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Abstract 

Municipalities and transportation departments 
devote considerable effort to collecting data— 
particularly in relation to road conditions. Many 
small municipalities do not have sufficient resources 
to collect data regularly. In larger municipalities, on 
the other hand, collecting field-based data may 
have negative impacts in terms of crew safety 
and traffic interruptions; data analytics could help 
reduce these negative impacts. In this study, data 
analytics is used to test if affordable and easy-to-
collect data can be used to predict future values of 
the Pavement Condition Index (PCI). North American 
transportation departments frequently use the PCI 
to assess road conditions. To calculate the PCI, 
transportation departments and municipalities must 
collect distress data and their severity levels. 

In this study, the Long-Term Pavement Performance 
(LTPP) database was used as the source of data.(1) 

Because the LTPP database does not include the PCI 
values of its road sections, the first step in the study 
was to develop a program to calculate the PCI from 
the distress values in the LTPP database. Next, a set 
of pavement attributes was selected—mainly based 
on the ease of collection and cost effectiveness. 
The researchers tested the potential importance 
of these attributes in predicting PCI using seven 
ranking algorithms and a heuristic feature-selection 
algorithm. 

Two types of decision trees were trained based on 
942 examples of asphalt roads. Using combinations 

of 14 attributes, a set of decision trees was 
developed to predict the level of PCI deterioration 
with an accuracy of more than 70 percent. Finally, 
the accuracy and confusion matrices of different 
decision trees were compared to test the impact 
of each attribute on prediction accuracy. This 
method can help municipalities and transportation 
departments identify the most significant attributes 
to accurately predict road performance indicators 
(PIs). 

Introduction 

Understanding and tracking PIs of roads, especially 
the physical PIs, is critical to a successful asset-
management plan. A better understanding of PIs 
helps decisionmakers schedule remedial actions, 
increase customer satisfaction, and be proactive in 
budget planning and risk assessment. 

Different PIs are used to assess the condition and 
remaining life of roads. Some of the most popular 
PIs include the PCI, International Roughness 
Index (IRI), Structural Condition Index (SCI), and 
Present Serviceability Index (PSI). Collecting data 
for these indices could be a challenge for smaller 
municipalities, which are usually restricted in 
terms of human and financial resources. For larger 
municipalities, in addition to costs, collecting field-
based data can have negative impacts on crew 
safety or traffic flow.(2) 

Data analytics can provide valuable support for 
the data-collection and prediction processes. 
Recently, the availability of increased amounts of 
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data and computational power and, on the other 
side, the variety of available analytics algorithms 
have enabled engineers to move from descriptive 
statistics and simplistic correlation analyses to more 
sophisticated analytics. Data-mining and machine-
learning techniques can detect patterns in large 
datasets, hence the growing use of analytics for 
different purposes in a variety of industries.(3) 

This paper demonstrates how machine-learning 
models can help municipalities predict the PCI values 
of roads using easy-to-collect and cost-effective 
attributes. Therefore, the rationale behind choosing 
attributes was not a conventional mechanistic or 
engineering reasoning. Rather, it was to find out if 
affordable and accessible data can do the same job. 
The scope of this paper is not limited to predicting 
the conditions of roads using data analytics. The 
authors also investigated the relative significance 
of a road’s attributes in its deterioration. This type of 
analysis can guide municipalities and transportation 
departments in crafting a more efficient data-
collection and -management policy. 

In this study, the PCI was chosen because it is 
commonly used by municipalities and transportation 
departments in North America. However, the same 
methodology can be used for analyzing other 
PIs, such as the IRI, SCI, and PSI. PCI values vary 
between 0 and 100. A PCI of 100 represents the best 
possible condition, and 0 represents the worst. Both 
ASTM and the Ontario Ministry of Transportation 
have produced detailed guidelines for calculating 
the PCI. Both sets of guidelines require collecting 
distress data, such as fatigue cracking, bleeding, 
edge cracking, rutting, longitudinal and transversal 
cracking, and raveling.(4,5) 

Related Work: Data and Analytics in Asset 
Management 

Without clear understanding of the value and 
role of datasets in analyzing asset conditions, 
municipalities might invest in collecting data that are 
not generating much value or relevant information. 
After surveying 50 transportation departments in 
the United States, Pantelias et al. reported that, in 
many cases, transportation agencies have created 
vast databases that do not necessarily supply useful 
information for decisionmaking.(6) Furthermore, 

they discovered that, in most transportation 
departments, data collection is still highly subjective 
and conventional. In other words, data are collected 
based on past practices and staff experience rather 
than solid rational analysis of relevance and value 
added. 

Limited research is available about how to define 
informative data to collect. Pantelias et al. proposed 
a framework for data collection that aims to 
support project selection for rehabilitation.(6) The 
study provided general guidelines and a framework 
based on literature reviews and survey results. The 
framework suggests that decisionmakers must 
study available and missing data and identify data 
that are necessary to collect. Another study by 
Woldesenbet et al. used a social-network-analysis 
approach to model the use of data in generating 
information and supporting decisionmaking in road 
management.(7) Using surveys and interviews to 
create networks of data interrelationships, they 
assessed how frequently a specific piece of data 
was used in decisionmaking. 

One of the areas of road asset management that 
could be improved by data analytics is deterioration 
modeling. Although deterioration modeling is 
an integral part of asset-management planning, 
many municipalities overlook it or use generic 
models. For instance, a recent study in Canada 
revealed that most small municipalities in Ontario 
did not incorporate a deterioration model in their 
asset-management analyses.(8) The same study 
reported that municipalities that paid attention 
to deterioration modeling mostly depended on 
deterministic deterioration curves to predict the 
conditions of their assets.(8) These deterioration 
curves have several pitfalls. First, they are 
deterministic—users have no guidelines on how 
to add variability to their values when conducting 
a probabilistic risk analysis. Second, these models 
are context insensitive; i.e., PCI deterioration curves 
predict future PCI values merely based on the length 
of time. These curves overlook other road attributes, 
such as pavement type, traffic volumes, and climate. 

Stochastic deterioration models do not have the 
disadvantages standardized deterioration curves 
have.(9) Markovian models, for example, study 
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and estimate deterioration based on probabilistic 
analysis. Nonetheless, they often disregard the 
history of deterioration and previous maintenance 
actions.(9–11) Additionally, they require longitudinal 
data, which are not easily available.(8,9) Data-analytics 
tools that learn or detect patterns from a large 
dataset can be a suitable alternative. Data analysis is 
a broad term that has been used to refer to a range of 
methods, from simple statistical analysis to 
machine-learning and data-mining techniques. In 
this summary report, data analytics specifically 
refers to machine learning and data mining 
only. Machine-learning and artificial-intelligence 
algorithms have become popular in civil 
engineering, including analytics to predict 
the condition of roads. For instance, Yang et al. 
used neural networks to predict variations 
in the crack index of asphalt roads over a short 
term.(12) Neural networks have a good learning 
capability; however, large amounts of data are 
needed for their training and calibration.(12) 

Furthermore, the black-box nature of neural 
networks does not help in understanding the relative 
importance of attributes.(9) In many cases, other 
algorithms such as decision trees are preferred due 
to their ease of interpretation and implementation, 
although algorithms such as neural networks 
might result in slightly higher accuracy.(3,13,14) 

Decision trees have been used to analyze and 
predict PIs. Chi et al. trained decision trees based on 
data from the Texas Department of Transportation.(2) 

They stated that transportation departments can 
use the results of their models for parts of their 
networks when falling weight deflectometer data 
are not available. The accuracy of their models in 
predicting five levels of SCI was approximately 
60 percent, which is satisfactory. They trained 
models using attributes such as amount of distress 
and ride score, which are not the cheapest data to 
collect. Moreover, the attributes were averaged out 
over a period of 5 yr (e.g., 5-yr average of distress). 
Using data of multiple years in one attribute to train 
the model may be one of the limitations of their work 
because most municipalities and transportation 
departments do not have updated data for several 
consecutive years.(2) Furthermore, the size of the 
training set used by Chi et al., which was 354 road 

sections, may raise some questions regarding the 
reliability and robustness of their models.(2) 

Researchers have conducted data analysis on data 
from the LTPP database to model PIs.(2,15,16) Using 
the historical distress data in the LTPP database 
and Minnesota road database, Wu developed a 
methodology to predict the PCI of asphalt roads 
over time by calculating the current PCI from 
distress values and predicting future PCI values 
using PCI master curves.(17) In another study, 
Meegoda and Gao developed a quantitative 
relationship between roughness progression and 
accumulative traffic load, structural number, annual 
precipitation, and freezing index.(15) Moreover, 
they used a Weibull distribution to investigate the 
reliability of roughness progression models. 

Objectives: Predictions Using Cost-Effective 
Data 

The first objective of this research was to train 
a machine-learning model that could adequately 
predict PCI deterioration within 3 yr through easy-to-
collect and affordable data for use by municipalities, 
especially ones with limited financial resources. 
The rationale behind using a 3-yr span is that most 
municipalities in Ontario conduct a comprehensive 
survey on their road network every 5 yr. A 3-yr 
prediction can provide a suitable interim estimate. 

The decision was made to adopt classification 
algorithms, particularly decision trees. These 
algorithms provide an open-box approach whereby 
decisionmakers can test the role of every attribute 
at different stages of the analysis. There are three 
additional reasons for choosing the decision-tree 
approach for this study. First, training a decision 
tree (e.g., a C4.5) requires almost no prerequisites 
or assumptions about the data. In other words, 
there is almost no limitation on the type of 
attributes that are used to train a decision tree, 
which is not the case for some other algorithms; 
for instance, the attributes to train a naive Bayes 
classifier must be independent. Second, decision 
trees are intuitive and easy to interpret. Third, they 
can be easily implemented and reused for new data. 
Unlike other classification algorithms, such as the 
k-nearest neighbors or the naive Bayes classifier, 
decision trees result in an explicit model that can 
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easily classify new examples.(3,13) In this paper, 
the decision trees were developed and validated 
through mining LTPP data. Municipalities with no 
longitudinal data can benefit from these models. 

The second objective was to determine which 
attributes have the largest impact on predicting PCI. 
This objective was accomplished by developing 
different decision trees using combinations of 
14 attributes. Later, the frequency of appearance 
by each attribute in all trees and its relevant position 
in each tree were studied. 

Methodology 

This section summarizes the steps of this study. 
Since there is no PCI in the online LTPP database, 
a tool was needed to calculate PCI values of 
asphalt roads from the distress data. The ASTM 
methodology was adopted for calculating the PCI 
values from distresses.(3) To automate the process 
of calculation, all ASTM curves first needed to be 
digitized and expressed mathematically via curve 
fitting. Next, a Python™ program was developed 
to extract distress data for each road segment 
and use the formulas to calculate the PCI for each 
segment. The generated PCI values (with a 3-yr 
spread) presented the initial and target values for 
the predictive models. In the next step, a literature 
review and a set of interviews were conducted to 
identify possible relevant attributes. A list of 14 
attributes was prepared, and data were retrieved 
from the online LTPP database using queries 
based on Structured Query Language (SQL). After 
completing data preparation and cleansing, seven 
ranking algorithms and a heuristic feature-selection 
algorithm were applied to the retrieved datasets 
to identify those attributes that have the largest 
potential in predicting future PCI values. 

After identifying the most relevant and informative 
attributes, two types of decision trees were trained 
to predict the PCI of roads after 5 yr. The accuracy of 
both trees was tested for unseen data using cross 
validation. To test the effect of the size of the training 
set on model accuracy, models were trained by 
different numbers of examples (i.e., 250, 550, and 
942). The effect of the size of the training set was 
significant, and increasing the size of the training 

set boosted the accuracy. Finally, the confusion 
matrices of the decision trees were studied to 
understand whether the wrong predictions of the 
models were overestimating or underestimating the 
PCI. Therefore, in this study, model evaluation was 
not limited to a one-number evaluation (correlation) 
as it is practiced by way of traditional regression 
analysis. This ability to investigate the nature of 
wrong predictions is a major advantage of machine-
learning approaches over simplified statistical 
analysis methods. 

Data Preparation and Cleansing 

Data were retrieved using SQL-based queries. It is 
worth mentioning that Specific Pavement Studies 
(SPS) sections were not used in the training set 
because the SPS sections that are colocated have 
identical traffic or climatic data.(18) A large portion 
of data preparation focused on generating the PCI 
values from distresses, which is explained in the 
next section. Since data were stored in different 
tables, different fields were collated by SQL join 
queries. Some attributes were created from a 
combination of two or more attributes. For instance, 
the attribute “last remedial action” is a combination 
of both major rehabilitation and maintenance 
actions, which are stored in different tables. Data 
cleansing included removing erroneous records. An 
example of an erroneous record is when, without 
maintenance, the PCI increases after 3 yr. 

Generating PCI Values to Train Models 

The training set must include the PCI value for each 
road section, which is not included in the LTPP 
database. The distress data and the dimensions 
of road sections were retrieved from the LTPP 
program’s online platform.(1) A Python™ program 
was developed to generate the PCI values from 
distress data according to the ASTM methodology. 
For this purpose, all deduct value graphs and 
correction curves were digitized and mathematically 
represented. After finding the mathematical 
functions of curves, the formulas were implemented 
in a Python™ program. The required steps for the 
digitization of graphs and the extraction of formulas, 
all shown in figure 1 and figure 2, follow. 
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Figure 1 shows the curves proposed by ASTM on the x-axis, and a polynomial curve was fitted 
D6433 - 07 for calculating deduct values of potholes to the points, as shown in figure 2. The coefficient 
with different levels of severity in metric units. A of correlation was very close to 1. Considering the 
large number of points, which are shown by red coefficients of figure 2, the formula for calculating 
dots, were picked on the curve. The points were then the deduct value of potholes at a high severity 
drawn on a scatter chart with a logarithmic scale (metric units) is shown in figure 3. 

Figure 1. Graph. Digitized graph for calculation of deduct values for high-severity potholes (graph regenerated based 
on guidelines of ASTM D6433 - 07).(4) 

© 2018 S. Madeh Piryonesi and Tamer El-Diraby. 

Figure 2. Graph. Fitting a polynomial to the ASTM deduct value curve highlighted in figure 1 and extracting the 
mathematical formula for potholes with a high severity (metric units). 

© 2018 S. Madeh Piryonesi and Tamer El-Diraby. 
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y = -7.13x5 + 3.32x4 + S.38x3 + S.81x2 + 41.83x + 51.11; R2 = 0.9999 

Figure 3. Mathematical formula extracted for the deduct value of high-severity potholes. 

Where: 

y = the deduct value. 
x = the logarithm of distress density. 
R2 = the coefficient of correlation. 

Altogether, 31 deduct values for distress density 
curves and 8 correction curves were digitized and 
embedded into a spreadsheet and a Python™ script 
to calculate the PCI values automatically. Extracted 
polynomial functions were similar to the formulas 
reported by Wu, with minor differences as a result 
of adopting metric units.(17) 

Choosing Attributes 

Predictive attributes were chosen after conducting 
a literature review, interviewing 3 experts, studying 
asset management plans developed in Ontario, and 
investigating the data collected by 10 small Ontario 
municipalities. Because most small municipalities 
typically do not have sufficient funding for data 
collection, the attributes with relatively low cost 
of acquisition were selected. Unlike most related 
previous works, these attributes were chosen based 
on cost rather than mere engineering reasoning. 
Table 1 shows the initial 14 attributes chosen to train 
models. 

Selecting the Most Informative Attributes 

All 14 attributes in table 1 cannot be used 
simultaneously to train a model due to overfitting. 
Overfitting usually happens when a model is too 
complicated and is fitted to the noise. Such a model 
has a very low training error and high testing 
error. In other words, it classifies training data very 
well, but it fails to classify unseen and new data 
satisfactorily.(3) Therefore, seven different ranking 
algorithms were used to identify the relative 
importance of each initial attribute in predicting 
the PCI. The algorithms used for screening 
attributes were information gain, information 
gain ratio, correlation-based feature selection, 
chi-squared, Gini index, weighting by rule, and 
symmetrical uncertainty. Each algorithm assigns 

a weight or rank to the attributes depending 
on their contribution to the prediction of the 
PCI. For instance, the correlation-based feature 
selection gives a higher rank to attributes that are 
more correlated with the PCI, while the information 
gain ranks attributes based on the reduction that 
each attribute can create in the entropy of the 
system.(13,19) Table 2 summarizes the ranks of the 
initial attributes in predicting the PCI as calculated 
by each algorithm and the average rank of each 
attribute. According to table 2, PCI0 and FUNC_ 
CLASS are, respectively, the most and the least 
informative attributes in predicting the PCI value 
after 3 yr. 

The results of ranking algorithms are instrumental 
in any predication of the PCI. However, the final 
decision needed more investigation regarding the 
attributes that had the largest impact on accuracy. 
Therefore, the Optimize Selection operator of the 
software RapidMiner™ was also applied to the 
dataset. This operator selects the most relevant 
attributes of a dataset. It has a heuristic approach 
that applies two deterministic greedy feature-
selection algorithms: forward selection and back-
ward elimination.(3,13,20) In simple words, in a dataset 
with n attributes, this operator selects m features 
(m < n) such that they maximize the accuracy of 
learned models (i.e., decision trees), where n is the 
total number of attributes in the training set, and m 
is the number of most informative attributes that 
maximize the accuracy of the model. An attribute 
with a weight of 1 has a role in increasing the 
accuracy of a decision tree, while a weight of 
0 means it is possible to train a tree with the 
same accuracy without using that attribute. The 
Weight in Heuristic Algorithm column in table 2 
confirms the results of average rankings of the 
attributes. Most attributes with a high average rank 
received a weight of 1 by the Optimize Selection 
operator. It is worth noting that this operator does 
not guarantee finding a global optimum due to its 
heuristic nature.(20) 
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Table 1. Initial list of attributes. 

Field Name 

PCI0 

Description 

The initial value of the PCI or the value in the current year 

AGE Age of road (since the construction date) 

PAVEMENT_TYPE Type of asphalt pavement 

FREEZE_INDEX_YR Calculated freeze index for year 

MAX_ANN_TEMP_AVG Average of daily maximum air temperatures for year 

MIN_ANN_TEMP_AVG Average of daily minimum air temperatures for year 

TOTAL_ANN_PRECIP Total precipitation for year 

FUNC_CLASS Functional class of road 

FREEZE_THAW_YR Number of freeze–thaw cycles per year 

OVERLAY_THICKNESS Thickness of the placed layer in rehabilitation 

AADT_ALL_VEHIC_2WAY Average annual daily traffic 

REMED_TYPE Type of last remedial action 

REMED_ YEARS Number of years since the last remedial action 

CONSTRUCTION_NO Number of conducted remedial actions 

PCI (target variable) PCI after 3 yr (as categorized by the ASTM) 
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Models 

Decision trees were chosen for this study, with the 
PCI value in 3 yr being the target variable. For 
training a decision tree, the target value must be 
discrete. Therefore, PCI values were discretized 
according to the ASTM rating scale illustrated 
in figure 4. As shown in the right side of the 
figure, ASTM divides the PCI into seven classes.(4) 

A conceptual representation of the implemented 
models demonstrates that, after training and 
implementing the models, users can input the 
values of selected attributes and get the level of 
PCI after 3 yr. 

Training Decision Trees 

Two decision trees were learned from the prepared 
training set, which contained 942 examples of road 

sections. The two trees are the default decision 
tree of RapidMiner™ (decision tree I) and a C4.5 
(decision tree II). These models, in contrast to old 
decision trees such as ID3, are capable of learning 
from both categorical and continuous attributes— 
especially a C4.5, which is a descendant of CLS and 
ID3 and has a high learning capability.(2,21) 

Figure 5 shows a snapshot of decision tree I learned 
from four attributes: PCI0, REMED_YEAR, FREEZE_ 
THAW_YR, and REMED_TYPE. Similarly, figure 6 
shows the tree learned from a C4.5 algorithm with 
the same examples and attributes. 

As mentioned, decision trees are easy to inter-
pret. For instance, figure 6 suggests that, when the 
current PCI value is larger than 85.1 and smaller 
than 91.6 (i.e., 85.1 < PCI0 < 91.6) and the road 

Figure 4. Illustration. Conceptual representation of implemented models. 

© 2018 S. Madeh Piryonesi and Tamer El-Diraby. 
DM = data-mining. 

9 



• 

( REM.ED_YEARS J 

"--- ----

REMED_TYPE 

-- .. -- , 
' -·-

l " h ir 

>4.45 

/ 

:,4.45 

,,;,------. 
( REMED_YEA RS ) 

------~------
~ -------- :,4.35 

------ -------­( REMED_YEA RS 

'----;:;:,--------(~~0 ~" 
~ .::::=--==:::._ <9 1 ~-...;;'-----

l'CIO 

· 91 b 1.6 

R m:o_ I R, rREEZE_Tll,\\I'_\ R 

FRl:f.'.Zt:_ I IIAW_\K 

. ' 
P IO 

--

Figure 5. Illustration. Decision tree I trained by 942 examples and 4 attributes. 

© 2018 S. Madeh Piryonesi and Tamer El-Diraby. 

Figure 6. Illustration. Decision tree II (a C4.5) trained by 942 examples and 4 attributes. 

© 2018 S. Madeh Piryonesi and Tamer El-Diraby. 
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has been maintained within the last 3 yr (REMED_ 
YEARS ≤ 3), it will stay in good condition for 3 yr. 
However, if the last remedial action occurred more 
than 3 yr ago and the road experiences more than 
24 freeze–thaw cycles per yr (FREEZE_THAW_YR > 
24), its condition will fall to satisfactory. 

Both models were tested multiple times with a 
similar number of examples and parameters; 
decision tree II (i.e., a C4.5) showed a higher 
accuracy (the next section, Model Evaluation, 
provides further detail). Figure 7 and figure 8 
compare the mean and standard deviation of 
accuracy of the 2 decision trees, both trained by 
the same training set with 3 different numbers 
of examples: 250, 550, and 942. Figure 7 
clearly demonstrates that decision tree II is 
outperforming its rival in all three cases. Higher 
accuracy of a C4.5 decision tree supports the 

results of previous research.(2) Additionally, 
figure 7 and figure 8 show that, by increasing 
the number of examples, the mean accuracy 
increases and its standard deviation decreases. 
Therefore, models trained by larger datasets are 
more accurate and robust. 

The hierarchy of the attributes within a decision 
tree reflects how informative the attributes are. 
This ease of interpretation is a great advantage 
of decision trees over other classification 
techniques. For the convenience of users, the 
decision trees in figure 5 and figure 6 were 
implemented using MATLAB®. Users can input 
the values of the attributes of their roads and 
climatic data and receive assessment about 
the deterioration of their roads after 3 yr. This 
assessment is context sensitive and is not a 
standard curve. 

Figure 7. Graph. Comparing the mean accuracy of the two trained decision trees for different sizes of training sets. 

© 2018 S. Madeh Piryonesi and Tamer El-Diraby. 
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Figure 8. Graph. Comparing one standard deviation of cross-validation accuracy of the two trained decision trees for 
different sizes of training sets. 

© 2018 S. Madeh Piryonesi and Tamer El-Diraby. 

Model Evaluation 

The accuracy of the developed models was 
tested using cross validation. The training data 
were divided into 10 subsets. The models were 
trained based on 9 of them and tested using 
the 10th. This process was iterated 10 times. The 
accuracy of the model is the average of these 
10 iterations. The best overall accuracy of the 
learned decision tree trained by 942 examples 
was 69.2 ± 4.7 percent. This means that, on 
average, approximately 70 percent of predictions 
were correct. This number is calculated by 
dividing the sum of the elements on the main 
diagonal of the confusion matrix (table 3), which 
represents the number of correct predictions, 
by the sum of all elements, which represents 
all predictions (942). Note that, in this case, the 
basic odds of making a correct prediction by wild 
guessing is 1/7 (or 14.3 percent) because the target 
variable has seven labels. This positively reflects 
a high level of performance of the proposed 
model. The ±4.7-percent value represents one 
standard deviation of the accuracy. 

Studying confusion matrices provides insights 
beyond one-number evaluations. In contrast 
to the measures of correlation-based and 
descriptive statistical techniques, a confusion 
matrix can reveal how fatal incorrect predictions 

(3) are. Table 3 shows a confusion matrix that 
resulted from testing the accuracy of a C4.5. 
As mentioned, the general accuracy of this 
model for classifying unseen data is 69.2 ± 4.7 
percent. The columns of a confusion matrix 
show the number of actual examples in each 
class, and the rows represent the predictions 
of the model. Therefore, the class recall of a 
specific class describes the performance of 
a model in predicting the label of that class. 
According to table 3, the developed model has 
a high recall for good and a low recall for failed 
and serious. From a data analytics perspective, 
this difference is due to the large number of 
good and small number of failed roads in the 
training set. From a practical perspective, this 
difference in class recalls could be an advantage 
of the model because the percentage of roads 
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Pred./Act. PCI 
Actual 
Good 

Actual 
Satisfactory 

Actual  
Fair 

Actual 
Poor 

Actual 
Very Poor 

Actual 
Serious 

Actual 
Failed 

Class 
Precision 

Predicted good 180  38  18  1  1  0  0  75.6% 

Predicted 
satisfactory 16  98  26  7  2  1  0  65.3% 

Predicted fair 7 23 161 14 10 6 0 72.9% 

Predicted poor 2 3 22 91 19 6 0 63.6% 

Predicted very 
poor 0 2 10 14 92 11 3 69.9% 

Predicted 
serious 0 1 4 2 11 30 4 57.7% 

Failed 0  0  0  0  0  5  1  16.6% 

Class recall 87.8% 59.4% 66.8% 70.5% 67.6% 50.8% 20.0% — 

Table 3. Confusion matrix of a C4.5 trained by 942 examples. 

Note: Bolded cell borders indicate main diagonal of matrix. 
—No data. 

in a failed condition is very low in real-world 
networks. This observation leads to a practical 
solution for increasing the accuracy of this model. 
The solution is to merge three lower classes 
(i.e., very poor, serious, and failed). Merging 
classes is a common approach to increasing 
the accuracy of classifiers.(3) In this case, it is 
quite practical for two reasons. First, these three 
classes constitute only 21 percent of examples. 
Second, real-world roads with a PCI lower than 
40 usually need similar treatments. Therefore, 
the number of classes (labels) was reduced to 
five. All PCI numbers lower than 40 were labeled 
very poor. As expected, reducing the number of 
classes resulted in increased accuracy. The cross-
validation accuracy of the new model was 72.5 ± 
5.07 percent. 

When working with decision trees, three criteria 
can be considered to determine the attributes 
with the largest impacts. First, which attributes 
maximize the accuracy? Second, which attributes 
appear in a higher position in the tree hierarchy? 
Third, which attributes result in a more 

cost-effective confusion matrix? In this context, 
a more cost-effective confusion matrix is defined 
as a matrix with fewer cases of overestimations. 
The answer to the first two criteria may be 
inferred from table 2, but answering the third 
question requires analyzing the confusion matrix. 
The idea of a cost-effective confusion matrix is 
explained using table 3. In the Actual Satisfactory 
column of this table, 98 examples were correctly 
predicted as satisfactory. Among incorrect 
predictions, 38 examples were class-ified as 
good, which is an overestimation of the PCI. 
The rest of the predictions for satisfactory class 
under-estimated the PCI. Since overestimating 
the PCI can result in a faster-than-predicted 
deterioration of roads (hence a reduction in the 
levels of service and customer satisfaction) its 
secondary costs are larger. Therefore, in the 
case of PCI prediction, it can be interpreted as a 
false-negative prediction. Accordingly, between 
two models with the same accuracy, the model 
with the smaller number of false-negative 
predictions is more cost-effective. 
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Table 4 compares the results of a C4.5 learned 
from different combinations of four attributes. 
The decision trees in table 4 have similar 
accuracies. However, if an overestimation of the 
PCI is defined as false negative, the number 
of false-negative predictions of decision tree I 
(i.e., the tree trained based on PCI0, REMED_ 
YEARS, FREEZE_THAW_YR and REMED_TYPE) 
is considerably lower than others. This quality 
could be interpreted as a strength of decision 
tree I. In other words, this study recommends that 
engineers not rely on one-number evaluations 

of models but rather take into consideration all 
aspects of different models. 

It should be noted that the large number of 
false negatives of decision tree II could be a 
result of missing values of average annual daily 
traffic (AADT) data. The impact of data quality 
on accuracy needs further research, especially 
for algorithms such as a C4.5 that cannot handle 
missing values of predictor attributes. The LTPP 
database includes a lot of missing values for those 
attributes that are reported by local agencies. The 
AADT is an example of such variables. 

Table 4. Comparing models using their number of false-negative predictions. 

Decision Tree Attributes 

PCI0 
REMED_ YEARS 

FREEZE_THAW_YR 
REMED_TYPE 

Number of False 
Negatives 

153 

Accuracy (%) 

67.08 ± 3.00 1 

2 

PCI0 
REMED_ YEARS 

FREEZE_THAW_YR 
AADT_ALL_VEHIC_2WAY 

198 67.93 ± 3.96 

3 

PCI0 
REMED_ YEARS 

FREEZE_THAW_YR 
AGE 

188 67.19 ± 4.28 

4 

PCI0 
FREEZE_THAW_YR 

FUNC_CLASS 
MAX_ANN_TEMP_AVG 
MIN_ANN_TEMP_AVG 

193 64.96 ± 6.21 

Conclusion and Recommendations 

In this study, two decision trees were trained to 
predict the PCI value of roads after 3 yr. A machine-
learning approach was adopted to overcome the 
weaknesses of previous PCI prediction models— 
mainly their use of deterministic curves. Careful 
consideration was given to selecting the most 
accessible and economical attributes. First, a 
provisional list of 14 easy-to-collect and relevant 
attributes was prepared. Since the LTPP database 
does not include PCI values, a program was 
developed to calculate the PCI from distress data. 
After calculating PCI values and adding them to 
the training set, seven ranking algorithms and a 

heuristic feature-selection algorithm were applied 
to data to identify the most relevant attributes. 

The accuracy of the decision trees reached 
approximately 75 percent for unseen data. 
Considering the results of ranking algorithms, 
the accuracy of models, and the number of false 
negatives in the confusion matrices, several 
recommendations were made about the most 
informative data. The analysis showed that the 
current PCI and the time since the last remedial 
actions are among the most informative 
attributes for predicting future PCI values. 
On the other hand, the functional class of 
road and the pavement type were the least 
informative features of this dataset. It was also 
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demonstrated that one-number summaries 
cannot represent the performance of a model 
properly. Further observations, such as studying 
confusion matrices, are necessary to assess 
the performance of models and the value of 
data. Finally, the researchers emphasize that 
the findings reported here are based on the 
desire to use easy-to-collect data. It is possible 
that adding more technical and engineering 
attributes could enhance the accuracy of the 
models. In that case, a cost-accuracy tradeoff 
analysis could be considered. 
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