

1200 New Jersey Ave., SE Washington, D.C. 20590

December 22, 2010

In Reply Refer To: HSST/B-213

Mr. Daren Copeland Varley and Gulliver Limited Alfred Street, Sparkbrook Birmingham, UK B12 8JR

Dear Mr. Copeland:

This letter is in response to your request for Federal Highway Administration (FHWA) acceptance of a roadside safety system for use on the National Highway System (NHS).

Name of system: Proprietary VGAN 300 Aluminum Permanent Bridge Barrier Type of system: Post and Tube Railing Mounted on Reinforced Concrete Curb Test Level: NCHRP Report 350 Test Level 4 (TL-4) Testing conducted by: Texas Transportation Institute (TTI) Date of Request: September 30, 2010 Drawing Designator: SBA07d

You requested that we find this system acceptable for use on the NHS under the provisions of National Cooperative Highway Research Program (NCHRP) Report 350 "Recommended Procedures for the Safety Performance Evaluation of Highway Features." (NCHRP Report 350)

Requirements

Roadside safety systems should meet the guidelines contained in the NCHRP Report 350. FHWA memorandum "<u>ACTION</u>: Identifying Acceptable Highway Safety Features" of July 25, 1997, provides further guidance on crash testing requirements of longitudinal barriers.

Decision

The following device was found acceptable, with details provided below:

• VGAN 300 Aluminum Permanent Bridge Barrier

Description

The Varley & Gulliver proprietary aluminum bridge railing system was mounted on a reinforced concrete curb. Overall length of the entire system was 29.3 m (96.0 ft) with posts spaced at 2.44 m (8.0 ft) for a total of 12 bays, 13 posts. The posts were cast A444.0 T4 aluminum and were anchored with four M20 stainless steel bolts. Extruded 6082 T6 aluminum tubes were used

for the railing. They were a flattened elliptical shape. The two lower rail elements were 152 mm (6.0 inches) in the long direction and 98 mm (3.8 inches) in the short direction and 5 mm (0.2 inch) wall thickness. The upper or pedestrian rail was 114 mm (4.5 inches) in the long direction and 85 mm (3.3 inches) in the short direction with 3 mm (0.12 inch) wall thickness. Splices were achieved with 6 mm (0.24 inch) wall thickness internal tubular sections in the main rails and 4 mm (0.16 inch) wall thickness internal tubular sections in the upper or pedestrian rail. The extruded rail elements had key way section on the lower back side that allow bolts to be placed in the key way and provides longitudinal adjustment.

The concrete foundation was specified to be 5800 psi and was 6318 psi at the time of the test and was anchored to the apron with "L" shaped bars welded to existing rebar. All rebar was specified to be 60 ksi. Steel reinforcement bar stirrups, 16 mm (0.6 inch) diameter, were placed at 150 mm (6.0 inches) on center with eight spaces under the post location and four spaces at 310 mm (12.2 inches) on center between the posts. There were 12 evenly spaced 16 mm (0.6 inch) diameter longitudinal bars in the foundation. Threaded inserts were placed in the concrete with templates. After the posts were bolted into the inserts, an epoxy grout pad was cast at each post support location. The four anchor bolts on one post upstream of impact, the impact post, and one post downstream of impact were instrumented with strain gages to measure force transmitted to the bolts.

Details of the VGAN 300 bridge rail test article are enclosed within this correspondence.

Crash Testing

The Proprietary VGAN 300 Aluminum Permanent Bridge Barrier was crash tested at the test facilities at TTI Proving Grounds Riverside Campus according to the following NCHRP Report 350 TL-4 tests for the evaluation of longitudinal barriers as described below.

NCHRP Report 350 Test Designation 4-10 with an 820 kg small passenger vehicle impacting the critical impact point (CIP) of the length-of-need (LON) of the bridge rail while traveling at an impact speed and angle of 100 km/h and 20 degrees. The purpose of this test is to evaluate the overall performance of the LON section, in general, and occupant risks, in particular.

NCHRP Report 350 Test Designation 4-11 with a 2000 kg pickup truck impacting the CIP of the LON while traveling at an impact speed and angle of 100 km/h and 25 degrees. The test is intended to evaluate strength of the section in containing and redirecting the 2000P vehicle.

NCHRP Report 350 Test Designation 4-12 with an 8000 kg single-unit box-van truck impacting the CIP of the LON while traveling at an impact speed and angle of 80 km/h and 15 degrees. This test is intended to evaluate the strength of the LON in containing and redirecting the heavy test vehicle.

The target CIP for each of the aforementioned tests was determined according to the information provided in NCHRP Report 350. For the test with the small car and the pickup, the CIP was determined to be at post 4. Post 4 is upstream of the first splice in the system. The CIP for the test with the single-unit box-van truck was determined to be 1 ft downstream of post 4. Crash Test summaries of each of these tests are enclosed within this correspondence.

Findings

The FHWA concurs to the submitted physical crash testing of the Proprietary VGAN 300 Aluminum Permanent Bridge Barrier to the proposed TL-4 designation. Therefore, the Proprietary VGAN 300 Aluminum Permanent Bridge Barrier meets the TL-4 impact conditions and evaluation criteria for a NCHRP 350, and is acceptable for use on the NHS when requested by a highway agency.

Please note the following standard provisions that apply to FHWA letters of acceptance:

- This acceptance is limited to the crashworthiness characteristics of the system and does not cover their structural features, nor conformity with the Manual on Uniform Traffic Control Devices.
- Any changes that may adversely influence the crashworthiness of the system will require a new acceptance letter.
- Should the FHWA discover that the qualification testing was flawed, that in-service performance reveals unacceptable safety problems, or that the system being marketed is significantly different from the version that was crash tested, we reserve the right to modify or revoke our acceptance.
- You will be expected to supply potential users with sufficient information on design and installation requirements to ensure proper performance.
- You will be expected to certify to potential users that the hardware furnished has essentially the same chemistry, mechanical properties, and geometry as that submitted for acceptance, and that it will meet the crashworthiness requirements of the FHWA and the NCHRP Report 350.
- To prevent misunderstanding by others, this letter of acceptance is designated as number B-213 and shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed at our office upon request.
- This acceptance letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder. The acceptance letter is limited to the crashworthiness characteristics of the candidate system, and the FHWA is neither prepared nor required to become involved in issues concerning patent law. Patent issues, if any, are to be resolved by the applicant.

Sincerely yours,

Michael & Ful

Michael S. Griffith Director, Office of Safety Technologies Office of Safety

Enclosures

Dean Alberson:

Date:

2010-05-03

ITEM NO.	PART NAME	QTY.
1	Rebar Stirrup	184
2	Rebar, L	66
3	Rebar, 16	1
4	Rebar, 12	1
5	Main rail joint	6
6	Main rail 9735	4
7	Main rail 7295	2
8	Main rail 3440	2
9	Rail post	13
10	Pedestrian rail joint	3
11	Pedestrian rail 9735	2

ITEM NO.	PART NAME	QTY.
12	Pedestrian rail 7295	1
13	Pedestrian rail 3440	1
14	Rail nut	54
15	Hex bolt M16 x 45	52
16	Nylon washer, M16	78
17	Stainless steel washer, M16	78
18	Spring washer, M16 for rail bolt	78
19	Stainless steel washer, M20 for anchor bolts	52
20	Nylon washer, M20 for anchor bolt	52
21	Hex bolt M20 x 100	52
22	Hex bolt M16 x 35	26
26	Hex bolt M20 x 100	52
27	B18.2.3.6M - Heavy hex bolt M20 x 2.5 x 8046N	52
T	he Texas A&M University System	

Revisi	0115:		ie rea	us A&M Univ Tex	• •		stitute
No.	Date	By	Chk	Texas Transportation Institute College Station, Texas 77843			77843
1.				Date	Drawn By	Scale	Sheet No
2.		:		2010-02-22	JLH	1:10	2 of 10
3.				Project No	b .	Mater	ials
4.		:		401761-VC	JL.		
5.		;		VGL Brid	ge Rail		

1:\2009-2010\401761-VCil\\solitNVorks\Drawings\V & Ci Rail 2010-03-03

53

.

Revisi	ons:		The Texas A&M University System Texas Transportation Institute				
No.	Date	By	\mathbf{Chk}	Co	llege Station	1, Texas	77843
1.		-		Date	Drawn By	Scale	Sheet No.
2.				2010-02-22	JLH	1:15	7 of 10
3.				Project No	р.	Existing	rebar
4.				401761-VC	L	_	
5.				VGL Brid	ge Rail		

.

PLAN VIEW OF CAR IMPACT

PLAN VIEW OF TRUCK IMPACT

		T	ne Texa	is A&M Univ	ersity Systen	n	
				Texas Transportation Institute College Station, Texas 77843			
No. 1.	Date	By	Chk	Date	•		Sheet No.
2.				2010-2-22	JLH	1:130	9 of 10
3.				Project No	Э.	Impact	1 & 2
4.				401761-VC	JL .	-	
5.				VGL Bridg	e Rail		
Appro	oved:			Signature:			Date:
Dean	Alberson:						

PLAN VIEW OF BOX VAN IMPACT

The Texas A&M University System							
Revisions:			Texas Transportation Institute				
No.	Date	By	Chk	College Station, Texas 77843			7843
1.				Date	Drawn By	Scale	Sheet No.
2.				2010-2-22	JLH	1:130	10 of 10
3.				Project No	о.	Impa	ct 3
4.				401761-VC	GL		
5.				VGL Bridg	e Rail		
Appro	ved:			Signature:			Date:
Dean	Alberson:						

General Information		Impact Co
Test Agency	Texas Transportation Institute	Speed
Testing Standard Test No		Angle
Test No.		Location
Date		Exit Cond
Test Article		Speed
Туре	Bridge Rail	Angle
Name	VGAN 300 Aluminum Bridge Parapet	Occupant
Installation Length	30.3 m	Impact \
Material or Key Elements	3 horizontal extruded 6082 T6 aluminum	Longit
	tubes sections on A444.0 T4 aluminum	Latera
	posts spaced at 2.44 m	Ridedov
Soil Type and Condition	Concrete Bridge Deck, Dry	Longit
Test Vehicle		Latera
Type/Designation	820C	THIV
Make and Model	1995 Geo Metro	PHD
Curb	837 kg	ASI
Test Inertial	845 kg	Max. 0.05
Dummy	75 kg	Longit
Gross Static	920 kg	Latera
	17-1	Vertic

npact Conditions	
Speed	101.9 km/h
Angle	19.7 degrees
Location/Orientation	
Exit Conditions	
Speed	88.4 km/h
Angle	
Occupant Risk Values	~
Impact Velocity	
Longitudinal	3.7 m/s
Lateral	
Ridedown Accelerations	
Longitudinal	-6.1 G
Lateral	
THIV	
PHD	9.2 G
ASI	1.72
Max. 0.050-s Average	
Longitudinal	-6.8 G
Lateral	
Vertical	2.2 G

Post-Impact Trajectory

i ost impact indjectory	
Stopping Distance	70.1 m
Vehicle Stability	
Maximum Yaw Angle	432 degrees
Maximum Pitch Angle	
Maximum Roll Angle	15 degrees
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	155 mm
Permanent	5 mm
Working Width	159 mm
Vehicle Damage	
VDS	01RFQ4
CDC	01FREW3
Max. Exterior Deformation	220 mm
Max. Occupant Compartment	
Deformation	30 mm

Figure 10. Summary of results for NCHRP Report 350 test 4-10 on the VGAN 300 aluminum bridge rail.

General Information		Impact Conditions	
Test Agency	Texas Transportation Institute	Speed	100.7 km/h
Testing Standard Test No	NCHRP Report 350 4-11	Angle	24.4 degrees
Test No.	401761-VGL2	Location/Orientation	
Date	2010-04-28	Exit Conditions	8
Test Article		Speed	68.5 km/h
Туре	Bridge Rail	Angle	7.2 degrees
Name	VGAN 300 Aluminum Bridge Parapet	Occupant Risk Values	Ū
Installation Length	30.3 m	Impact Velocity	
Material or Key Elements	3 horizontal extruded 6082 T6 aluminum	Longitudinal	6.6 m/s
	tubes sections on A444.0 T4 aluminum	Lateral	
	posts spaced at 2.44 m	Ridedown Accelerations	
Soil Type and Condition	Concrete Deck, Dry	Longitudinal	18.2 G
Test Vehicle		Lateral	12.6 G
Type/Designation	2000P	THIV	35.7 km/h
Make and Model	1997 Chevrolet C2500 Pickup	PHD	9.9 G
Curb	2174 kg	ASI	1.48
Test Inertial	2083 kg	Max. 0.050-s Average	
Dummy	No dummy	Longitudinal	10.7 G
Gross Static	2083 kg	Lateral	
	2.50	Vertical	5.7 G

Post-Impact Trajectory

Stopping Distance	40.2 m dwpstrm
	1 m twd traffic
Vehicle Stability	
Maximum Yaw Angle	114 degrees
Maximum Pitch Angle	19 degrees
Maximum Roll Angle	27 degrees
Vehicle Snagging	
Vehicle Pocketing	
Test Article Deflections	
Dynamic	
Permanent	
Working Width	520 mm
Vehicle Damage	
VDS	01RFQ4
CDC	01RFEW3
Max. Exterior Deformation	600 mm
Max. Occupant Compartment	
Deformation	

Figure 17. Summary of results for NCHRP Report 350 test 4-11 on the VGAN 300 aluminum bridge rail.

General Information

Testing Standard Test No. NCHRP Report 350 4-12 Test No. 401761-VGL3 Date 2010-04-29 Test Article Type. Bridge Rail Name VGAN 300 Aluminum Bridge Parapet Installation Length 30.3 m Material or Key Elements 3 horizontal extruded 6082 T6 aluminum tubes sections on A444.0 T4 aluminum posts spaced at 2.44 m Soil Type and Condition Concrete Deck, Dry Test Vehicle Type/Designation. 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial. 7951 kg Dummy No dummy Gross Static. 7951 kg	Test Agency	Texas Transportation Institute
Test No. 401761-VGL3 Date 2010-04-29 Test Article Bridge Rail Type Bridge Rail Name VGAN 300 Aluminum Bridge Parapet Installation Length 30.3 m Material or Key Elements 3 horizontal extruded 6082 T6 aluminum tubes sections on A444.0 T4 aluminum posts spaced at 2.44 m Soil Type and Condition Concrete Deck, Dry Test Vehicle Type/Designation Type/Designation 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial 7951 kg Dummy No dummy		
Date 2010-04-29 Test Article Type Type Bridge Rail Name VGAN 300 Aluminum Bridge Parapet Installation Length 30.3 m Material or Key Elements 3 horizontal extruded 6082 T6 aluminum tubes sections on A444.0 T4 aluminum posts spaced at 2.44 m Soil Type and Condition Concrete Deck, Dry Test Vehicle Type/Designation 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial 7951 kg Dummy No dummy		
Test Article Type		
Name VGAN 300 Aluminum Bridge Parapet Installation Length 30.3 m Material or Key Elements 3 horizontal extruded 6082 T6 aluminum tubes sections on A444.0 T4 aluminum posts spaced at 2.44 m Soil Type and Condition Concrete Deck, Dry Test Vehicle 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial 7951 kg Dummy No dummy		
Name VGAN 300 Aluminum Bridge Parapet Installation Length 30.3 m Material or Key Elements 3 horizontal extruded 6082 T6 aluminum tubes sections on A444.0 T4 aluminum posts spaced at 2.44 m Soil Type and Condition Concrete Deck, Dry Test Vehicle 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial 7951 kg Dummy No dummy	Type	Bridge Rail
Material or Key Elements 3 horizontal extruded 6082 T6 aluminum tubes sections on A444.0 T4 aluminum posts spaced at 2.44 m Soil Type and Condition Concrete Deck, Dry Test Vehicle Type/Designation Type/Designation 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial 7951 kg Dummy No dummy	Name	VGAN 300 Aluminum Bridge Parapet
tubes sections on A444.0 T4 aluminum posts spaced at 2.44 m Soil Type and Condition Concrete Deck, Dry Test Vehicle Type/Designation	Installation Length	30.3 m
Soil Type and Condition Concrete Deck, Dry Test Vehicle 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial 7951 kg Dummy No dummy	Material or Key Elements	tubes sections on A444.0 T4 aluminum
Type/Designation 8000S Make and Model 1999 International 4700 Curb 5647 kg Test Inertial 7951 kg Dummy No dummy	Soil Type and Condition	Concrete Deck, Dry
Make and Model	Test Vehicle	
Make and Model	Type/Designation	8000S
Test Inertial		
Test Inertial	Curb	5647 kg
Gross Static	Dummy	No dummy
	Gross Static	7951 kg

Impact Conditions

82.1 km/h
16.6 degrees
710 mm dwn
of post 4
Not obtainable
Not obtainable
3.9 m/s
3.4 m/s
4.4 G
6.5 G
19.8 km/h
0.42
3.7 G
3.6 G
2.7 G

Post-Impact Trajectory

· · · · · · · · · · · · · · · · · · ·	
Stopping Distance	40.2 m dwnstrm
	1 m twd traffic
Vehicle Stability	
Maximum Yaw Angle	17 degrees
Maximum Pitch Angle	14 degrees
Maximum Roll Angle	18 degrees
Vehicle Snagging	No
Vehicle Pocketing	
Test Article Deflections	
Dynamic	
Permanent	300 mm
Working Width	787 mm
Vehicle Damage	
VDS	01LFQ4
CDC	01LFEW3
Max. Exterior Deformation	50 mm
Max. Occupant Compartment	
Deformation	0 mm

Figure 23. Summary of results for NCHRP Report 350 test 4-12 on the VGAN 300 aluminum bridge rail.