not have been identified by only analyzing the 
entire dataset. With specific attributes leading to different crash 
severities, homogenous groups enhance the process of identifying 
measures for mitigating severe crashes near exit ramps by focusing 
on specific contributing variables in crash clusters. The study results 
and methodology could potentially be used by agencies when 
devising methods and policies to reduce the severity of crashes 
near exit ramps. Some of the potential countermeasures may 
include provision of sufficient lighting, advance warning messages 
to drivers during inclement weather conditions, and adequate 
shoulder width to the extent possible. itej
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